Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
1.
Cell Death Differ ; 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35022570

RESUMO

Y-box binding protein 1 (YB-1) is a well-known oncogene highly expressed in various cancers, including basal-like breast cancer (BLBC). Beyond its role as a transcription factor, YB-1 is newly defined as an epigenetic regulator involving RNA 5-methylcytosine. However, its specific targets and pro-cancer functions are poorly defined. Here, based on clinical database, we demonstrate a positive correlation between Kruppel-like factor 5 (KLF5) and YB-1 expression in breast cancer patients, but a negative correlation with that of Dachshund homolog 1 (DACH1). Mechanistically, YB-1 enhances KLF5 expression not only through transcriptional activation that can be inhibited by DACH1, but also by stabilizing KLF5 mRNA in a RNA 5-methylcytosine modification-dependent manner. Additionally, ribosomal S6 kinase 2 (RSK2) mediated YB-1 phosphorylation at Ser102 promotes YB-1/KLF5 transcriptional complex formation, which co-regulates the expression of BLBC specific genes, Keratin 16 (KRT16) and lymphocyte antigen 6 family member D (Ly6D), to promote cancer cell proliferation. The RSK inhibitor, LJH685, suppressed BLBC cell tumourigenesis in vivo by disturbing YB-1-KLF5 axis. Our data suggest that YB-1 positively regulates KLF5 at multiple levels to promote BLBC progression. The novel RSK2-YB-1-KLF5-KRT16/Ly6D axis provides candidate diagnostic markers and therapeutic targets for BLBC.

2.
Environ Entomol ; 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35024800

RESUMO

Numerous lepidopteran adults frequently pick up plant pollen when feeding. Identifying plant species visited by Mamestra brassicae moths could further strengthen our knowledge of their migratory trajectory and the interactions of M. brassicae moths with these plant species. Here, with morphological analysis and DNA metabarcoding of pollen carried by the moths, we determined these plant species visited by M. brassicae during 2015-2018. Pollen grains removed from M. brassicae moths were identified from 25 species (18 were identified to genus), representing at least 19 families, including Pinaceae, Oleaceae, Rosaceae, and Asteraceae, but mainly belonging to Angiospermae, Dicotyledoneae. There were noticeable interannual differences (maximum value: 35.31% in 2018) and seasonal differences (maximum value: 33.28% in April-(including May)-June) in the frequency of M. brassicae moths with adhering pollen, but no noticeable difference based on sex. Meanwhile, we also found pollen from some species such as Citrus sinensis (Rutales: Rutaceae) and Melia azedarach (Rutales: Meliaceae) that grow in southern China, indicating that M. brassicae moths might migrate northward in spring. Our results demonstrate that the M. brassicae moth visits a variety of plant species during migration, and these findings promote our understanding of the interaction between moths and these plant species.

3.
Insect Sci ; 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34873833

RESUMO

The diamondback moth, Plutella xylostella (L.), is one of the most destructive migratory pest species of cruciferous vegetables worldwide and has developed resistance to most of the insecticides used for its control. The migration regularity, migratory behavior, and relationship between flight and reproduction of P. xylostella have been widely reported. However, the effect of migration on insecticide resistance in this pest is still unclear. In this study, the effect of migration on P. xylostella resistance to seven insecticides was investigated using populations across the Bohai Sea that were collected in the early and late seasons during 2017-2019. The bioassay results showed that the early season populations of P. xylostella from South China possessed much higher resistance to insecticides because of intensive insecticide application; alternatively, the late season populations migrated from Northeast China, where the insecticides were only used occasionally, showed much lower insecticide resistance. The genome re-sequencing results revealed that, among the eight mutations involved in insecticide resistance, the frequencies of two acetylcholinesterase mutations (A298S and G324A) responsible for organophosphorus insecticide resistance were significantly decreased in the late season populations. The results indicated that P. xylostella migration between tropical and temperate regions significantly delayed the development of insecticide resistance. These findings illustrated the effect of regional migration on the evolution of insecticide resistance in P. xylostella, and provided foundational information for further research on the relationship between migration and insecticide resistance development in other insects. This article is protected by copyright. All rights reserved.

