Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.875
Filtrar
1.
Talanta ; 266(Pt 1): 124936, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37478765

RESUMO

DNA is an indispensable part of metabolism, which affects many important processes in the body, including gene expression, protein synthesis, and drug delivery. Surface-enhanced Raman spectroscopy (SERS) is one of the most important methods used to study the structure and function of DNA and can obtain rich DNA molecular fingerprints. However, it is still a great challenge to use SERS to directly analyze the characteristic Raman signals of the DNA molecule and achieve rapid and simple detection. Hence, a detection platform based on gold bipyramidal nanoparticles (AuNBs) self-assembly that can be directly used for the detection of DNA molecules without the need for additional aggregators and cleaning agents was designed in this study. The original hexadecyltrimethylammonium bromide (CTAB) of AuNBs can be used as the internal standard for DNA quantification without an additional standard. This is the first time that the Raman signals of the analyte molecule can be obtained directly without labels by using the interaction between the molecule and the enhanced substrate. We used this method to capture the original DNA molecules in methylated DNA, serum, and cell metabolites and obtained spectral data processing results using linear discriminant analysis (LDA). This provides new ideas for the digitization of disease treatment and the study of the metabolic processes of life.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Cetrimônio , Nanopartículas Metálicas/química , DNA , Análise Espectral Raman/métodos
2.
Bioact Mater ; 31: 355-367, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37663618

RESUMO

Macrophages play a central role in immunological responses to metallic species associated with the localized corrosion of metallic implants, and mediating in peri-implant inflammations. Herein, the pathways of localized corrosion-macrophage interactions were systematically investigated on 316L stainless steel (SS) implant metals. Electrochemical monitoring under macrophage-mediated inflammatory conditions showed a decreased pitting corrosion resistance of 316L SSs in the presence of RAW264.7 cells as the cells would disrupt biomolecule adsorbed layer on the metal surface. The pitting potentials were furtherly decreased when the RAW264.7 cells were induced to the M1 pro-inflammatory phenotype by the addition of lipopolysaccharide (LPS), and pitting corrosion preferentially initiated at the peripheries of macrophages. The overproduction of aggressive ROS under inflammatory conditions would accelerate the localized corrosion of 316L SS around macrophages. Under pitting corrosion condition, the viability and pro-inflammatory polarization of RAW264.7 cells were region-dependent, lower viability and more remarkable morphology transformation of macrophages in the pitting corrosion region than the pitting-free region. The pitting corrosion of 316L SS induced high expression of CD86, TNF-α, IL-6 and high level of intracellular ROS in macrophages. Uneven release of metallic species (Fe2+, Cr3+, Ni2+, etc) and uneven distribution of surface overpotential stimulated macrophage inflammatory responses near the corrosion pits. A synergetic effect of localized corrosion and macrophages was revealed, which could furtherly promote localized corrosion of 316L SS and macrophage inflammatory reactions. Our results provided direct evidence of corrosion-macrophage interaction in metallic implants and disclosed the pathways of this mutual stimulation effect.

3.
J Gastrointest Oncol ; 14(4): 1694-1706, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37720426

RESUMO

Background: Trastuzumab (TRA) shows significant efficacy in patients with human epidermal growth factor receptor 2 (HER2)-positive gastric cancer (GC). While TRA can help treat HER2-positive breast cancer, TRA resistance is a key clinical challenge. Nestin reportedly regulates the cellular redox homeostasis in lung cancer. This study aimed at identifying the functions of Nestin on the TRA sensitivity of HER2-positive GC cells. Methods: Real-time polymerase chain reaction (PCR) and Western blotting (WB) were performed to explore the association between the mRNA and protein expression profiles, respectively, of Nestin and the Keap1-Nrf2 pathway. The influence of Nestin overexpression on the in vitro sensitivity of GC cells to TRA was explored by Cell Counting Kit-8 (CCK-8) assay, colony formation assay, reactive oxygen species (ROS) detection, and flow cytometry. Results: TRA treatment caused Nestin downregulation in two HER2-positive GC cell lines (MKN45 and NCI-N87). Nestin overexpression reduced the sensitivity of GC cells to TRA. The expression and activity of Nrf2 and relevant downstream antioxidant genes were increased by Nestin overexpression. Nestin overexpression also significantly suppressed TRA-induced apoptosis and ROS generation. In vivo tumor growth experiment with female BALB/c nude mice indicated that Nestin upregulation restored the tumor growth rate which was inhibited by TRA treatment. Conclusions: Collectively, the inhibitory effect of Nestin on the TRA sensitivity of cells to TRA was confirmed in this study. These results imply that the antioxidant Nestin-Nrf2 axis may play a role in the mechanism underlying the resistance of GC cells to TRA.

