Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-35028844

RESUMO

Fluid catalytic cracking (FCC) unit is one of the means to lighten heavy oil in refineries, and its regenerated flue gas is also the main source of air pollutants from refinery. However, it is not clear about the type and amount of pollutants discharged from FCC units in China. The emissions of regenerated pollutants in the stack flue gases of three typical FCC units in China were investigated in this study, including a partial regeneration unit without a CO boiler (U1), a partial regeneration unit with a CO boiler (U2), and a full regeneration unit (U3). Different monitoring methods were used to analyze the concentration of sulfur dioxide (SO2) and nitrogen oxides (NOx), and the results showed that Fourier transform infrared spectroscopy (FTIR) monitoring results of SO2 and NOx are approximately 10 times and 5 times larger than those of the continuous emission monitoring system (CEMS) data, respectively. Also, the contents of characteristic pollutants such as NH3, C6H6, HCN, C8H8, C2H4, CH4, and CO were also monitored by FTIR, and the emission factors based on coke burn-off rate and throughput were investigated. The pollutants in U1 exhibited relatively higher contents with the NH3, HCN, and C6H6 of 116.99, 71.94, and 56.41 mg/Nm3 in flue gas, respectively. The emission of regenerated pollutants in U2 and U3 are significantly different from U1. Regeneration processes (including coke properties, operating modes, and presence or absence of CO boilers) affected pollutants' emission factors in varying degrees. At last, reasonable emission factors based on the different FCC regeneration processes contribute to the prediction, assessment, and control for the pollutant emission.

2.
J Hazard Mater ; 422: 126849, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34416688

RESUMO

Dichlorvos (DDVP) is an insecticide with neurotoxicity that is widely used in agricultural production and life. However, the effects of acute DDVP poisoning on brain tissue remain underinvestigated. The purpose of this study was to evaluate the differences within 15 min-6 h in plasma biochemical indexes, brain histology and metabolites among three groups of commercial broilers orally administered different dosages of DDVP one time: (1) high-dose group (11.3 mg/kg), (2) low-dose group (2.48 mg/kg) and (3) control group (0 mg/kg). The results of biochemical indexes showed that acute DDVP poisoning could cause hyperglycemia and oxidative stress in poisoned broilers. Histological examination showed that DDVP could induce brain edema, abnormal expression of glial fibrillary acidic protein (GFAP) and neuronal mitochondrial damage in broilers. Whole-brain metabolism showed that DDVP could significantly change the secretion of neurotransmitters, energy metabolism, amino acid metabolism and nucleotide metabolism. Correlation analysis showed that metabolites such as hypoxanthine, acetylcarnitine and glucose 6-phosphate were significantly correlated with blood glucose, biomarkers of oxidative stress and brain injury pathology. The results of this study provide new insights into the molecular mechanism of brain tissue responses to acute DDVP exposure in broilers and deliver important information for clinical research on neurodegenerative diseases caused by acute DDVP poisoning.


Assuntos
Lesões Encefálicas , Venenos , Animais , Encéfalo , Galinhas , Diclorvós/toxicidade , Metabolômica
3.
Ticks Tick Borne Dis ; 13(2): 101892, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34942560

