Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(6): 2726-2731, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31985227

RESUMO

Two-dimensional (2D) semiconductors hold great promise in flexible electronics because of their intrinsic flexibility and high electrical performance. However, the lack of facile synthetic and subsequent device fabrication approaches of high-mobility 2D semiconducting thin films still hinders their practical applications. Here, we developed a facile, rapid, and scalable solution-assisted method for the synthesis of a high-mobility semiconducting oxyselenide (Bi2O2Se) thin film by the selenization and decomposition of a precursor solution of Bi(NO3)3·5H2O. Simply by changing the rotation speed in spin-coating of the precursor solution, the thicknesses of Bi2O2Se thin films can be precisely controlled down to few atomic layers. The as-synthesized Bi2O2Se thin film exhibited a high Hall mobility of ∼74 cm2 V-1 s-1 at room temperature, which is much superior to other 2D thin-film semiconductors such as transition metal dichalcogenides. Remarkably, flexible top-gated Bi2O2Se transistors showed excellent electrical stability under repeated electrical measurements on flat and bent substrates. Furthermore, Bi2O2Se transistor devices on muscovite substrates can be readily transferred onto flexible polyvinyl chloride (PVC) substrates with the help of thermal release tape. The integration of a high-mobility thin-film semiconductor, excellent stability, and easy transfer onto flexible substrates make Bi2O2Se a competitive candidate for future flexible electronics.

2.
Adv Mater ; 31(42): e1903686, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31489725

RESUMO

Quantum confined devices of 3D topological insulators are proposed to be promising and of great importance for studies of confined topological states and for applications in low-energy-dissipative spintronics and quantum information processing. The absence of energy gap on the topological insulator surface limits the experimental realization of a quantum confined system in 3D topological insulators. Here, the successful realization of single-electron transistor devices in Bi2 Te3 nanoplates using state-of-the-art nanofabrication techniques is reported. Each device consists of a confined central island, two narrow constrictions that connect the central island to the source and drain, and surrounding gates. Low-temperature transport measurements demonstrate that the two narrow constrictions function as tunneling junctions and the device shows well-defined Coulomb current oscillations and Coulomb-diamond-shaped charge-stability diagrams. This work provides a controllable and reproducible way to form quantum confined systems in 3D topological insulators, which should greatly stimulate research toward confined topological states, low-energy-dissipative devices, and quantum information processing.

3.
Adv Mater ; 31(39): e1901964, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31389096

RESUMO

Atomically thin oxychalcogenides have been attracting intensive attention for their fascinating fundamental properties and application prospects. Bi2 O2 Se, a representative of layered oxychalcogenides, has emerged as an air-stable high-mobility 2D semiconductor that holds great promise for next-generation electronics. The preparation and device fabrication of high-quality Bi2 O2 Se crystals down to a few atomic layers remains a great challenge at present. Here, molecular beam epitaxy (MBE) of atomically thin Bi2 O2 Se films down to monolayer on SrTiO3 (001) substrate is achieved by co-evaporating Bi and Se precursors in oxygen atmosphere. The interfacial atomic arrangements of MBE-grown Bi2 O2 Se/SrTiO3 are unambiguously revealed, showing an atomically sharp interface and atom-to-atom alignment. Importantly, the electronic band structures of one-unit-cell (1-UC) thick Bi2 O2 Se films are observed by angle-resolved photoemission spectroscopy (ARPES), showing low effective mass of ≈0.15 m0 and bandgap of ≈0.8 eV. These results may be constructive to the synthesis of other 2D oxychalcogenides and investigation of novel physical properties.

4.
Nat Commun ; 10(1): 3457, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358759

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Nanoscale ; 11(22): 10622-10628, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31139797

RESUMO

We report on phase-coherent transport studies of a Bi2O2Se nanoplate and on observation of universal conductance fluctuations and spin-orbit interaction induced reduction in fluctuation amplitude in the nanoplate. Thin-layered Bi2O2Se nanoplates are grown by chemical vapor deposition (CVD) and transport measurements are made on a Hall-bar device fabricated from a CVD-grown nanoplate. The measurements show weak antilocalization at low magnetic fields at low temperatures, as a result of spin-orbit interaction, and a crossover toward weak localization with increasing temperature. Temperature dependences of characteristic transport lengths, such as spin relaxation length, phase coherence length, and mean free path, are extracted from the low-field measurement data. Universal conductance fluctuations are visible in the low-temperature magnetoconductance over a large range of magnetic fields and the phase coherence length extracted from the autocorrelation function is consistent with the result obtained from the weak localization analysis. More importantly, we find a strong reduction in amplitude of the universal conductance fluctuations and show that the results agree with the analysis assuming strong spin-orbit interaction in the Bi2O2Se nanoplate.