4.
Int J Ophthalmol ; 16(9): 1465-1474, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37724283

RESUMO

AIM: To evaluate the effects of LIN28A (human) on high glucose-induced retinal pigmented epithelium (RPE) cell injury and its possible mechanism. METHODS: Diabetic retinopathy model was generated following 48h of exposure to 30 mmol/L high glucose (HG) in ARPE-19 cells. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot tested the expression of the corresponding genes and proteins. Cell viability as well as apoptosis was determined through cell counting kit-8 (CCK-8) and flow cytometry assays. Immunofluorescence assay was adopted to evaluate autophagy activity. Caspase 3 activity, oxidative stress markers, and cytokines were appraised adopting their commercial kits, respectively. Finally, ARPE-19 cells were preincubated with EX527, a Sirtuin 1 (SIRT1) inhibitor, prior to HG stimulation to validate the regulatory mechanism. RESULTS: LIN28A was downregulated in HG-challenged ARPE-19 cells. LIN28A overexpression greatly inhibited HG-induced ARPE-19 cell viability loss, apoptosis, oxidative damage as well as inflammatory response. Meanwhile, the repressed autophagy and SIRT1 in ARPE-19 cells challenged with HG were elevated after LIN28A overexpression. In addition, treatment of EX527 greatly inhibited the activated autophagy following LIN28A overexpression and partly abolished the protective role of LIN28A against HG-elicited apoptosis, oxidative damage as well as inflammation in ARPE-19 cells. CONCLUSION: LIN28A exerts a protective role against HG-elicited RPE oxidative damage, inflammation, as well as apoptosis via regulating SIRT1/autophagy.

6.
Neurooncol Adv ; 5(1): vdad102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37706203

RESUMO

Background: Deletions or loss-of-function mutations in phosphatase and tensin homolog (PTEN) are common in glioblastoma (GBM) and have been associated with defective DNA damage repair. Here we investigated whether PTEN deficiency presents a vulnerability to a simultaneous induction of DNA damage and suppression of repair mechanisms by combining topoisomerase I (TOP1) and PARP inhibitors. Methods: Patient-derived GBM cells and isogenic PTEN-null and PTEN-WT glioma cells were treated with LMP400 (Indotecan), a novel non-camptothecin TOP1 inhibitor alone and in combination with a PARP inhibitor, Olaparib or Niraparib. RNAseq analysis was performed to identify treatment-induced dysregulated pathways. Results: We found that GBM cells lacking PTEN expression are highly sensitive to LMP400; however, rescue of the PTEN expression reduces sensitivity to the treatment. Combining LMP400 with Niraparib leads to synergistic cytotoxicity by inducing G2/M arrest, DNA damage, suppression of homologous recombination-related proteins, and activation of caspase 3/7 activity significantly more in PTEN-null cells compared to PTEN-WT cells. LMP400 and Niraparib are not affected by ABCB1 and ABCG2, the major ATP-Binding Cassette (ABC) drug efflux transporters expressed at the blood-brain barrier (BBB), thus suggesting BBB penetration which is a prerequisite for potential brain tumor treatment. Animal studies confirmed both an anti-glioma effect and sufficient BBB penetration to prolong survival of mice treated with the drug combination. Conclusions: Our findings provide a proof of concept for the combined treatment with LMP400 and Niraparib in a subset of GBM patients with PTEN deficiency.