4.
Exp Hematol Oncol ; 10(1): 56, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922633

RESUMO

Cancer immunotherapy has made remarkable progress in the past decade. Bispecific antibodies (BsAbs) have acquired much attention as the next generation strategy of antibody-target cancer immunotherapy, which overwhelmingly focus on T cell recruitment and dual receptors blockade. So far, BsAb drugs have been proved clinically effective and approved for the treatment of hematologic malignancies, but no BsAb have been approved in solid tumors. Numerous designed BsAb drugs for solid tumors are now undergoing evaluation in clinical trials. In this review, we will introduce the formats of bispecific antibodies, and then update the latest preclinical studies and clinical trials in solid tumors of BsAbs targeting EpCAM, CEA, PMSA, ErbB family, and so on. Finally, we discuss the BsAb-related adverse effects and the alternative strategy for future study.

5.
Exp Hematol Oncol ; 10(1): 60, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34965886

RESUMO

Macrophages are heterogeneous cells that present as different functional phenotypes due to their plasticity. They can be classified into two categories, namely M1- and M2-like macrophages, which are involved in processes as diverse as anti-tumor activity and immunosuppressive tumor promotion. Tumor-associated macrophages (TAMs) are defined as being of an M2-type and are considered as the active component in tumor microenvironment. TAMs are involved in multiple processes of tumor progression through the expression of cytokines, chemokines, growth factors, protein hydrolases and more, which lead to enhance tumor cell proliferation, angiogenesis, and immunosuppression, which in turn supports invasion and metastasis. It is assumed that the abundance of TAMs in major solid tumors is correlated to a negative patient prognosis. Because of the currently available data of the TAMs' role in tumor development, these cells have emerged as a promising target for novel cancer treatment strategies. In this paper, we will briefly describe the origins and types of TAMs and will try to comprehensively show how TAMs contribute to tumorigenesis and disease progression. Finally, we will present the main TAM-based therapeutic strategies currently available.

6.
Pest Manag Sci ; 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34825453

RESUMO

BACKGROUND: The seasonal long-distance migration of pests amongst different seasonal habitats may encounter different degrees of insecticides' selection pressure, but the knowledge on the evolution of resistance and the underlying mechanisms remains little. Here, we show that the development of resistance of the oriental armyworm Mythimna separata (Walker), a notorious agricultural pest that migrates between northern and northeast China seasonally across the Bohai Gulf, is influenced by seasonal migration. RESULTS: There are two conspicuous migrations of M. separata, the northeastwards population in the second half of May and the returning population in the second half of August, between northern and northeast China per year, and the abundance values of migrants from April to October are significantly different. The resistance levels of seasonal migratory populations to λ-cyhalothrin vary in different months, and the resistance levels and estimated frequency of the resistance allele of the first northeastward population (second half of May, May.-2) in spring are significantly higher than those of the returning populations in autumn. Moreover, resistance decline was observed in migrating population Jul.-2, with the resistance levels in the F1 progeny higher than those in their F2 progeny. Synergism tests indicate that cytochrome P450 monooxygenases (P450s) play a major role in resistance. Enzymatic assays show that the P450 activity is significantly correlated with resistance levels in migratory populations, indicating that increased P450 activity is the main mechanism of resistance. The expression levels and correlation analysis of the relative expression of P450s with resistance levels show that 3 (i.e. CYP9A144, CYP9G40, and CYP6B79) out of 23 genes from CYP6 and CYP9 subfamilies are potentially involved in resistance to λ-cyhalothrin. CONCLUSION: Our results show that the resistance of M. separata to λ-cyhalothrin is unstable and likely to be metabolically driven by enhanced P450 activity mediated by the overexpression of multiple P450 genes. Notably, the development of resistance is probably affected by seasonal migration. This article is protected by copyright. All rights reserved.