RESUMO

The full-length cDNA of two ferritins of Haemaphysalis flava were cloned after which recombinant Hf-FER1 and Hf-FER2 were expressed and their function was analyzed. In addition, RNA interference (RNAi) based on the injection of Hf-fer1 or Hf-fer2 dsRNA into fully engorged female ticks was performed. The cDNA encoding Hf-FER1 is 834 bp in length. It contains an iron-responsive element in the 5' untranslated region and encodes 174 amino acid residues. The full-length cDNA of Hf-FER2 contains 696 bp and encodes 199 amino acids, including a putative signal peptide sequence. Hf-FER1 and Hf-FER2 both have the ferroxidase iron center and the ferrihydrite nucleation center. The evolutionary relationship of Hf-FER1 and Hf-FER2 was established, and the predicted quaternary structures were assembled as typical spherical shells composed of 24 subunits which was demonstrated by nature PAGE. Real-time PCR showed that Hf-fer1 and Hf-fer2 were expressed in all developmental stages, with the highest expression in fully engorged females. The expression of Hf-fer1 and Hf-fer2 were relatively high in unfed larvae. Hf-fer1 was expressed in all tissues and was especially abundant in the salivary glands of fully engorged females. In contrast, the highest levels of Hf-fer2 were found in the midgut of fully engorged females, and no expression was found in the salivary glands of this life stage. Both recombinant Hf-FER1 and Hf-FER2 had iron-binding capabilities. Silencing of both Hf-fer1 and Hf-fer2 affected fecundity. Compared to the control, the percentage of ticks that laid eggs in the Hf-fer1 and Hf-fer2 RNAi groups was 73.3% and 66.7%, respectively. The silenced ticks that laid eggs had lower egg weight to body weight ratios, and the eggs had abnormal morphologies. The hatchability of eggs with normal morphology in the Hf-fer1 and Hf-fer2 silenced groups was 47.8% and 22.8%, respectively, which was significantly different from the control group (P < 0.005). These findings indicate that Hf-FER1 and Hf-FER2 play important roles in the iron storage of H. flava.

4.
Microsyst Nanoeng ; 7: 89, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34754504

RESUMO

In vivo, multiple biophysical cues provided by highly ordered connective tissues of the extracellular matrix regulate skeletal muscle cells to align in parallel with one another. However, in routine in vitro cell culture environments, these key factors are often missing, which leads to changes in cell behavior. Here, we present a simple strategy for using optical media discs with nanogrooves and other polymer-based substrates nanomolded from the discs to directly culture muscle cells to study their response to the effect of biophysical cues such as nanotopography and substrate stiffness. We extend the range of study of biophysical cues for myoblasts by showing that they can sense ripple sizes as small as a 100 nm width and a 20 nm depth for myotube alignment, which has not been reported previously. The results revealed that nanotopography and substrate stiffness regulated myoblast proliferation and morphology independently, with nanotopographical cues showing a higher effect. These biophysical cues also worked synergistically, and their individual effects on cells were additive; i.e., by comparing cells grown on different polymer-based substrates (with and without nanogrooves), the cell proliferation rate could be reduced by as much as ~29%, and the elongation rate could be increased as much as ~116%. Moreover, during myogenesis, muscle cells actively responded to nanotopography and consistently showed increases in fusion and maturation indices of ~28% and ~21%, respectively. Finally, under electrical stimulation, the contraction amplitude of well-aligned myotubes was found to be almost 3 times greater than that for the cells on a smooth surface, regardless of the substrate stiffness.

5.
Nat Biomed Eng ; 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750535

RESUMO

Because a host's immune system is affected by host-microbiota interactions, means of modulating the microbiota could be leveraged to augment the effectiveness of cancer therapies. Here we report that patients with oral squamous cell carcinoma (OSCC) whose tumours contained higher levels of bacteria of the genus Peptostreptococcus had higher probability of long-term survival. We then show that in mice with murine OSCC tumours injected with oral microbiota from patients with OSCCs, antitumour responses were enhanced by the subcutaneous delivery of an adhesive hydrogel incorporating silver nanoparticles (which inhibited the growth of bacteria competing with Peptostreptococcus) alongside the intratumoural delivery of the bacterium P. anaerobius (which upregulated the levels of Peptostreptococcus). We also show that in mice with subcutaneous or orthotopic murine OSCC tumours, combination therapy with the two components (nanoparticle-incorporating hydrogel and exogenous P. anaerobius) synergized with checkpoint inhibition with programmed death-1. Our findings suggest that biomaterials can be designed to modulate human microbiota to augment antitumour immune responses.