7.
Signal Transduct Target Ther ; 8(1): 343, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37696812

RESUMO

Chromobox protein homolog 4 (CBX4) is a component of the Polycomb group (PcG) multiprotein Polycomb repressive complexes 1 (PRC1), which is participated in several processes including growth, senescence, immunity, and tissue repair. CBX4 has been shown to have diverse, even opposite functions in different types of tissue and malignancy in previous studies. In this study, we found that CBX4 deletion promoted lung adenocarcinoma (LUAD) proliferation and progression in KrasG12D mutated background. In vitro, over 50% Cbx4L/L, KrasG12D mouse embryonic fibroblasts (MEFs) underwent apoptosis in the initial period after Adeno-Cre virus treatment, while a small portion of survival cells got increased proliferation and transformation abilities, which we called selected Cbx4-/-, KrasG12D cells. Karyotype analysis and RNA-seq data revealed chromosome instability and genome changes in selected Cbx4-/-, KrasG12D cells compared with KrasG12D cells. Further study showed that P15, P16 and other apoptosis-related genes were upregulated in the primary Cbx4-/-, KrasG12D cells due to chromosome instability, which led to the large population of cell apoptosis. In addition, multiple pathways including Hippo pathway and basal cell cancer-related signatures were altered in selected Cbx4-/-, KrasG12D cells, ultimately leading to cancer. We also found that low expression of CBX4 in LUAD was associated with poorer prognosis under Kras mutation background from the human clinical data. To sum up, CBX4 deletion causes genomic instability to induce tumorigenesis under KrasG12D background. Our study demonstrates that CBX4 plays an emerging role in tumorigenesis, which is of great importance in guiding the clinical treatment of lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Fibroblastos , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Instabilidade Genômica/genética , Instabilidade Cromossômica , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Ligases , Proteínas do Grupo Polycomb/genética
8.
Am J Epidemiol ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37671942

RESUMO

This study explores natural direct and joint natural indirect effects (JNIE) of prenatal opioid exposure on neurodevelopmental disorders (NDDs) in children mediated through pregnancy complications, major and minor congenital malformations, and adverse neonatal outcomes, using Medicaid claims linked to vital statistics in Rhode Island, United States, 2008-2018. A Bayesian mediation analysis with elastic net shrinkage prior was developed to estimate mean time to NDD diagnosis ratio using posterior mean and 95$\%$ credible intervals (CIs) from Markov chain Monte Carlo algorithms. Simulation studies showed desirable model performance. Of 11,176 eligible pregnancies, 332 had $\ge$2 dispensations of prescription opioids anytime during pregnancy, including 200 (1.8$\%$) having $\ge$1 dispensation in the first (T1), 169 (1.5$\%$) in the second (T2), and 153 (1.4$\%$) in the third trimester (T3). A significant JNIE of opioid exposure was observed in each trimester (T1: 0.97, 95$\%$ CI: 0.95-0.99; T2: 0.97, 95$\%$ CI: 0.95-0.99; T3: 0.96, 95$\%$ CI: 0.94-0.99). The proportion of JNIE in each trimester was 17.9$\%$ (T1), 22.4$\%$ (T2), and 56.3$\%$ (T3), respectively. In conclusion, adverse pregnancy and birth outcomes jointly mediated the association between prenatal opioid exposure and accelerated time to NDD diagnosis. The proportion of JNIE increased as timing of opioid exposure approached delivery.

9.
Virus Res ; 336: 199224, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37716669

RESUMO

OBJECTIVE: To investigate the effect of heterogeneous nuclear ribonucleoprotein A2B1 (HNRNPA2B1) on the replication of enterovirus 71 (EV-71) in SK-N-SH cells. METHODS: The mRNA and protein expression of HNRNPA2B1 in SK-N-SH cells were detected by real-time quantitative PCR (qRT-PCR) and western blotting (WB), respectively. WB was used to detect HNRNPA2B1 protein expression in the nucleus and cytosol. The localization of HNRNPA2B1 protein in the nucleus and cytosol was detected by immunofluorescence (IF). The expression of HNRNPA2B1 was inhibited by small interfering RNA (si-HNRNPA2B1). Viral RNA, viral structural protein VP1, and viral titer were detected by qRT-PCR, WB, and viral dilution counting, respectively. RESULTS: EV-71 infection significantly upregulates the expression of HNRNPA2B1 in SK-N-SH cells. EV-71 infection promotes HNRNPA2B1 nucleus-cytoplasm redistribution. Down-regulation of HNRNPA2B1 expression significantly inhibited EV-71 replication. CONCLUSION: HNRNPA2B1 protein redistributed from nucleus to cytoplasm and is highly expressed in the cytoplasm during EV-71 infection. Inhibition of HNRNPA2B1 levels effectively inhibits EV-71 replication in SK-N-SH cells.