7.
Signal Transduct Target Ther ; 6(1): 379, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34744168

RESUMO

In recent years, accumulating evidence has elucidated the role of lysosomes in dynamically regulating cellular and organismal homeostasis. Lysosomal changes and dysfunction have been correlated with the development of numerous diseases. In this review, we interpreted the key biological functions of lysosomes in four areas: cellular metabolism, cell proliferation and differentiation, immunity, and cell death. More importantly, we actively sought to determine the characteristic changes and dysfunction of lysosomes in cells affected by these diseases, the causes of these changes and dysfunction, and their significance to the development and treatment of human disease. Furthermore, we outlined currently available targeting strategies: (1) targeting lysosomal acidification; (2) targeting lysosomal cathepsins; (3) targeting lysosomal membrane permeability and integrity; (4) targeting lysosomal calcium signaling; (5) targeting mTOR signaling; and (6) emerging potential targeting strategies. Moreover, we systematically summarized the corresponding drugs and their application in clinical trials. By integrating basic research with clinical findings, we discussed the current opportunities and challenges of targeting lysosomes in human disease.

8.
Pest Manag Sci ; 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34613651

RESUMO

BACKGROUND: Migration is a widespread phenomenon among many insect species, including herbivorous crop pests. At present, scant information exists on the long-range migration of the polyphagous armyworm, Spodoptera exigua and its underlying climatic determinants (i.e. East Asian or South Asian monsoon circulation). In this study, we employed a population genetics approach to delineate S. exigua migration patterns across multiple Asian countries. RESULTS: Using mitochondrial cytochrome I (COI) and microsatellite markers, low-to-moderate levels of genetic diversity were detected among 101 S. exigua populations collected across China, Pakistan and Vietnam. Haplotype diversity and nucleotide diversity did not differ between years. Two spatially explicit genetic clusters were detected, an eastern and a western clade, with the former comprising populations in the East Asia monsoon area. No genetic differentiation was recorded among armyworm populations in the year-round breeding area, nor among those of the overwintering and nonoverwintering areas. Five of the most widespread mitochondrial haplotypes reflected the extensive gene flow across at a large spatial scale. CONCLUSION: Low-to-moderate levels of genetic diversity were observed, and evidence was found for genetic clustering in certain geographical areas. Accordingly, our unique insights into S. exigua population genetics and spatiotemporal migration dynamics help to guide applied ecological studies, ecological intensification schemes or (area-wide) pest management campaigns in China and abroad.

9.
Clin Cancer Res ; 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593527

RESUMO

PURPOSE: To investigate the therapeutic role of a novel telomere-directed inhibitor, 6-thio-2'-deoxyguanosine (THIO) in gliomas both in vitro and in vivo. EXPERIMENTAL DESIGN: A panel of human and mouse glioma cell lines was used to test therapeutic efficacy of THIO using cell viability assays, flow cytometric analyses, and immunofluorescence. Integrated analyses of RNA sequencing and reverse-phase protein array data revealed the potential antitumor mechanisms of THIO. Four patient-derived xenografts (PDX), two patient-derived organoids (PDO), and two xenografts of human glioma cell lines were used to further investigate the therapeutic efficacy of THIO. RESULTS: THIO was effective in the majority of human and mouse glioma cell lines with no obvious toxicity against normal astrocytes. THIO as a monotherapy demonstrated efficacy in three glioma cell lines that had acquired resistance to temozolomide. In addition, THIO showed efficacy in four human glioma cell lines grown as neurospheres by inducing apoptotic cell death. Mechanistically, THIO induced telomeric DNA damage not only in glioma cell lines but also in PDX tumor specimens. Integrated computational analyses of transcriptomic and proteomic data indicated that THIO significantly inhibited cell invasion, stem cell, and proliferation pathways while triggering DNA damage and apoptosis. Importantly, THIO significantly decreased tumor proliferation in two PDO models and reduced the tumor size of a glioblastoma xenograft and a PDX model. CONCLUSIONS: The current study established the therapeutic role of THIO in primary and recurrent gliomas and revealed the acute induction of telomeric DNA damage as a primary antitumor mechanism of THIO in gliomas.