6.
World J Clin Cases ; 9(25): 7605-7613, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34616833

RESUMO

BACKGROUND: Both periprosthetic joint infections (PJIs) and severe femoral segmental defects are catastrophic complications of total hip arthroplasty (THA), and both present a significant challenge in revisional surgery. There are limited data available to guide clinical decision making when both occur concurrently. CASE SUMMARY: A 61-year-old woman presented with a 6-mo history of a sinus tract at the site of her original THA incision. Radiological imaging revealed a total hip joint implant with an ipsilateral segmental femoral defect. Based on histological, radiological, laboratory, and clinical features, a diagnosis of concurrent chronic PJI and segmental femoral defect (Type IIIB, Paprosky classification) was made. After multidisciplinary team discussion, three-dimensional (3D)-printed, custom-made antibiotic spacers were created that could be used to mold antibiotic-loaded cement spacer. These were placed following PJI debridement in the first stage of revision surgery. After the PJI was eliminated, a 3D-printed, custom-made, femoral prosthesis was created to repair the considerable femoral defect. After 20-mo follow-up, the patient had excellent functional outcomes with a near-normal range of hip movement. So far, neither evidence of recurrent infection nor loosening of the prosthesis has been observed. CONCLUSION: We describe a case of "two-stage, custom-made" total hip revision to treat PJI with a concurrent segmental femoral defect. Use of a personalized, 3D-printed spacer and proximal femoral prosthesis led to satisfactory hip function and no early postoperative complications. Use of a customized implant provides surgeons with an alternative option for patients where no suitable spacer or implant is available. However, the long-term function, longevity, and cost-effectiveness of the use of custom-made prostheses have yet to be fully explored.

7.
Artigo em Inglês | MEDLINE | ID: mdl-34613531

RESUMO

OBJECTIVE: To investigate the effect of pre- and postoperative magnetic resonance imaging (MRI) findings on the prognosis of patients with spinal dural arteriovenous fistulas (SDAVFs) treated surgically. METHOD: A total of 76 patients from Jan 1, 2013, to June 30, 2020, were enrolled in this study. Their spinal neurological function was evaluated and graded by the modified Aminoff-Logue Scale (mALS). Preoperative and 3 months postoperative MRI results were evaluated, and their relationship with patients' pre- and postoperative spinal neurological function at 1 year after surgery was calculated. Analysis of variance (ANOVA), the chi-square test, and others were used to investigate the prognostic value of MRI for patients with SDAVFs treated surgically. RESULTS: According to our results, the extent of spinal edema on preoperative MRI was significantly correlated with the patients' degrees of preoperative spinal neurological dysfunction. The severity of preoperative spinal neurological dysfunction was significantly greater in patients whose extent of spinal edema was identified at ≥ 5 vertebral levels. Importantly, patients with a reduction in the degree of spinal edema ≥ 50% on 3-month postoperative MRI demonstrated significant improvement in spinal neurological function 1 year after surgery. CONCLUSION: In patients with SDAVFs, the extent of spinal edema on preoperative MRI may predict the severity of preoperative spinal neurological dysfunction. There was a significant correlation between the degree of reduction in spinal edema at 3 months after operation and patients' clinical outcomes 1 year after surgery.

8.
Oral Dis ; 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34651389

RESUMO

OBJECTIVE: Adenoid cystic carcinoma (AdCC) and mucoepidermoid carcinoma (MEC) are the two most frequent malignancies of salivary glands. This study aims to explore the expression and migration of LAG3, TIM3, and A2aR in AdCC and MEC, and the potential relationship with oncogenic signaling molecules and immunosuppressive cytokines. MATERIALS AND METHODS: Custom made human salivary gland tissue microarrays included 81 AdCCs, 52 MECs, 76 normal salivary glands (NSG), and 14 pleomorphic adenoma (PMA) samples. Immunohistochemical analysis of lymphocyte activation gene 3 (LAG3), T-cell immunoglobulin and mucin domain-containing protein 3 (TIM3), adenosine 2a receptor (A2aR), oncogenic phosphorylated S6 kinase (p-S6) and ERK1/2 (p-ERK1/2 ), and TGF-ß1 was performed with salivary gland tissue microarrays of human samples. The correlation of the immunostaining was analyzed based on a digital pathological system, and data were evaluated by hierarchical cluster. Further in vitro studies of knockdown immune checkpoints LAG3, TIM3, and A2aR were carried out by siRNA transfection. RESULTS: The expression levels of LAG3, TIM3, and A2aR were remarkably increased in AdCC and MEC, compared with NSG and PMA samples, but were independent of pathology grade. They were closely correlated with TGF-ß1, slightly related to p-ERK1/2 and p-S6. After the knockdown of immune checkpoints LAG3, TIM3, and A2aR, the migration of SACC-LM cell line was significantly reduced. CONCLUSIONS: These results suggested that LAG3, TIM3, and A2aR are overexpressed in AdCC and MEC, may promote migration of SACC-LM cell and correlated with TGF-ß1 and oncogenic signaling pathways.