10.
Carcinogenesis ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713476

RESUMO

Recently, several studies have explored inflammatory biomarkers associated with colorectal neoplasms in human plasma and investigated the prognostic value of systemic cytokine profiles and inflammatory markers in colorectal cancer. However, little is known about inflammatory biomarkers in colorectal adenoma and early cancer. We compared the level of 38 inflammatory markers in the plasma of 112 adenoma patients, 72 Tis`T1 staging of colorectal carcinoma patients, 34 T2-T4 staging of colorectal carcinoma patients and 53 normal subjects. In summary, we found that eight inflammatory biomarkers (Eotaxin, GCSF, IL-4, IL-5, IL-17E, MCP-1, TNF-alpha, VEGF-A) have higher plasma concentrations in colorectal adenoma and cancer patients compared to normal participants over 50 years old and may have the prognostic value for colorectal adenoma and early -stage carcinoma.

11.
Angew Chem Int Ed Engl ; : e202309430, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37715662

RESUMO

Aqueous Zn-Mn battery has been considered as the most promising scalable energy-storage system due to its intrinsic safety and especially ultralow cost. However, the traditional Zn-Mn battery mainly using manganese oxides as cathode shows low voltage and suffers from dissolution/disproportionation of the cathode during cycling. Herein, for the first time, a high-voltage and long-cycle Zn-Mn battery based on a highly reversible organic coordination manganese complex cathode (Manganese polyacrylate, PAL-Mn) was constructed. Benefiting from the insoluble carboxylate ligand of PAL-Mn that can suppress shuttle effect and disproportionationation reaction of Mn3+ in a mild electrolyte, Mn3+/Mn2+ reaction in coordination state is realized, which not only offers a high discharge voltage of 1.67 V but also exhibits excellent cyclability(100% capacity retention, after 4000 cycles). High voltage reaction endows the Zn-Mn battery high specific energy (600 Wh kg-1 at 0.2 A g-1), indicating a bright application prospect. The strategy of introducing carboxylate ligands in Zn-Mn battery to harness high-voltage reaction of Mn3+/Mn2+ well broadens the research of high-voltage Zn-Mn batteries under mild electrolyte conditions.