6.
Nano Lett ; 19(3): 2148-2153, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30835131

RESUMO

Emerging two-dimensional (2D) semiconducting materials serve as promising alternatives for next-generation digital electronics and optoelectronics. However, large-scale 2D semiconductor films synthesized so far are typically polycrystalline with defective grain boundaries that could degrade their performance. Here, for the first time, wafer-size growth of a single-crystal Bi2O2Se film, which is a novel air-stable 2D semiconductor with high mobility, was achieved on insulating perovskite oxide substrates [SrTiO3, LaAlO3, (La, Sr)(Al, Ta)O3]. The layered Bi2O2Se epilayer exhibits perfect lattice matching and strong interaction with perovskite oxide substrates, which enable unidirectional alignment and seamless mergence of multiple seeds into single-crystal continuous films free of detrimental grain boundaries. The single-crystal Bi2O2Se thin films show excellent spatial homogeneity over the entire wafer and allow for the batch fabrication of high-performance field-effect devices with high mobilities of ∼150 cm2 V-1 s-1 at room temperature, excellent switching behavior with large on/off ratio of >105, and high drive current of ∼45 µA µm-1 at a channel length of ∼5 µm. Our work makes a step toward the practical applications of high-mobility semiconducting 2D layered materials and provides an alternative platform of oxide heterostructure to investigate novel physical phenomena.

7.
Nanoscale ; 11(2): 532-540, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30543242

RESUMO

A successful two-dimensional (2D) semiconductor successor of silicon for high-performance logic in the post-silicon era should have both excellent performance and air stability. However, air-stable 2D semiconductors with high performance were quite elusive until the air-stable Bi2O2Se with high electron mobility was fabricated very recently (J. Wu, H. Yuan, M. Meng, C. Chen, Y. Sun, Z. Chen, W. Dang, C. Tan, Y. Liu, J. Yin, Y. Zhou, S. Huang, H. Q. Xu, Y. Cui, H. Y. Hwang, Z. Liu, Y. Chen, B. Yan and H. Peng, Nat. Nanotechnol., 2017, 12, 530). Herein, we predict the performance limit of the monolayer (ML) Bi2O2Se metal oxide semiconductor field-effect transistors (MOSFETs) by using ab initio quantum transport simulation at the sub-10 nm gate length. The on-current, delay time, and power-delay product of the optimized n- and p-type ML Bi2O2Se MOSFETs can reach or nearly reach the high performance requirements of the International Technology Roadmap for Semiconductors (ITRS) until the gate lengths are scaled down to 2 and 3 nm, respectively. The large on-currents of the n- and p-type ML Bi2O2Se MOSFETs are attributed to either the large effective carrier velocity (n-type) or the large density of states near the valence band maximum and special shape of the band structure (p-type). A new avenue is thus opened for the continuation of Moore's law down to 2-3 nm by utilizing ML Bi2O2Se as the channel.

8.
Nano Lett ; 19(1): 197-202, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30557023

RESUMO

The air-stable and high-mobility two-dimensional (2D) Bi2O2Se semiconductor has emerged as a promising alternative that is complementary to graphene, MoS2, and black phosphorus for next-generation digital applications. However, the room-temperature residual charge carrier concentration of 2D Bi2O2Se nanoplates synthesized so far is as high as about 1019-1020 cm-3, which results in a poor electrostatic gate control and unsuitable threshold voltage, detrimental to the fabrication of high-performance low-power devices. Here, we first present a facile approach for synthesizing 2D Bi2O2Se single crystals with ultralow carrier concentration of ∼1016 cm-3 and high Hall mobility up to 410 cm2 V-1 s-1 simultaneously at room temperature. With optimized conditions, these high-mobility and low-carrier-concentration 2D Bi2O2Se nanoplates with domain sizes greater than 250 µm and thicknesses down to 4 layers (∼2.5 nm) were readily grown by using Se and Bi2O3 powders as coevaporation sources in a dual heating zone chemical vapor deposition (CVD) system. High-quality 2D Bi2O2Se crystals were fabricated into high-performance and low-power transistors, showing excellent current modulation of >106, robust current saturation, and low threshold voltage of -0.4 V. All these features suggest 2D Bi2O2Se as an alternative option for high-performance low-power digital applications.