9.
Comput Math Methods Med ; 2021: 7922594, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646338

RESUMO

Background: Idiopathic Pulmonary Fibrosis (IPF) is one of the most common idiopathic interstitial pneumonia, which can occur all over the world. The median survival time of patients is about 3-5 years, and the mortality is relatively high. Objective: To reveal the potential molecular characteristics of IPF and deepen the understanding of the molecular mechanism of IPF. In order to provide some guidance for the clinical treatment, new drug development, and prognosis judgment of IPF. Although the preliminary conclusion of this study has certain guiding significance for the treatment of IPF and so on, it needs more accurate analytical approaches and large sample clinical trials to verify. Methods: 220 patients with IPF were divided into different subgroups according to the gene expression profiles, which were obtained from the Gene Expression Omnibus (GEO) database. In addition, these subgroups present different expression forms and clinical features. Therefore, weighted gene coexpression analysis (WGCNA) was used to seek the differences between subtypes. And six subgroup-specific WGCNA modules were identified. Results: Combined with the characteristics of WGCNA and KEGG enrichment modules, the autophagic pathway was only upregulated in subgroup I and enriched significantly. The differentiation pathways of Th1 and Th2 cells were only upregulated and enriched in subgroup II. At the same time, combined with clinical information, IPF patients in subgroup II were older and more serious, which may be closely related to the differentiation of Th1 and Th2 cells. In contrast, the neuroactive ligand-receptor interaction pathway and Ca+ signaling pathway were significantly upregulated and enriched in subgroup III. Although there was no significant difference in prognosis between subgroup I and subgroup III, their intrinsic biological characteristics were very different. These results suggest that the subtypes may represent risk factors of age and intrinsic biological characteristics and may also partly reflect the severity of the disease. Conclusion: In conclusion, current studies have improved our understanding of IPF-related molecular mechanisms. At the same time, because the results show that patients from different subgroups may have their own unique gene expression patterns, it reminds us that patients in each subgroup should receive more personalized treatment.


Assuntos
Fibrose Pulmonar Idiopática/classificação , Fibrose Pulmonar Idiopática/genética , Estudos de Casos e Controles , Biologia Computacional , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica/estatística & dados numéricos , Humanos , Masculino , Anotação de Sequência Molecular , Análise de Componente Principal , Prognóstico
11.
Medicina (Kaunas) ; 57(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34684067

RESUMO

Background and objectives: The purpose of this study was to investigate the influences of oral high-dose genistein (GE) administration on exercise-induced oxidative stress, inflammatory response and tissue damage. Materials and Methods: Thirty-two mice were randomly divided into control group (Con; sedentary/0.5% CMC-Na), GE administrated group (GE; sedentary/GE dosed), exercise group (Ex; exercise/0.5% CMC-Na), or GE administrated plus exercise group (GE + Ex; exercise/GE dosed), mice in the GE and GE + Ex group were given GE orally at the dose of 200 mg/kg weight. Results: Plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT) levels, liver interleukin (IL)-6, IL-1ß, superoxide dismutase 1 (SOD1), catalase (CAT), hemeoxygenase-1 (HO-1) gene expression levels and skeletal muscle IL-6, nuclear factor erythroid 2-related factor (Nrf2), and HO-1 gene expression levels increased immediately after exhaustive exercise. GE supplementation increased liver protein carbonyl concentrations. On the other hand, GE supplementation significantly decreased SOD1, CAT gene expression levels in the liver and Nrf2, and HO-1 gene expression levels in the skeletal muscles. Conclusions: Acute exercise induced organ damage, inflammation, and oxidative stress in skeletal muscles and the liver. However, a single dose of GE supplementation before exercise did not lead to favorable antioxidant and anti-inflammatory effects in this study.