12.
Hum Reprod Open ; 2023(4): hoad034, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37700872

RESUMO

STUDY QUESTION: What are the dynamic expression features of plasma microRNAs (miRNAs) during the peri-implantation period in women with successful pregnancy via single frozen-thawed blastocyst transfer? SUMMARY ANSWER: There is a significant change in the plasma miRNA expression profile before and after blastocyst transfer, during the window of implantation. WHAT IS KNOWN ALREADY: The expression of miRNAs in peripheral blood has indicative functions during the peri-implantation period. Nevertheless, the dynamic expression profile of circulating miRNAs during the peri-implantation stage in women with a successful pregnancy has not been studied. STUDY DESIGN SIZE DURATION: Seventy-six women treated for infertility with a single frozen-thawed blastocyst transfer in a natural cycle were included in this study. Among them, 57 women had implantation success and a live birth, while 19 patients experienced implantation failure. Peripheral blood samples were collected at five different time points throughout the peri-implantation period, including D0 (ovulation day), D3, D5, D7, and D9 in this cycle of embryo transfer. The plasma miRNAs in women with blastocyst transfer were isolated, sequenced, and analyzed. PARTICIPANTS/MATERIALS SETTING METHODS: Peripheral blood samples were collected in EDTA tubes and stored at -80°C until further use. miRNAs were isolated from blood, cDNA libraries were constructed, and the resulting sequences were mapped to the human genome. The plasma miRNAs were initially analyzed in a screening cohort (n = 34) with successful pregnancy. Trajectory analysis, including a global test and pairwise comparisons, was performed to detect dynamic differentially expressed (DE) miRNAs. Fuzzy c-means clustering was conducted for all dynamic DE miRNAs. The correlation between DE miRNAs and clinical characteristics of patients was investigated using a linear mixed model. Target genes of the miRNAs were predicted, and functional annotation analysis was performed. The expression of DE miRNAs was also identified in a validation set consisting of women with successful (n = 23) and unsuccessful (n = 19) pregnancies. MAIN RESULTS AND THE ROLE OF CHANCE: Following small RNA sequencing, a total of 2656 miRNAs were determined as valid read values. After trajectory analysis, 26 DE miRNAs (false discovery rate < 0.05) were identified by the global test, while pairwise comparisons in addition identified 20 DE miRNAs. A total of seven distinct clusters representing different temporal patterns of miRNA expression were discovered. Nineteen DE miRNAs were further identified to be associated with at least one clinical trait. Endometrium thickness and progesterone level showed a correlation with multiple DE miRNAs (including two of the same miRNAs, hsa-miR-1-3p and hsa-miR-6741-3p). Moreover, the 19 DE miRNAs were predicted to have 403 gene targets, and there were 51 (12.7%) predicted genes likely involved in both decidualization and embryo implantation. Functional annotation for predicted targets of those clinically related DE miRNAs suggested the involvement of vascular endothelial growth factor and Wnt signaling pathways, as well as responses to hormones, immune responses, and cell adhesion-related signaling pathways during the peri-implantation stage. LARGE SCALE DATA: The raw miRNA sequence data reported in this article have been deposited in the Genome Sequence Archive (GSA-Human: HRA005227) and are publicly accessible at https://ngdc.cncb.ac.cn/gsa-human/browse/HRA005227. LIMITATIONS REASONS FOR CAUTION: Although the RNA sequencing results revealed the global dynamic changes of miRNA expression, further experiments examining the clinical significance of the identified DE miRNAs in embryo implantation outcome and the relevant regulatory mechanisms involved are warranted. WIDER IMPLICATIONS OF THE FINDINGS: Understanding the dynamic landscape of the miRNA transcriptome could shed light on the physiological mechanisms involved from ovulation to the post-implantation stage, as well as identifying biomarkers that characterize stage-related biological process. STUDY FUNDING/COMPETING INTERESTS: The study was funded by the Major clinical research project of Tangdu Hospital (2021LCYJ004) and the Discipline Platform Improvement Plan of Tangdu Hospital (2020XKPT003). The funders had no influence on the study design, data collection, and analysis, decision to publish, or preparation of the article. There are no conflicts of interest to declare.

13.
MedComm (2020) ; 4(5): e356, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37701533

RESUMO

The spike protein of SARS-CoV-2 hijacks the host angiotensin converting enzyme 2 (ACE2) to meditate its entry and is the primary target for vaccine development. Nevertheless, SARS-CoV-2 keeps evolving and the latest Omicron subvariants BQ.1 and XBB have gained exceptional immune evasion potential through mutations in their spike proteins, leading to sharply reduced efficacy of current spike-focused vaccines and therapeutics. Compared with the fast-evolving spike protein, targeting host ACE2 offers an alternative antiviral strategy that is more resistant to viral evolution and can even provide broad prevention against SARS-CoV and HCoV-NL63. Here, we use prime editor (PE) to precisely edit ACE2 at structurally selected sites. We demonstrated that residue changes at Q24/D30/K31 and/or K353 of ACE2 could completely ablate the binding of tested viruses while maintaining its physiological role in host angiotensin II conversion. PE-mediated ACE2 editing at these sites suppressed the entry of pseudotyped SARS-CoV-2 major variants of concern and even SARS-CoV or HCoV-NL63. Moreover, it significantly inhibited the replication of the Delta variant live virus. Our work investigated the unexplored application potential of prime editing in high-risk infectious disease control and demonstrated that such gene editing-based host factor reshaping strategy can provide broad-spectrum antiviral activity and a high barrier to viral escape or resistance.