10.
Plant Biotechnol J ; 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34626524

RESUMO

Genetically-modified crops expressing Bacillus thuringiensis (Bt) proteins have been widely cultivated, permitting an effective non-chemical control of major agricultural pests. While their establishment can enable an area-wide suppression of polyphagous herbivores, no information is available on the impact of Bt crop abandonment in entire landscape matrices. Here, we detail a resurgence of the cosmopolitan bollworm Helicoverpa armigera following a contraction of Bt cotton area in dynamic agro-landscapes over 2007-2019 in North China Plain. An 80% reduction in Bt cotton was mirrored in a 1.9-fold increase of ambient H. armigera population levels, culminating in 1.5-2.1-fold higher yield loss and a 2.0-4.4-fold increase in pesticide use frequency in non-Bt crops (i.e. maize, peanut, soybean). Our work unveils the fate of herbivorous insect populations following a progressive dis-use of insecticidal crop cultivars, and hints at how tactically deployed Bt crops could be paired with agro-ecological measures to mitigate the environmental footprint of crop production.

11.
Int J Nanomedicine ; 16: 7071-7090, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34703228

RESUMO

Microvesicles are extracellular vesicles with diameter ranging from 100 to 1000 nm that are secreted by tumor cells or other cells in the tumor microenvironment. A growing number of studies demonstrate that tumor-derived microvesicles are involved in tumor initiation and progression, as well as drug resistance. In addition, tumor-derived microvesicles carry a variety of immunogenic molecules and inhibit tumor response to immunotherapy; therefore, they can be exploited for use in tumor vaccines. Moreover, because of their high stability, tumor-derived microvesicles extracted from body fluids can be used as biomarkers for cancer diagnosis or assessment of prognosis. Tumor-derived microvesicles can also be deployed to reverse drug resistance of tumor regenerative cells, or to deliver chemotherapeutic drugs and oncolytic adenovirus for the treatment of cancer patients. This review summarizes the general characteristics of tumor-derived microvesicles, focusing on their biological characteristics, their involvement in tumor progression, and their clinical applications.


Assuntos
Micropartículas Derivadas de Células , Vesículas Extracelulares , Neoplasias , Humanos , Neoplasias/terapia , Prognóstico , Microambiente Tumoral
12.
J Hematol Oncol ; 14(1): 146, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526097

RESUMO

BACKGROUND: Our previous work showed that the anti-TGF-ß/PD-L1 bispecific antibody YM101 effectively overcame anti-PD-L1 resistance in immune-excluded tumor models. However, in immune-desert models, the efficacy of YM101 was limited. Bivalent manganese (Mn2+) is identified as a natural stimulator of interferon genes (STING) agonist, which might enhance cancer antigen presentation and improve the therapeutic effect of YM101. METHODS: The effect of Mn2+ on STING pathway was validated by western blotting and enzyme-linked immunosorbent assay. Dendritic cell (DC) maturation was measured by flow cytometry. The synergistic effect between Mn2+ and YM101 in vitro was determined by one-way mixed lymphocyte reaction, CFSE dilution assay, and cytokine detection. The in vivo antitumor effect of Mn2+ plus YM101 therapy was assessed in CT26, EMT-6, H22, and B16 tumor models. Flow cytometry, RNA-seq, and immunofluorescent staining were adopted to investigate the alterations in the tumor microenvironment. RESULTS: Mn2+ could activate STING pathway and promote the maturation of human and murine DC. The results of one-way mixed lymphocyte reaction showed that Mn2+ synergized YM101 in T cell activation. Moreover, in multiple syngeneic murine tumor models, Mn2+ plus YM101 therapy exhibited a durable antitumor effect and prolonged the survival of tumor-bearing mice. Relative to YM101 monotherapy and Mn2+ plus anti-PD-L1 therapy, Mn2+ plus YM101 treatment had a more powerful antitumor effect and a broader antitumor spectrum. Mechanistically, Mn2+ plus YM101 strategy simultaneously regulated multiple components in the antitumor immunity and drove the shift from immune-excluded or immune-desert to immune-inflamed tumors. The investigation in the TME indicated Mn2+ plus YM101 strategy activated innate and adaptive immunity, enhanced cancer antigen presentation, and upregulated the density and function of tumor-infiltrating lymphocytes. This normalized TME and reinvigorated antitumor immunity contributed to the superior antitumor effect of the combination therapy. CONCLUSION: Combining Mn2+ with YM101 has a synergistic antitumor effect, effectively controlling tumor growth and prolonging the survival of tumor-bearing mice. This novel cocktail strategy has the potential to be a universal regimen for inflamed and non-inflamed tumors.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Manganês/uso terapêutico , Neoplasias/terapia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Imunoterapia/métodos , Camundongos Endogâmicos BALB C , Neoplasias/imunologia , Fator de Crescimento Transformador beta/imunologia
13.
Front Oncol ; 11: 719896, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381735

RESUMO

Hepatocellular carcinoma (HCC) is one of the common and fatal malignancies, which is a significant global health problem. The clinical applicability of traditional surgery and other locoregional therapies is limited, and these therapeutic strategies are far from satisfactory in improving the outcomes of advanced HCC. In the past decade, targeted therapy had made a ground-breaking progress in advanced HCC. Those targeted therapies exert antitumor effects through specific signals, including anti-angiogenesis or cell cycle progression. As a standard systemic therapy option, it tremendously improves the survival of this devastating disease. Moreover, the combination of targeted therapy with immune checkpoint inhibitor (ICI) has demonstrated more potent anticancer effects and becomes the hot topic in clinical studies. The combining medications bring about a paradigm shift in the treatment of advanced HCC. In this review, we presented all approved targeted agents for advanced HCC with an emphasis on their clinical efficacy, summarized the advances of multi-target drugs in research for HCC and potential therapeutic targets for drug development. We also discussed the exciting results of the combination between targeted therapy and ICI.

14.
Insect Biochem Mol Biol ; 137: 103635, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34363975

RESUMO

Resistance evolution of target pests reduces efficacy of Bacillus thuringiensis Cry toxins used in insect-pest control. Mutations in Cadherin (CAD) or ATP-binding cassette (ABC) transporters genes are linked to Cry resistance in different pests. Also, it has been shown that ABCC2 and CAD have synergistic interaction on Cry toxicity when co-express in cell lines, which we confirmed here by Helicoverpa armigera HaABCC2 and HaCAD expression in Hi5 cells. To confirm that CAD and ABC transporters interact in vivo, we constructed nearly H. armigera isogenic lines such as LFC2 and 96CAD strains, linked to HaABCC2 and HaCAD mutations that showed 512- and 396-fold Cry1Ac resistance-ratios, respectively. Interestingly, Fusion-1 strain linked to both HaABCC2 and HaCAD mutations, showed 6273-fold resistance-ratio, significantly higher than the single mutant strains. To confirm the interaction of HaABCC2 and CAD in Cry1Ac resistance, we analyzed the Cry1Ac susceptibility in CRISPR/Cas9 knockdown strains, C2-KO (ABCC2-gene knockout-strain) and CAD-KO (CAD-gene knockout-strain), that showed 112- and 531-fold Cry1Ac resistance-ratios, respectively. However, the resistance-ratio of Fusion-2 strain obtained from crossing C2-KO and CAD-KO strains, was only 816-fold. The analysis of HaABCC3 gene transcript levels showed nearly 4-fold lower expression in LFC2 and Fusion-1 strains compared to the susceptible strain, suggesting that additional mutations in these strains resulted in low HaABCC3 expression, which contribute to their enhanced Cry1Ac resistance. Our data show that the CAD and ABCC2/ABCC3 interact synergistically to induce high Cry1Ac resistance in H. armigera. These results can be helpful for Bt resistance monitoring and pest management.


Assuntos
Toxinas de Bacillus thuringiensis/farmacologia , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Mariposas/efeitos dos fármacos , Mariposas/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Bacillus thuringiensis/química , Caderinas/genética , Caderinas/metabolismo , Proteínas de Insetos/metabolismo , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Mariposas/crescimento & desenvolvimento , Mutação
15.
Elife ; 102021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34263726

RESUMO

Bacillus thuringiensis (Bt) crops have been widely planted and the effects of Bt-crops on populations of the target and non-target insect pests have been well studied. However, the effects of Bt-crops exposure on microorganisms that interact with crop pests have not previously been quantified. Here, we use laboratory and field data to show that infection of Helicoverpa armigera with a densovirus (HaDV2) is associated with its enhanced growth and tolerance to Bt-cotton. Moreover, field monitoring showed a much higher incidence of cotton bollworm infection with HaDV2 in regions cultivated with Bt-cotton than in regions without it, with the rate of densovirus infection increasing with increasing use of Bt-cotton. RNA-seq suggested tolerance to both baculovirus and Cry1Ac were enhanced via the immune-related pathways. These findings suggest that exposure to Bt-crops has selected for beneficial interactions between the target pest and a mutualistic microorganism that enhances its performance on Bt-crops under field conditions.


Assuntos
Bacillus thuringiensis , Densovirus , Gossypium , Inseticidas , Animais , Toxinas de Bacillus thuringiensis , Baculoviridae , China , Endotoxinas , Proteínas Hemolisinas , Insetos , Resistência a Inseticidas , Mariposas , Plantas Geneticamente Modificadas , Simbiose
16.
Biomark Res ; 9(1): 55, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233747

RESUMO

BACKGROUND: Every year around the world, more than 2 million women are diagnosed with breast cancer and genital tract cancers. However, there are rare studies comprehensively describing the global and regional trends of incidence and mortality of women's cancers. METHODS: To study the burden and trend of women's cancers, we conducted this cross-sectional study based on the epidemiologic data of Global Burden of Disease 2019. In this study, female patients with breast cancer, cervical cancer, ovarian cancer, and uterine cancer worldwide from 1990 to 2019 were involved. The incidence, death, and disability-adjusted life-year (DALY) were used to measure the outcomes of women's cancers. The estimated annual percentage change (EAPC) was calculated to assess the changing trend of cancer burden. RESULTS: Among the four women's cancers, the burden of female breast cancer was highest. During the past 30 years, the incidence, death, and DALY of female breast cancer kept increasing worldwide. In most regions especially developing countries, cervical cancer was the second most common women's cancer. At the same time, ovarian cancer and uterine cancer occurred less frequently. Generally, the age-standardized incidence rates (ASIRs) of breast cancer, ovarian cancer, and uterine cancer were positively correlated to sociodemographic index (SDI) value. In contrast, the ASIR of cervical cancer was negatively correlated to SDI value. CONCLUSIONS: Our study indicates that the incidence and mortality of women's cancers have geographical variations and change along with SDI value. The results might be helpful to policy-makers to allocate healthy resources to control women's cancers.

17.
J Econ Entomol ; 114(4): 1533-1541, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34132348

RESUMO

Monitoring adult populations of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), a major agricultural pest, provides data useful for its control. Food attractants, considered as adult insect behavior regulators based on the preference of an herbivorous pest for food sources or their volatiles, also have great potential for monitoring populations. To study the feasibility of monitoring the population dynamics and reproductive development of H. armigera in the field using food attractants, we quantitatively analyzed reproductive organ development of adults in a laboratory population as a way to predict the reproductive development of adults trapped using food attractants in the field in 2019 and 2020. The adults trapped using food attractants had obvious generational changes and the same trends in variation for females and males. The extent of ovarian development in trapped females tended to increase within each generation, and the major axis length of testis in trapped males tended to decrease. Reproductive developmental status of trapped adults also differed significantly among months. This study shows that by trapping H. armigera with food attractants, the population dynamics of adults in the field can be monitored, and reproductive anatomy can also be used to monitor adult reproductive status. These approaches are a new way to forecast the population dynamics of this pest.


Assuntos
Lepidópteros , Mariposas , Animais , Feminino , Masculino , Dinâmica Populacional , Reprodução
18.
J Insect Physiol ; 132: 104248, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33945808

RESUMO

Since 2016, the fall armyworm (FAW, Spodoptera frugiperda) has invaded large parts of Africa and Asia, impacting millions of hectares of maize crops and thereby posing a major threat to food security. The rapid geographic spread and outbreak dynamics of S. frugiperda are tied to its unique dispersal ability and long-distance migration capability. Yet, up till present, limited research has been conducted on the physiological determinants of S. frugiperda flight and migration. In this study, we used laboratory experiments to assess whether mating and oviposition affect S. frugiperda flight ability and wingbeat frequency. During 2019-2020, migratory FAW females were trapped in Yunnan (China) and dissected to assess ovarian development. Tethered flight assays showed that gravid S. frugiperda females exhibited strong flight ability at 1-3 days following the onset of oviposition. Flight distance and duration negatively correlated with the number of deposited eggs. Ovarian dissections further showed that over 50% of migrant females were mated and 46-54% had initiated oviposition. Our study shows the complex, yet nuanced effects of reproductive status on flight capacity, with possibly a facultative trade-off between flight and reproduction. These novel insights into S. frugiperda physiology and migration behavior can guide future monitoring and integrated pest management (IPM) programs against this newly-invasive pest in China and abroad.


Assuntos
Voo Animal/fisiologia , Reprodução/fisiologia , Spodoptera/fisiologia , Distribuição Animal/fisiologia , Animais , Feminino , Oviposição , Controle de Pragas
19.
Int J Biochem Cell Biol ; 136: 106002, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33962022

RESUMO

Preclinical data suggest that head and neck cancer is an intrinsically immunosuppressive disease with abnormal inflammatory components in the tumor microenvironment. The development of immune checkpoint inhibitors, which are monoclonal antibodies capable of inhibiting immune suppressive signals to prime anticancer immunity, has revolutionized the therapeutic landscape in recurrent/metastatic head and neck cancer. However, patients with head and neck cancer present primary resistance to immunotherapy. Many ongoing trials include combinations of immunotherapy with different therapeutic interventions, aiming to improve response rates and overall survival. As novel therapy strategies are leveraged, the significance of immunotherapy in recurrent/metastatic head and neck cancer continues to be revealed. This review aims to summarize combinational immunotherapy in head and neck cancer.


Assuntos
Neoplasias de Cabeça e Pescoço/terapia , Imunoterapia/métodos , Recidiva Local de Neoplasia/terapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Animais , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/secundário , Microambiente Tumoral
20.
J Exp Clin Cancer Res ; 40(1): 172, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006331

RESUMO

Although hepatocellular carcinoma (HCC) is one of the deadliest health burdens worldwide, few drugs are available for its clinical treatment. However, in recent years, major breakthroughs have been made in the development of new drugs due to intensive fundamental research and numerous clinical trials in HCC. Traditional systemic therapy schemes and emerging immunotherapy strategies have both advanced. Between 2017 and 2020, the United States Food and Drug Administration (FDA) approved a variety of drugs for the treatment of HCC, including multikinase inhibitors (regorafenib, lenvatinib, cabozantinib, and ramucirumab), immune checkpoint inhibitors (nivolumab and pembrolizumab), and bevacizumab combined with atezolizumab. Currently, there are more than 1000 ongoing clinical trials involving HCC, which represents a vibrant atmosphere in the HCC drug research and development field. Additionally, traditional Chinese medicine approaches are being gradually optimized. This review summarizes FDA-approved agents for HCC, elucidates promising agents evaluated in clinical phase I/II/III trials and identifies emerging targets for HCC treatment. In addition, we introduce the development of HCC drugs in China. Finally, we discuss potential problems in HCC drug therapy and possible future solutions and indicate future directions for the development of drugs for HCC treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...