9.
Sci Adv ; 4(9): eaat8355, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30225369

RESUMO

Semiconductors are essential materials that affect our everyday life in the modern world. Two-dimensional semiconductors with high mobility and moderate bandgap are particularly attractive today because of their potential application in fast, low-power, and ultrasmall/thin electronic devices. We investigate the electronic structures of a new layered air-stable oxide semiconductor, Bi2O2Se, with ultrahigh mobility (~2.8 × 105 cm2/V⋅s at 2.0 K) and moderate bandgap (~0.8 eV). Combining angle-resolved photoemission spectroscopy and scanning tunneling microscopy, we mapped out the complete band structures of Bi2O2Se with key parameters (for example, effective mass, Fermi velocity, and bandgap). The unusual spatial uniformity of the bandgap without undesired in-gap states on the sample surface with up to ~50% defects makes Bi2O2Se an ideal semiconductor for future electronic applications. In addition, the structural compatibility between Bi2O2Se and interesting perovskite oxides (for example, cuprate high-transition temperature superconductors and commonly used substrate material SrTiO3) further makes heterostructures between Bi2O2Se and these oxides possible platforms for realizing novel physical phenomena, such as topological superconductivity, Josephson junction field-effect transistor, new superconducting optoelectronics, and novel lasers.

10.
Nat Commun ; 9(1): 3311, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120240

RESUMO

Infrared light detection and sensing is deeply embedded in modern technology and human society and its development has always been benefitting from the discovery of various photoelectric materials. The rise of two-dimensional materials, thanks to their distinct electronic structures, extreme dimensional confinement and strong light-matter interactions, provides a material platform for next-generation infrared photodetection. Ideal infrared detectors should have fast respond, high sensitivity and air-stability, which are rare to meet at the same time in one two-dimensional material. Herein we demonstrate an infrared photodetector based on two-dimensional Bi2O2Se crystal, whose main characteristics are outstanding in the whole two-dimensional family: high sensitivity of 65 AW-1 at 1200 nm and ultrafast photoresponse of ~1 ps at room temperature, implying an intrinsic material-limited bandwidth up to 500 GHz. Such great performance is attributed to the suitable electronic bandgap and high carrier mobility of two-dimensional oxyselenide.

11.
Nanoscale ; 10(6): 2704-2710, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29360119

RESUMO

Semiconductor Bi2O2Se nanolayers of high crystal quality have been realized via epitaxial growth. These two-dimensional (2D) materials possess excellent electron transport properties with potential application in nanoelectronics. It is also strongly expected that the 2D Bi2O2Se nanolayers can be an excellent material platform for developing spintronic and topological quantum devices if the presence of strong spin-orbit interaction in the 2D materials can be experimentally demonstrated. Herein, we report the experimental determination of the strength of spin-orbit interactions in Bi2O2Se nanoplates through magnetotransport measurements. The nanoplates are epitaxially grown by chemical vapor deposition, and the magnetotransport measurements are performed at low temperatures. The measured magnetoconductance exhibits a crossover behavior from weak antilocalization to weak localization at low magnetic fields with increasing temperature or decreasing back gate voltage. We have analyzed this transition behavior of magnetoconductance based on an interference theory, which describes quantum correction to the magnetoconductance of a 2D system in the presence of spin-orbit interaction. Dephasing length and spin relaxation length are extracted from the magnetoconductance measurements. Compared to the case of other semiconductor nanostructures, the extracted relatively short spin relaxation length of ∼150 nm indicates the existence of a strong spin-orbit interaction in Bi2O2Se nanolayers.

12.
Adv Mater ; 29(44)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29024087

RESUMO

2D layered nanomaterials with strong covalent bonding within layers and weak van der Waals' interactions between layers have attracted tremendous interest in recent years. Layered Bi2 Se3 is a representative topological insulator material in this family, which holds promise for exploration of the fundamental physics and practical applications such as transparent electrode. Here, a simultaneous enhancement of optical transmittancy and electrical conductivity in Bi2 Se3 grid electrodes by copper-atom intercalation is presented. These Cu-intercalated 2D Bi2 Se3 electrodes exhibit high uniformity over large area and excellent stabilities to environmental perturbations, such as UV light, thermal fluctuation, and mechanical distortion. Remarkably, by intercalating a high density of copper atoms, the electrical and optical performance of Bi2 Se3 grid electrodes is greatly improved from 900 Ω sq-1 , 68% to 300 Ω sq-1 , 82% in the visible range; with better performance of 300 Ω sq-1 , 91% achieved in the near-infrared region. These unique properties of Cu-intercalated topological insulator grid nanostructures may boost their potential applications in high-performance optoelectronics, especially for infrared optoelectronic devices.