Assuntos
Genisteína , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Suplementos Nutricionais , Genisteína/metabolismo , Genisteína/farmacologia , Genisteína/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fígado/metabolismo , Camundongos , Músculo Esquelético
12.
Int J Biol Macromol ; 193(Pt A): 328-336, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34699893

RESUMO

RPS14 (ribosomal protein S14) gene maintains the normal physiological activities of the body by regulating the biosynthesis of ribosomes and the translation of important proteins. This study aims to explore the potential role of RPS14 in broiler ascites syndrome (BAS). We successfully prepared polyclonal antibody against RPS14 and studied the localization and expression of RPS14 protein in a variety of animal key tissues. In this experiment, the recombinant expression plasmid PET28a-RPS14 was constructed using the prokaryotic expression technology of foreign genes. Under the conditions of IPTG induction, a His-RPS14 protein with a molecular weight of about 22 kDa was expressed, and the purified recombinant protein was used as an antigen to prepare rabbit anti-chicken serum. Western blot results showed that the serum could specifically identify RPS14 protein in important tissues of broilers. Immunofluorescence combined with homology analysis showed that the antiserum had significant species specificity. Compared with other species, the expression of this protein in key tissues of broilers and ducks was more significant. More importantly, western blotting and immunofluorescence showed that BAS significantly reduced the expression level of RPS14. This further indicated that RPS14 protein can be used as one of the important entry points for BAS research.

13.
Bioorg Chem ; 116: 105376, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34560560

RESUMO

Antitumor immune responses depend on the infiltration of solid tumors by effector T cells, a process guided by chemokines. In particular, the chemokine CXCL10 has been shown to play a critical role in mediating recruitment of CXCR3 + cytolytic T and NK cells in tumors, though its use as a therapeutic agent has not been widely explored. One of the limitations is due to the rapid inactivation of CXCL10 by dipeptidyl peptidase 4 (DPP4), a broadly expressed enzyme that is active in plasma and other bodily fluids. In the present study, we describe a novel method to produce synthetic CXCL10 that is resistant to DPP4 N-terminal truncation. Using a Fmoc solid-phase peptide synthesis approach, synthetic murine WT CXCL10 was produced, showing similar biochemical and biological properties to the recombinant protein. This synthesis method supported production of natural (amino acid substitution, insertion or deletion) and non-natural (chemical modifications) variants of CXCL10. In association with a functional screening cascade that assessed DPP4-mediated cleavage, CXCR3 signaling potency and chemotactic activity, we successfully generated 20 murine CXCL10 variants. Among those, two non-natural variants with N-methylated Leu3 (MeLeu3) and a reduced amide bond between Pro2 and Leu3 (rLeu3), respectively, showed resistance to DPP4 truncation but decreased CXCR3 signaling and chemotactic activity. Interestingly, MeLeu3 and rLeu3 CXCL10 behaved as DPP4 inhibitors, preventing the truncation of WT CXCL10. This study highlights the potential of using Fmoc solid-phase chemistry in association with biochemical and biological characterization to rapidly identify CXCL10 variants with desired properties. These novel methods unlock the opportunity to develop DPP4 resistant CXCL10 variants, as well as other chemokine substrates, while maintaining chemotactic properties.

14.
Mater Sci Eng C Mater Biol Appl ; 128: 112201, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474813

RESUMO

Tissue engineering technology provides effective alternative treatments for tracheal reconstruction. The formation of a functional microvascular network is essential to support cell metabolism and ensure the long-term survival of grafts. However, given the lack of an identifiable vascular pedicle of the trachea that could be anastomosed to the blood vessels directly in the recipient's neck, successful tracheal transplantation faces significant challenges in rebuilding the adequate blood supply of the graft. Herein, we describe a one-step method to construct microvascularization of tissue-engineered trachea in orthotopic transplantation. Forty rabbit tracheae were decellularized using a vacuum-assisted decellularization (VAD) method. Histological appearance and immunohistochemical (IHC) analysis demonstrated efficient removal of cellular components and nuclear material from natural tissue, which was also confirmed by 4'-6-diamidino-2-phenylindole(DAPI) staining and DNA quantitative analysis, thus significantly reducing the antigenicity. Scanning electron microscopy (SEM), immunofluorescence (IF) analysis, GAG and collagen quantitative analysis showed that the hierarchical structures, composition and integrity of the extracellular matrix (ECM) were protected. IF analysis also demonstrated that basic fibroblast growth factor (b-FGF) was preserved during the decellularization process, and also exerted biocompatibility and proangiogenic properties by the chick chorioallantoic membrane(CAM) assay. Xenotransplantation assays indicated that the VAD tracheal matrix would no longer induced inflammatory reactions implanted in the body for 4 weeks after treated by VAD more than 16 h. Furthermore, we seeded the matrix with bone marrow-derived endothelial cells (BMECs) in vitro and performed in vivo tracheal patch repair assays to prove the biocompatibility and neovascularization of VAD-treated tracheal matrix, and the formation of a vascular network around the patch promoted the crawling of surrounding ciliated epithelial cells to the surface of the graft. We conclude that this natural VAD tracheal matrix is non-immunogenic and no inflammatory reactions in vivo transplantation. Seeding with BMECs on the grafts and then performing orthotopic transplantation can effectively promote the microvascularization and accelerate the native epithelium cells crawling to the lumen of the tracheal graft.


Assuntos
Engenharia Tecidual , Traqueia , Animais , Células Endoteliais , Matriz Extracelular , Coelhos , Tecidos Suporte
15.
EClinicalMedicine ; 38: 101010, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34250456

RESUMO

Background: We aimed to assess the safety and immunogenicity of an inactivated vaccine against COVID-19 in Chinese adults aged ≥18 years. Methods: This is an ongoing randomized, double-blind, placebo-controlled, phase 1/2 clinical trial among healthy adults aged ≥18 years in Henan Province, China. Participants (n = 336 in 18-59 age group and n = 336 in ≥60 age group) were enrolled between April 12 and May 17 2020, and were equally randomized to receive vaccine or placebo (aluminum hydroxide adjuvant) in a three-dose schedule of 2·5, 5, or 10 µg on days 0, 28, and 56. Another 448 adults aged 18-59 years were equally allocated to four groups (a one-dose schedule of 10 µg, and two-dose schedules of 5 µg on days 0 and 14/21/28) and received vaccine or placebo (ratio 3:1 within each group). The primary outcomes were 7-day post-injection adverse reactions and neutralizing antibody titres on days 28 and 90 after the whole-course vaccination. Trial registration: www.chictr.org.cn #ChiCTR2000031809. Findings: The 7-day adverse reactions occurred in 4·8% to 32·1% of the participants in various groups, and most adverse reactions were mild, transient, and self-limiting. Twenty participants reported 68 serious adverse events which were judged to be unrelated to the vaccine. The 90-day post-injection geometric mean titres of neutralizing antibody ranged between 87 (95% CI: 61-125) and 129 (99-169) for three-dose schedule among younger and older adults; 20 (14-27), 53 (38-75), and 44 (32-61) in 5 µg days 0 and 14/21/28 groups, respectively, and 7 (6-9) in one-dose 10 µg group. There were no detectable antibody responses in all placebo groups. Interpretation: The inactivated vaccine against COVID-19 was well tolerated and immunogenic in both younger and older adults. The two-dose schedule of 5 µg on days 0 and 21/28 and three-dose schedules on days 0, 28, and 56 could be further evaluated for long-term safety and efficacy in the phase 3 trials.

16.
Colloids Surf B Biointerfaces ; 205: 111898, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34098367

RESUMO

Polyvinylidene fluoride (PVDF) coating with piezoelectric properties was prepared on surface of titanium-based materials to improve the bio inertness of the surface. The surface of titanium-based materials with piezoelectric properties similar to human bone promotes the growth of osteoblasts. However, not only new bone growth but also osseointegration are observed in the process of bone repair. The hydrophobicity of PVDF coating is unfavorable for mineralization. In this study, a PVDF coating was prepared on the titanium surface by using titanium dioxide nanotubes as a transition layer, and PVDF was attached to the wall of the titanium dioxide nanotube. The contact angle of the polarized PVDF coating decreases from 108° to 47°, which indicates that it changes from hydrophobic to hydrophilic due to the reduction in surface energy and the effect of negative surface charge. After the coating is left for a period of time, its contact angle only increases by 20° due to the loss of negative surface charge. After a physiological loading is applied to the polarized PVDF coating, the durability of its surface hydrophilicity is maintained. The mineralization ability of the polarized PVDF coating after being immersed in simulated body fluid (SBF) for 1, 7, and 14 days is significantly higher than that of the unpolarized sample. The increase in mineralization ability is mainly due to the hydrophilicity of the surface and the attraction of negative charges to calcium ions. Notably, after the polarized PVDF coating is subjected to physiological load, the mineralization ability is further improved after being immersed in SBF for 14 days, and its surface is covered with a layer of bone-like apatite. The high mineralization ability of the PVDF coating on the titanium surface after polarization can promote osseointegration and therefore shorten the bone repair cycle. Accordingly, this coating has potential application value in the clinical treatment of bone defect repair in middle-aged and elderly people.


Assuntos
Polivinil , Titânio , Idoso , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Pessoa de Meia-Idade , Osteoblastos , Propriedades de Superfície
17.
Environ Sci Pollut Res Int ; 28(39): 55502-55510, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34142321

RESUMO

Fluid catalytic cracking (FCC) unit emits a large amount of flue gas, which is a major concern of environmental protection supervision. Wet flue gas desulfurization (WFGD) technologies have been widely used to control the emissions of SO2 in refineries. In this study, stack tests for pollutants emission of a typical FCC unit were conducted. The emission characteristics of the FCC unit indicated that WFGD would cause a large amount of water vapor in the flue gas, which indirectly leads to large quantities of salt pollutants entrained in the flue gas including ammonium sulfite ((NH4)2SO3) and ammonium sulfate ((NH4)2SO4). A strong correlation among the concentrations of SO2, NH3, and H2O was observed, and factor analysis shows that these concentrations are dominated by a common factor. It was also found that a mass quantity of NH4+ and SO32- existed in the condensate water of the flue gas. The TG-MS analysis shows that (NH4)2SO3 could be decomposed at 94.1 °C, and NH3, SO2, and H2O are released as reaction products in the form of gas. Therefore, a part of the NH3 and SO2 obtained by Fourier transform infrared spectroscopy (FTIR) monitoring may be derived from the decomposition of (NH4)2SO3 in the flue gas due to the high temperature during the sampling process, which was also confirmed in a lab experiment. The hot and wet sampling process will lead to overestimation of NH3 and SO2 emissions rather than FTIR method itself when monitoring the high-humidity FCC flue gas. Thus, the concentration of H2O in the flue gas and the type of sampling process need to be taken into consideration during the monitoring process.


Assuntos
Poluentes Ambientais
18.
Sci Total Environ ; 783: 147051, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34088127

RESUMO

Dichlorvos (DDVP) is an organophosphorus compound with insecticidal effects. Organophosphorus pesticides can easily enter humans or animals through various channels, causing cerebrum nerve cell damage. The purpose of this research was to investigate whether acute dichlorvos poisoning can cause cerebrum neurotoxic injury and change the expression of apoptosis-related genes in broilers, further clarify the neurotoxic mechanism after acute dichlorvos exposure, and provide a research basis for prevention, treatment and gene drug screening in the later stage. In this experiment, healthy yellow-feathered broilers were randomly assigned to the control group, the low-dose group (1.13 mg/kg) and the high-dose group (10.2 mg/kg) for modelling observation, and detection was conducted based on H&E (haematoxylin and eosin) staining, transmission electron microscopy analysis of tissue sections, immunofluorescence techniques and real-time quantitative polymerase chain reaction (qRT-PCR). The results showed that organophosphorus poisoning was accompanied by obvious neurological symptoms such as limb twitching and massive salivation. In addition, we observed that compared with the control group, the number of lysed nuclear neurons, deformed vascular sheaths, and glial cells and the expression of glial fibrillary acidic protein (GFAP) in the poisoned group of broilers increased significantly, and the increase was more obvious in the low-dose group. However, cell apoptosis and mitochondrial structure dissolution were most pronounced in the high-dose group. Moreover, the qRT-PCR results also revealed significant changes in the expression of apoptosis-related genes. The expression levels of ACC, LKB1 and GPAT increased significantly, while the expression of HMGR, PPARα, CPT1 and AMPKα1 decreased significantly. In summary, these results indicated that dichlorvos may cause the lysis of cerebrum nerve cell nuclei, completely destroy the structure of mitochondria, change the expression of related apoptotic genes, enhance cell apoptosis, and cause neurogenic damage to the cerebrum. These research results offer a theoretical foundation for the prevention and treatment of acute organophosphate toxicosis.


Assuntos
Cérebro , Inseticidas , Animais , Apoptose , Galinhas , Diclorvós/toxicidade , Humanos
19.
Int Urol Nephrol ; 53(11): 2399-2408, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34101100

RESUMO

BACKGROUND: The impact of serum uric acid (SUA) on development of cardiovascular disease (CVD) in patients undergoing peritoneal dialysis (PD) remains controversial, especially the impact of hypouricemia (HUA) on CVD. The aim of our study was to investigate the influence of low-level SUA on cardiovascular (CV) events in PD patients. METHODS: A retrospective cohort study was conducted.728 PD patients from February 1, 2010 to May 31, 2019 were enrolled. All demographic and laboratory data were collected at baseline and 6 months after PD treatment. The study cohort was divided into four groups according to SUA level (µmol/L) after 6 months of PD: Group1 (< 360), Group2 (360-420), Group3 (420-480), Group4 (≥ 480). The clinical characteristics of each group were analyzed. With Group2 as reference, logistic regression analysis was performed to investigate the correlation between SUA levels and risk of CV events in patients undergoing PD. Use Kaplan-Meier method to generate CV events risk graph. RESULTS: 728 patients were enrolled in this study, including 403 (55.4%) males and 325 (44.6%) females, with an average age of 48.66 ± 13.98 years; of which 158 (21.7%) patients developed CV events. Multivariate COX regression showed that after adjusting for multiple clinical factors, Group1 (HR = 1.92, 95% CI 1.17-3.15, P = 0.01), Group3 (HR = 1.89, 95% CI 1.13-3.15, P = 0.015), and Group4 (HR = 2.38, 95% CI 1.35-4.19, P = 0.003) are all independent risk factors for developing CV events. The Kaplan-Meier risk curve of CV events showed that the risk of CV events in the Group1, Group3 and Group4 were significantly higher (Log-Rank = 12.67; P = 0.005). Restricted cubic spline (RCS) showed that SUA level is non-linearly associated with the risk of CV events, showing an U-shaped curve ([Formula: see text]=13.3 P = 0.01). CONCLUSIONS: Our study suggested that patients with SUA level less than 360 µmol/L also exhibited the higher risk for developing CV events, an U-shaped association between SUA level and risk of CV events in patients undergoing PD. Both SUA levels below 360 µmol/L and above 420 µmol/L were found to be significant risk factors for developing CV events in patients undergoing long-term PD.

20.
Clin Neurol Neurosurg ; 207: 106740, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34119902

RESUMO

OBJECTIVE: To research prognostic factors in patients with spinal dural arteriovenous fistulas at 1 year after surgery. PATIENTS AND METHOD: A retrospective study was performed for all patients diagnosed with spinal dural arteriovenous fistula (SDAVFs) and treated surgically from Jan 1, 2013 to June 30, 2020 in our hospital. Medical records and pre-operative imaging results (MRI and DSA) of 103 patients were analyzed. Neurological function was evaluated by modified Aminoff-Logue Scale (mALS) consecutively at the day before surgery, 6 months and 1year after surgery. Pearson's χ2 test and binary logistic regression were used to find promising predictive factors. RESULT: A total of 76 patients (mean age 56 ± 11 years, 64 (84.2%) are male) with 76 fistulas met inclusive criteria. The mean interval from onset to diagnosis was 14 ± 15 months. Among the fistulas, 8 (10.5%) were located at T1-T6, 42 (55.3%) were located at T7-12, and 26 (34.2%) were located below T12. Compared with pre-operative mALS scores, 54 (71.06%) patients received improvement, and 22 (28.94%) patients felt worse or stable. The binary logistic regression reveals pre-operative mALS score and length of flow voids on T2-WI of pre-operative MRI are predictors of clinical improvement at 1 year after surgery in patients with SDAVFs. CONCLUSION: This study suggests that pre-operative mALS score and length of flow voids on T2-WI of pre-operative MRI are predictors of clinical improvement for patients with SDAVFs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...