14.
J Sci Food Agric ; 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37658829

RESUMO

BACKGROUND: The demand for food-based anti-photoaging products is surging because of the rising recognition of health and beauty, as well as enhanced comprehension of the detrimental impact of ultraviolet (UV) radiation. This study aimed to investigate the potential of bioactive peptides derived from bovine elastin, specifically focusing on identifying novel elastase inhibitory peptides and assessing their photoprotective properties using bioinformatics techniques. RESULTS: A total of 48 bioactive peptides were screened in bovine elastin hydrolysate (EH) utilizing Peptide Ranker analysis. Three novel elastase inhibitory peptides, GAGQPFPI, FFPGAG and FPGIG (in descending order of activity), exhibited potent inhibitory effects on elastase in vitro, surpassing the inhibitory effect of EH by a factor of 1-2 and reaching significantly lower concentrations (8-15 times lower) than EH. The cumulative inhibitory effect of GAGQPFPI, FFPGAG, and FPGIG reached 91.5%. Further analysis revealed that FFPGAG and FPGIG exhibited mixed inhibition, whereas GAGQPFPI displayed non-competitive inhibition. Molecular simulations showed that these peptides interacted effectively with the elastase active site through hydrogen bonding and hydrophobic interactions. Furthermore, GAGQPFPI, FFPGAG, and FPGIG demonstrated high stability in gastrointestinal digestion, demonstrated transcellular permeability across Caco-2 cell monolayers, and exhibited remarkable photoprotective properties against UVB-irradiated HaCaT cells. CONCLUSION: GAGQPFPI showed the most promising potential as a functional food with photoprotective effects against UVB damage and inhibitory properties against elastase. © 2023 Society of Chemical Industry.

15.
Cell Mol Biol (Noisy-le-grand) ; 69(8): 192-197, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37715389

RESUMO

Globally, Type 2 diabetes mellitus (T2DM) is one of the most prevalent chronic diseases, which poses a great potential threat to the human body. Diabetic nephropathy (DN), a very common complication in T2DM, is also the main trigger for end-stage renal disease. A thorough understanding of the pathogenesis is the key as well as the breakthrough for future diagnosis and treatment of DN. This investigation aims to provide more in-depth and accurate guidance for future follow-up research by analyzing the role of vascular endothelial growth factor (VEGF) in the kidney tissue of DN patients. Seventy-nine patients with suspected DN who underwent renal needle biopsy in our hospital from January 2015 to June 2019 were selected as the research participants. After the biopsy, 36 cases were confirmed as DN, and the other 43 were T2DM with primary glomerulonephritis. Determination of VEGF mRNA and protein expression in renal tissue employed PCR and Western blot, and the connection between VEGF mRNA level and clinical pathology (such as renal function, inflammatory factors and pathological manifestations) was discussed. The disease recurrence in DN patients was recorded through the 3-year prognostic followed up, and the related influencing factors were analyzed. In kidney tissue, VEGF mRNA level and protein expression were notably higher in DN patients than in diabetic patients (P<0.05). Pearson correlation coefficient analysis identified that VEGF mRNA and protein had a positive connection with blood urea nitrogen (BUN), serum creatinine (Scr), 24-hour urine total protein (24hUTP) and C-reactive protein (CRP) (P<0.05). Among the various clinicopathological features of DN patients, age, BMI, sex, family history, smoking, drinking, exercise habits, clinical presentations and pathological changes had no significant relationship with VEGF level (P>0.05), but the course of the disease, fasting blood glucose (FBG), glycosylated hemoglobin (HBALC) and pathological stages of nephropathy had a close connection with VEGF level (P<0.05). Prognostic follow-up revealed that VEGF mRNA was noticeably higher in patients with recurrence than in those without (P<0.05). When VEGF mRNA >5.20 in kidney tissue, the sensitivity and specificity for predicting the 3-year recurrence were 85.71% and 84.00% respectively (P<0.05). Finally, Logistic regression analysis identified the independence of FBG, HBALC and VEGF levels as the influencing factors for the prognostic recurrence of DN (P<0.05).VEGF expression in kidney tissue of DN patients is closely linked to renal function and increases as the disease progresses, which is an independent risk factor associated with the prognostic recurrence of DN, with great potential significance for future DN diagnosis and treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/genética , Fator A de Crescimento do Endotélio Vascular/genética , Diabetes Mellitus Tipo 2/complicações , Biópsia , Rim
16.
Sci Total Environ ; 903: 166837, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689184

RESUMO

The pathologies of many diseases are influenced by environmental temperature. As early as the classical Roman age, people believed that exposure to cold weather was bad for rheumatoid arthritis (RA). However, there is no direct evidence supporting this notion, and the molecular mechanisms of the effects of chronic cold exposure on RA remain unknown. Here, in a temperature-conditioned environment, we found that chronic cold exposure aggravates collagen-induced arthritis (CIA) by increasing ankle swelling, bone erosion, and cytokine levels in rats. Furthermore, in chronic cold-exposed CIA rats, gut microbiota dysbiosis was identified, including a decrease in the differential relative abundance of the families Lachnospiraceae and Ruminococcaceae. We also found that an antibiotic cocktail suppressed arthritis severity under cold conditions. Notably, the fecal microbiota transplantation (FMT) results showed that transplantation of cold-adapted microbiota partly recapitulated the microbiota signature in the respective donor rats and phenocopied the cold-induced effects on CIA rats. In addition, cold exposure disturbed bile acid profiles, in particular decreasing gut microbiota-derived taurohyodeoxycholic acid (THDCA) levels. The perturbation of bile acids was also associated with activation of the TGR5-cAMP-PKA axis and NLRP3 inflammasome. Oral THDCA supplementation mitigated the arthritis exacerbation induced by chronic cold exposure. Our findings identify an important role of aberrant gut microbiota-derived bile acids in cold exposure-related RA, highlighting potential opportunities to treat cold-related RA by manipulating the gut microbiota and/or supplementing with THDCA.

17.
Endocrine ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726640

RESUMO

OBJECTIVE: CEL-related maturity-onset diabetes of the young (CEL-MODY, MODY8) is a special type of monogenetic diabetes caused by mutations in the carboxyl-ester lipase (CEL) gene. This study aimed to summarize the genetic and clinical characteristics of CEL-MODY patients and to determine the prevalence of the disease among Chinese patients with early-onset type 2 diabetes (EOD). METHODS: We systematically reviewed the literature associated with CEL-MODY in PubMed, Embase, Web of Science, China National Knowledge Infrastructure and Wanfang Data to analyze the features of patients with CEL-MODY. We screened and evaluated rare variants of the CEL gene in a cohort of 679 Chinese patients with EOD to estimate the prevalence of CEL-MODY in China. RESULTS: In total, 21 individuals reported in previous studies were diagnosed with CEL-MODY based on the combination of diabetes and pancreatic exocrine dysfunction as well as frameshift mutations in exon 11 of the CEL gene. CEL-MODY patients were nonobese and presented with exocrine pancreatic affection (e.g., chronic pancreatitis, low fecal elastase levels, pancreas atrophy and lipomatosis) followed by insulin-dependent diabetes. No carriers of CEL missense mutations were reported with exocrine pancreatic dysfunction. Sequencing of CEL in Chinese EOD patients led to the identification of the variant p.Val736Cysfs*22 in two patients. However, these patients could not be diagnosed with CEL-MODY because there were no signs that the exocrine pancreas was afflicted. CONCLUSION: CEL-MODY is a very rare disease caused by frameshift mutations affecting the proximal VNTR segments of the CEL gene. Signs of exocrine pancreatic dysfunction provide diagnostic clues for CEL-MODY, and genetic testing is vital for proper diagnosis. Further research in larger cohorts is needed to investigate the characteristics and prevalence of CEL-MODY in the Chinese population.

18.
Structure ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37729916

RESUMO

The human nuclear receptor (NR) family of transcription factors contains 48 proteins that bind lipophilic molecules. Approved NR therapies have had immense success treating various diseases, but lack of selectivity has hindered efforts to therapeutically target the majority of NRs due to unpredictable off-target effects. The synthetic ligand T0901317 was originally discovered as a potent agonist of liver X receptors (LXRα/ß) but subsequently found to target additional NRs, with activation of pregnane X receptor (PXR) being as potent as that of LXRs. We previously showed that directed rigidity reduces PXR binding by T0901317 derivatives through unfavorable protein remodeling. Here, we use a similar approach to achieve selectivity for PXR over other T0901317-targeted NRs. One molecule, SJPYT-318, accomplishes selectivity by favorably utilizing PXR's flexible binding pocket and surprisingly binding in a new mode distinct from the parental T0901317. Our work provides a structure-guided framework to achieve NR selectivity from promiscuous compounds.

19.
Artigo em Inglês | MEDLINE | ID: mdl-37733240

RESUMO

OBJECTIVES: Prior researches indicate that peripheral blood CD4 levels have an inverse correlation with distant tumor metastasis in non-small cell lung cancer (NSCLC). However, the linear relationship between CD4 and distant metastasis lacks clarity. Hence, the objective of this study was to ascertain the linear relationship between CD4 and distant metastasis in NSCLC patients. METHODS: This retrospective study analyzed clinical and laboratory data of NSCLC patients between March 2016 and July 2022 at the Cancer Hospital of Anhui University of Technology. The study first applied a generalized summation model and smoothing curve fitting to determine if there was a linear relationship between CD4 and NSCLC metastasis. Secondarily, univariate logistic analysis and multiple linear regression were used to analyze the odds ratio (OR) of CD4 as a continuous variable, dichotomous variable, and trichotomous variable when predicting NSCLC metastasis. In addition, stratified and subgroup analyses were conducted to assess the reliability of CD4 in different NSCLC patient populations. RESULTS: The study included a total of 213 NSCLC patients, among which 122 had distant metastasis and 91 had no metastasis. The smoothing curve fitting analysis revealed a U-shaped relationship between CD4 and NSCLC metastasis with a threshold effect. The univariate logistic analysis indicated that continuous CD4 expression was not significantly associated with NSCLC metastasis (P = 0.051); however, high levels of CD4 expression (≥ 35.06%) were found to be a protective factor against NSCLC metastasis when CD4+ T was a dichotomous variable (OR = 0.49, P = 0.010). Furthermore, multivariate linear regression models showed that low (< 32%) or high levels (> 44%) of CD4 significantly increased the risk of NSCLC metastasis compared to medium levels (32-44%) when CD4+ T was trichotomized. The significance was maintained in stratified analysis in relation to age, sex, type of pathology, smoke, PS, and T stage. CD4 levels were U-shaped in relation to different sites of distant metastases (bone, brain, liver), but not with lung metastases. CONCLUSIONS: A threshold effect is shown to exist between the peripheral blood CD4 and distant metastasis in NSCLC patients. It was revealed that the risk of distant metastasis is lower when CD4 is maintained between 32 and 44%, whereas low (< 32%) or high (> 44) levels of CD4 are associated with an increased risk of distant metastasis in NSCLC patients.

20.
Infect Drug Resist ; 16: 6039-6052, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719646

RESUMO

Objective: To evaluate the resolution of chromosomal virulence D (chvD) as a novel marker for mycobacterial species identification. Methods: A segment of chvD (652 bp) was amplified by PCR from 63 mycobacterial reference strains, 163 nontuberculous mycobacterial clinical isolates, and 16 M. tuberculosis complex (MTBC) clinical isolates. A phylogenetic tree based on the reference strains was constructed by the neighbor-joining and IQ-tree methods. Comparative sequence analysis of the homologous chvD gene efficiently differentiated the species within the genus Mycobacterium. Slowly growing Mycobacterium (SGM) and rapidly growing Mycobacterium (RGM) were separated in the phylogenetic tree based on the chvD gene. Results: The sequence discrepancies were obvious between M. kansasii and M. gastri, M. chelonae and M. abscessus, and M. avium and M. intracellulare, none of which could be achieved by 16S ribosomal RNA (rRNA) homologous gene alignment. Furthermore, chvD manifested larger intraspecies diversity among members of M. intracellulare subspecies. A total of 174 of the 179 (97.21%) clinical isolates, consisting of 12 mycobacterial species, were identified correctly by chvD blast. Four M. abscessus subsp. abscessus were identified as M. abscessus subsp. bolletii by chvD. MTBC isolates were indistinguishable, because they showed 99.84%-100% homology. Conclusion: Homologous chvD is a promising gene marker for identifying mycobacterial species, and could be used for highly accurate species identification among mycobacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...