13.
Adv Mater ; 29(44)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29024159

RESUMO

Patterning of high-mobility 2D semiconducting materials with unique layered structures and superb electronic properties offers great potential for batch fabrication and integration of next-generation electronic and optoelectronic devices. Here, a facile approach is used to achieve accurate patterning of 2D high-mobility semiconducting Bi2 O2 Se crystals using dilute H2 O2 and protonic mixture acid as efficient etchants. The 2D Bi2 O2 Se crystal after chemical etching maintains a high Hall mobility of over 200 cm2 V-1 s-1 at room temperature. Centimeter-scale well-ordered arrays of 2D Bi2 O2 Se with tailorable configurations are readily obtained. Furthermore, integrated photodetectors based on 2D Bi2 O2 Se arrays are fabricated, exhibiting excellent air stability and high photoresponsivity of ≈2000 A W-1 at 532 nm. These results are one step towards the practical application of ultrathin 2D integrated digital and optoelectronic circuits.

14.
Nat Nanotechnol ; 12(6): 530-534, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28369044

RESUMO

High-mobility semiconducting ultrathin films form the basis of modern electronics, and may lead to the scalable fabrication of highly performing devices. Because the ultrathin limit cannot be reached for traditional semiconductors, identifying new two-dimensional materials with both high carrier mobility and a large electronic bandgap is a pivotal goal of fundamental research. However, air-stable ultrathin semiconducting materials with superior performances remain elusive at present. Here, we report ultrathin films of non-encapsulated layered Bi2O2Se, grown by chemical vapour deposition, which demonstrate excellent air stability and high-mobility semiconducting behaviour. We observe bandgap values of ∼0.8 eV, which are strongly dependent on the film thickness due to quantum-confinement effects. An ultrahigh Hall mobility value of >20,000 cm2 V-1 s-1 is measured in as-grown Bi2O2Se nanoflakes at low temperatures. This value is comparable to what is observed in graphene grown by chemical vapour deposition and at the LaAlO3-SrTiO3 interface, making the detection of Shubnikov-de Haas quantum oscillations possible. Top-gated field-effect transistors based on Bi2O2Se crystals down to the bilayer limit exhibit high Hall mobility values (up to 450 cm2 V-1 s-1), large current on/off ratios (>106) and near-ideal subthreshold swing values (∼65 mV dec-1) at room temperature. Our results make Bi2O2Se a promising candidate for future high-speed and low-power electronic applications.

15.
Nano Lett ; 17(5): 3021-3026, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28398056

RESUMO

Non-neutral layered crystals, another group of two-dimensional (2D) materials that lack a well-defined van der Waals (vdWs) gap, are those that form strong chemical bonds in-plane but display weak out-of-plane electrostatic interactions, exhibiting intriguing properties for the bulk counterpart. However, investigation of the properties of their atomically thin counterpart are very rare presumably due to the absence of efficient ways to achieve large-area high-quality 2D crystals. Here, high-mobility atomically thin Bi2O2Se, a typical non-neutral layered crystal without a standard vdWs gap, was synthesized via a facial chemical vapor deposition (CVD) method, showing excellent controllability for thickness, domain size, nucleation site, and crystal-phase evolution. Atomically thin, large single crystals of Bi2O2Se with lateral size up to ∼200 µm and thickness down to a bilayer were obtained. Moreover, optical and electrical properties of the CVD-grown 2D Bi2O2Se crystals were investigated, displaying a size-tunable band gap upon thinning and an ultrahigh Hall mobility of >20000 cm2 V-1 s-1 at 2 K. Our results on the high-mobility 2D Bi2O2Se semiconductor may activate the synthesis and related fundamental research of other non-neutral 2D materials.

16.
Small ; 13(18)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28263026

RESUMO

Nanostructures of ternary topological insulator (TI) Bi2 Te2 Se are, in principle, advantageous to the manifestation of topologically nontrivial surface states, due to significantly enhanced surface-to-volume ratio compared with its bulk crystals counterparts. Herein, the synthesis of 2D Bi2 Te2 Se crystals on mica via the van der Waals epitaxy method is explored and systematically the growth behaviors during the synthesis process are investigated. Accordingly, 2D Bi2 Te2 Se crystals with domain size up to 50 µm large and thickness down to 2 nm are obtained. A pronounced weak antilocalization effect is clearly observed in the 2D Bi2 Te2 Se crystals at 2 K. The method for epitaxial growth of 2D ternary Bi2 Te2 Se crystals may inspire materials engineering toward enhanced manifestation of the subtle surface states of TIs and thereby facilitate their potential applications in next-generation spintronics.

17.
ACS Nano ; 10(11): 10317-10323, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27749039

RESUMO

The key challenge of direct integration of two-dimensional (2D) chalcogenide crystals into functional modules is precise control of the nucleation sites of the building blocks. Herein, we exploit the chemical activities and surface engineering of the substrates to manipulate the nucleation energy barrier of 2D crystals and thereby realize the patternable growth of 2D crystals. The selective-region chemical modifications of the substrates are achieved via microcontact printing combined with the elegant self-assembly of octadecyltrichlorosilane molecules on the substrates. The patternable growth method is versatile and can be used as a general strategy for growing a broad class of high-quality 2D chalcogenide crystals with tailorable configurations on a variety of chemically engineered substrates. Moreover, we demonstrate flexible transparent electrodes based on large-scale patterned nanogrids of topological insulator Bi2Se3, which possess tailored trade-off between electric conductivity and optical transmittance across the visible to near-infrared regime. We hope this method may open an avenue to the efficient integration and batch production of 2D chalcogenide crystals and could inspire ongoing efforts of the fabrication of van der Waals heterostructures.

18.
ACS Nano ; 10(7): 6725-30, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27163879

RESUMO

Twisted bilayer graphene (tBLG) with van Hove Singularity (VHS) has exhibited novel twist-angle-dependent chemical and physical phenomena. However, scalable production of high-quality tBLG is still in its infancy, especially lacking the angle controlled preparation methods. Here, we report a facile approach to prepare tBLG with large domain sizes (>100 µm) and controlled twist angles by a clean layer-by-layer transfer of two constituent graphene monolayers. The whole process without interfacial polymer contamination in two monolayers guarantees the interlayer interaction of the π-bond electrons, which gives rise to the existence of minigaps in electronic structures and the consequent formation of VHSs in density of state. Such perturbation on band structure was directly observed by angle-resolved photoemission spectroscopy with submicrometer spatial resolution (micro-ARPES). The VHSs lead to a strong light-matter interaction and thus introduce ∼20-fold enhanced intensity of Raman G-band, which is a characteristic of high-quality tBLG. The as-prepared tBLG with strong light-matter interaction was further fabricated into high-performance photodetectors with selectively enhanced photocurrent generation (up to ∼6 times compared with monolayer in our device).

19.
Nanoscale ; 8(4): 1879-85, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26733366

RESUMO

The electron transport properties of a topological insulator Bi2Se3 thin film are studied in Hall-bar geometry. The film with a thickness of 10 nm is grown by van der Waals epitaxy on fluorophlogopite mica and Hall-bar devices are fabricated from the as-grown film directly on the mica substrate. Weak antilocalization and electron-electron interaction effects are observed and analyzed at low temperatures. The phase-coherence length extracted from the measured weak antilocalization characteristics shows a strong power-law increase with decreasing temperature and the transport in the film is shown to occur via coupled multiple (topological surface and bulk states) channels. The conductivity of the film shows a logarithmical decrease with decreasing temperature and thus the electron-electron interaction plays a dominant role in quantum corrections to the conductivity of the film at low temperatures.

20.
Adv Mater ; 27(29): 4315-21, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26079564

RESUMO

Broadband transparent electrodes based on 2D hybrid nanostructured Dirac materials between Bi2 Se3 and graphene are synthesized using a chemical vapor deposition (CVD) method. Bi2 Se3 nanoplates are preferentially grown along graphene grain boundaries as "smart" conductive patches to bridge the graphene boundary. These hybrid films increase by one- to threefold in conductivity while remaining highly transparent over broadband wavelength. They also display outstanding chemical stability and mechanical flexibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA