Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 947
Filtrar
1.
Nanotechnology ; 32(1): 015708, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32937609

RESUMO

In this paper, we used tannic acid (TA) functionalized carbon nanotubes (TCNTs), and silver nanowires (AgNWs) to construct a new type of transparent conductive film (TCF) with a double-layered conductive network structure. The hybrid film exhibits excellent light transmittance, high electrical conductivity, ultra-flexibility, and strong adhesion. These outstanding performances benefit from the filling and adhesion of hydrophilic TCNT layers to the AgNW networks. Besides, we introduced the post-treatment process of mechanical pressing and covering polymer conductive polymer PEDOT:PSS, which obtained three layers of TCNT/AgNW/PEDOT hybrid film and greatly improved the comprehensive properties. The hybrid film can reach a sheet resistance of 9.2 Ω sq-1 with a transmittance of 83.4% at 550 nm wavelength, and a low root mean square (RMS) roughness (approximately 3.8 nm). After 10 000 bends and tape testing, the conductivity and transmittance of the hybrid film remain stable. The resistance of the film has no significant degradation after 14 d of exposure to high temperature of 85 °C and humidity of 85%, indicating excellent stability. The organic light-emitting diodes (OLEDs) with TCNT/AgNW/PEDOT hybrid film as anode exhibit high current density and luminosity, confirming this process has considerable potential application in photovoltaic devices.

2.
Free Radic Biol Med ; 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33189867

RESUMO

The immunoinhibitory effect of glucocorticoid and immunoenhancing attributes of melatonin (MEL) are well known, however, the involvement of glucocorticoid receptor (GR) in melatonin modulation of bacterial toxins caused-inflammation has not been studied in colon. Pyocyanin (PCN), a toxin released by Pseudomonas aeruginosa, can destroy cells through generating superoxide products and inflammatory response. Here we report that PCN treatment elevated the generation of reactive oxygen species (ROS), which further lead to mitochondrial swelling and caspase cascades activation both in vivo and in vitro. However, MEL treatment alleviated the oxidative stress caused by PCN on cells through scavenging ROS and restoring the expression of antioxidant enzyme so that to effectively alleviate the apoptosis. Large amounts of ROS can activate the NLRP3 signaling pathway, so MEL inhibited PCN induced NLRP3 inflammasome activation and inflammatory cytokines (IL-1ß, IL-8, and TNF-α) secretion. In order to further investigate the molecular mechanism, goblet cells were exposed to MEL and PCN in the presence of luzindole and RU486, inhibitors of MEL receptors and GR respectively. It was found that PCN significantly inhibited the expression level of GR, and MEL effectively alleviated the inhibition phenomenon. Moreover, we found that MEL mainly upregulated the expression of GR to achieve its anti-inflammatory and anti-apoptotic functions rather than through its own receptor (MT2) in colon goblet cells. Therefore, MEL can reverse the inhibitory effects of PCN on GR/p-GR expression to present its anti-oxidative and anti-apoptotic function.

3.
J Am Heart Assoc ; 9(22): e017751, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33170082

RESUMO

Background Cardiac hypertrophy (CH) is a physiological response that compensates for blood pressure overload. Under pathological conditions, hypertrophy can progress to heart failure as a consequence of the disorganized growth of cardiomyocytes and cardiac tissue. USP10 (ubiquitin-specific protease 10) is a member of the ubiquitin-specific protease family of cysteine proteases, which are involved in viral infection, oxidative stress, lipid drop formation, and heat shock. However, the role of USP10 in CH remains largely unclear. Here, we investigated the roles of USP10 in CH. Methods and Results Cardiac-specific USP10 knockout (USP10-CKO) mice and USP10-transgenic (USP10-TG) mice were used to examined the role of USP10 in CH following aortic banding. The specific functions of USP10 were further examined in isolated cardiomyocytes. USP10 expression was increased in murine hypertrophic hearts following aortic banding and in isolated cardiomyocytes in response to hypertrophic agonist. Mice deficient in USP10 in the heart exhibited exaggerated cardiac hypertrophy and fibrosis following pressure overload stress, which resulted in worsening of cardiac contractile function. In contrast, cardiac overexpression of USP10 protected against pressure overload-induced maladaptive CH. Mechanistically, we demonstrated that USP10 activation and interaction with Sirt6 in response to angiotensin II led to a marked increase in the ubiquitination of Sirt6 and resulted in Akt signaling downregulation and attenuation of cardiomyocyte hypertrophy. Accordingly, inactivation of USP10 reduced Sirt6 abundance and stability and diminished Sirt6-induced downstream signaling in cardiomyocytes. Conclusions USP10 functions as a Sirt6 deubiquitinase that induces cardiac myocyte hypertrophy and triggers maladaptive CH.

4.
Oncol Rep ; 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33200228

RESUMO

Erlotinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), is widely used in the treatment of non­small cell lung cancer (NSCLC). However, erlotinib resistance leads to high mortality in patients with NSCLC, while the activation of STAT3 is closely related to erlotinib resistance. Studies have shown that the main components of Huanglian Jiedu Decoction (HJD) have antitumor effects. Therefore, the anticancer effect of HJD combined with erlotinib on NSCLC cells was investigated. The NSCLC HCC827, HCC827ER, and H1975 cell lines as well as xenograft nude mice were selected as models to study the effects of HJD. The proapoptotic effects of HJD were examined by CCK­8 and apoptosis assays. ELISA, immunostaining, and western blot analysis were also performed. HJD considerably enhanced the anticancer effect of erlotinib in both EGFR­TKI­resistant and ­sensitive NSCLC cells. HJD promoted erlotinib­induced apoptosis and caspase 3 activity. The co­treatment also inhibited the expression of Bcl­XL, Bcl­2, and p­STAT3. In addition, siSTAT3 had similar functions with HJD. In particular, the apoptotic rates of erlotinib­stimulated HCC827, HCC827ER, and H1975 cells were enhanced by transfecting siSTAT3. Furthermore, overexpression of STAT3 significantly inhibited HJD­mediated erlotinib sensitization. The combined use of HJD with erlotinib significantly reduced tumor growth in erlotinib­resistant HCC827ER and H1975 xenografts, induced caspase 3, and inhibited Ki67, STAT3, and Bcl­2 expression. HJD significantly alleviated erlotinib resistance by regulating the STAT3/Bcl­2 signaling pathway, which is a promising method to overcome the EGFR­TKI resistance of NSCLC.

5.
BMC Genomics ; 21(1): 826, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33228534

RESUMO

BACKGROUND: Helicobacter himalayensis was isolated from Marmota himalayana in the Qinghai-Tibet Plateau, China, and is a new non-H. pylori species, with unclear taxonomy, phylogeny, and pathogenicity. RESULTS: A comparative genomic analysis was performed between the H. himalayensis type strain 80(YS1)T and other the genomes of Helicobacter species present in the National Center for Biotechnology Information (NCBI) database to explore the molecular evolution and potential pathogenicity of H. himalayensis. H. himalayensis 80(YS1)T formed a clade with H. cinaedi and H. hepaticus that was phylogenetically distant from H. pylori. The H. himalayensis genome showed extensive collinearity with H. hepaticus and H. cinaedi. However, it also revealed a low degree of genome collinearity with H. pylori. The genome of 80(YS1)T comprised 1,829,936 bp, with a 39.89% GC content, a predicted genomic island, and 1769 genes. Comparatively, H. himalayensis has more genes for functions in "cell wall/membrane/envelope biogenesis" and "coenzyme transport and metabolism" sub-branches than the other compared helicobacters, and its genome contained 42 virulence factors genes, including that encoding cytolethal distending toxin (CDT). CONCLUSIONS: We characterized the H. himalayensis 80(YS1)T genome, its phylogenetic position, and its potential pathogenicity. However, further understanding of the pathogenesis of this potentially pathogenic bacterium is required, which might help to manage H. himalayensis-induced diseases.

6.
J Exp Clin Cancer Res ; 39(1): 237, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168041

RESUMO

BACKGROUND: In follicular lymphoma (FL), histologic transformation to high-grade FL and diffuse large B-cell lymphoma (DLBCL) is a critical adverse step in disease progression. Activation of the oncogene c-MYC and tumor microenvironment remodeling account for FL progression. A panel of microRNA (miRNA) was downregulated in transformed FL (tFL). METHODS: Differentially expressed miRNAs were systematically compared in 11 lymph nodes from patients at different stages of disease. Expression of miR-7e-5p was analyzed in 46 B-cell lymphomas, including 30 FL tissues and 16 DLBCL tissues. In FL cells, transcriptional regulation of the oncogene c-MYC on its target miR-7e-5p was revealed by Chromatin Immunoprecipitation (ChIP) assay. Exosome, carrying differentially expressed miR-7e-5p was isolated and visualized by transmission electron microscope and fluorescence tracing. The effect of miR-7e-5p on recipient macrophage was determined by target gene quantification, flow cytometry, and TUNEL method in a cocultured system with miR-7e-5p-mimics or inhibitors treatment. Expression of miR-7e-5p targets, macrophage proportions, and clinical parameters were included for correlation analysis. RESULTS: We determined that downregulation of miR-7e-5p, driven by c-MYC overexpression, was associated with poorer prognosis in FL patients. The decreased expression of miR-7e-5p in lymphoma cells led to a reduced exosomal transfer to surrounding macrophages. As a result, the target gene of miR-7e-5p, Fas ligand (FasL), was upregulated and activated the caspase signaling, which led to the apoptosis of M1 macrophages in tumor stroma. Finally, in transformed FL tissues, overexpression of FasL and activation of caspase proteins was detected in tumor stromal macrophages. Downregulation of miR-7e-5p was associated with poorer clinical outcomes. CONCLUSION: Downregulation of exosomal miR-7e-5p induces stromal M1 macrophage apoptosis, which leads to immunosurveillance and transformation of FL.

7.
Toxicol Lett ; 336: 1-10, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33166664

RESUMO

Lidocaine induces neurotoxicity in the spinal cord, but the underlying mechanisms remain unclear. In this study, we evaluated the effects of miR-199a-5p on 10 % lidocaine neurotoxicity. Increased expression of miR-199a-5p in the spinal cord of rats treated with 10 % lidocaine was assessed by qRT-PCR. Furthermore, after miR-199a-5p antagomir administration, the sensory dysfunction and myelin sheath lesions (evaluated by semithin sections stained with toluidine blue, electron microscopy, g-ratios and myelin thickness) induced by 10 % lidocaine were alleviated. Myelin regulatory factor (MYRF), a key molecule of myelin sheath development, was predicted to be a target gene of miR-199a-5p by the TargetScan and miRBase databases. MYRF and its downstream factors myelin basic protein (MBP), proteolipid protein (PLP) and myelin oligodendrocyte glycoprotein (MOG) were significantly decreased after intrathecal 10 % lidocaine administration. Moreover, these changes were reversed after miR-199a-5p antagomir administration. FISH-immunofluorescence showed coexpression of miR-199a-5p and MYRF in the spinal cord white matter of rats. A luciferase reporter assay further demonstrated the functional association between miR-199a-5p and MYRF. Overall, miR-199a-5p upregulation is involved in 10 % lidocaine-induced spinal cord toxicity through regulation of MYRF. Therefore, downregulating miR-199a-5p expression may be a potential strategy to ameliorate spinal cord neurotoxicity induced by 10 % lidocaine.

8.
J Nutr Biochem ; 88: 108542, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33129969

RESUMO

Hypothalamic inflammation has been linked to various aspects of central metabolic dysfunction and diseases in humans, including hyperphagia, altered energy expenditure, and obesity. We previously reported that loss of ß-carotene oxygenase 2 (BCO2), a mitochondrial inner membrane protein, causes the alteration of the hypothalamic metabolome, low-grade inflammation, and an increase in food intake in mice at an early age, e.g., 3-6 weeks. Here, we determined the extent to which the deficiency of BCO2 induces hypothalamic inflammation in BCO2 knockout mice. Mitochondrial proteomics, electron microscopy, and immunoblotting were used to assess the changes in hypothalamic mitochondrial dynamics and mitochondrial DNA sensing and signaling. The results showed that deficiency of BCO2 altered hypothalamic mitochondrial proteome and respiratory supercomplex assembly by enhancing the expression of NADH:ubiquinone oxidoreductase subunit A11 protein and improved cardiolipin synthesis. BCO2 deficiency potentiated mitochondrial fission but suppressed mitophagy and mitochondrial biogenesis. Furthermore, deficiency of BCO2 resulted in inactivation of mitochondrial MnSOD enzyme, excessive production of reactive oxygen species, and elevation of protein levels of stimulator of interferon genes (STING) and interferon regulatory factor 3 (IRF3) in the hypothalamus. The data suggest that BCO2 is essential for hypothalamic mitochondrial dynamics. BCO2 deficiency induces mitochondrial fragmentation and mitochondrial oxidative stress, which may lead to mitochondrial DNA release into the cytosol and subsequently sensing by activation of the STING-IRF3 signaling pathway in the mouse hypothalamus.

9.
Asian J Androl ; 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159025

RESUMO

Transforming growth factor-ß1 (TGF-ß1) acts as a tumor promoter in advanced prostate cancer (PCa). We speculated that microRNAs (miRNAs) that are inhibited by TGF-ß1 might exert anti-tumor effects. To assess this, we identified several miRNAs downregulated by TGF-ß1 in PCa cell lines and selected miR-3691-3p for detailed analysis as a candidate anti-oncogene miRNA. miR-3691-3p was expressed at significantly lower levels in human PCa tissue compared with paired benign prostatic hyperplasia tissue, and its expression level correlated inversely with aggressive clinical pathological features. Overexpression of miR-3691-3p in PCa cell lines inhibited proliferation, migration, and invasion, and promoted apoptosis. The miR-3691-3p target genes E2F transcription factor 3 (E2F3) and PR domain containing 1, with ZNF domain (PRDM1) were upregulated in miR-3691-3p-overexpressing PCa cells, and silencing of E2F3 or PRDM1 suppressed PCa cell proliferation, migration, and invasion. Treatment of mice bearing PCa xenografts with a miR-3691-3p agomir inhibited tumor growth and promoted tumor cell apoptosis. Consistent with the negative regulation of E2F3 and PRDM1 by miR-3691-3p, both proteins were overexpressed in clinical PCa specimens compared with noncancerous prostate tissue. Our results indicate that TGF-ß1-regulated miR-3691-3p acts as an anti-oncogene in PCa by downregulating E2F3 and PRDM1. These results provide novel insights into the mechanisms by which TGF-ß1 contributes to the progression of PCa.

10.
Biomed Pharmacother ; 131: 110723, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33152910

RESUMO

Stroke is an acute cerebrovascular disease caused by the sudden rupture of cerebral blood vessels or vascular obstruction from brain tissue damage or dysfunction, thereby preventing blood flow into the brain. Cerebral ischemia-reperfusion injury (CI/RI), a common syndrome of ischemic stroke, is a complex pathological process whose physiological mechanism is still unclear. Qishiwei Zhenzhu pills (QSW), a famous Tibetan medicine preparation, has the effect of tranquilizing by heavy settling, dredging channels and activating collaterals, harmonizing Qi and blood, restoring consciousness, and inducing resuscitation. Here, we investigated the protective effect of QSW on CI/RI in rats and its potential mechanism. First, the volatile and liposoluble components in QSW were determined using gas chromatography-mass spectrometry (GCMS). After 24 h of CI/RI, the neuroprotective effect was determined by evaluating the neurological function, cerebral infarction, histopathology, and blood-brain barrier (BBB) function. Immunofluorescence, real-time quantitative PCR (RT-qPCR), and western blot (WB) were used to detect the expression of matrix metalloproteinase 9 (MMP-9), claudin-5, and occludin. Finally, GCMS metabonomics was used to identify different metabolites and analyze metabolic pathways. The results showed that 88 volatile components and 63 liposoluble components were detected in QSW. Following the experimental stroke operation, it was observed that rats administered QSW pretreatment had improved neurological function, reduced infarct volume (P < 0.01), increased Nissl bodies (P < 0.05), improved histopathology, and reduced BBB disruption. Immunofluorescence, RT-qPCR, and WB results showed that MMP-9 level in the brain tissue of the QSW pretreatment group had a decreasing trend and the expression of claudin-5 and occludin had a tendency to increase. Eleven metabolites related to lipid metabolism, fatty acid metabolism, and energy metabolism, were identified via GC-MS metabonomics. Our study shows that QSW preconditioning has a neuroprotective effect on CI/RI; however, its mechanism requires further study.

11.
Mol Neurobiol ; 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33146400

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia among elderly people. Despite enormous efforts, the pathogenesis of AD still remains unclear and no drug has yet been proved to be disease-modifying. As the basis of learning and memory, the plasticity of synapse and dendritic spine has been impaired during AD progression. Previous studies have showed a protective effect of L-3-n-butylphthalide (L-NBP) on cognitive deficits in AD, we wonder whether this protective effect is associated with positive alterations on synapse and dendritic spines. In this study, we first of all confirmed the anti-dementia effect of L-NBP in 13-month-old APP/PS1 mice, and then investigated the alterations in synaptic and dendritic spine plasticity due to L-NBP treatment both in vivo and in vitro. We also conducted preliminary studies and found the possible mechanisms related to the inhibition of over-activated complement cascade and the remodeling of actin cytoskeleton. Besides, we also found extra benefits of L-NBP on presynaptic dystrophic neurites and attempted to give explanations from the view of autophagy regulation. Taken together, our study added some new evidence to the application of L-NBP in AD treatment and provided deeper insight into the relevant mechanisms for future study.

12.
Nat Commun ; 11(1): 4909, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999291

RESUMO

Effectively activating macrophages against cancer is promising but challenging. In particular, cancer cells express CD47, a 'don't eat me' signal that interacts with signal regulatory protein alpha (SIRPα) on macrophages to prevent phagocytosis. Also, cancer cells secrete stimulating factors, which polarize tumor-associated macrophages from an antitumor M1 phenotype to a tumorigenic M2 phenotype. Here, we report that hybrid cell membrane nanovesicles (known as hNVs) displaying SIRPα variants with significantly increased affinity to CD47 and containing M2-to-M1 repolarization signals can disable both mechanisms. The hNVs block CD47-SIRPα signaling axis while promoting M2-to-M1 repolarization within tumor microenvironment, significantly preventing both local recurrence and distant metastasis in malignant melanoma models. Furthermore, by loading a stimulator of interferon genes (STING) agonist, hNVs lead to potent tumor inhibition in a poorly immunogenic triple negative breast cancer model. hNVs are safe, stable, drug loadable, and suitable for genetic editing. These properties, combined with the capabilities inherited from source cells, make hNVs an attractive immunotherapy.


Assuntos
Micropartículas Derivadas de Células/imunologia , Imunoterapia/métodos , Macrófagos/imunologia , Melanoma/terapia , Recidiva Local de Neoplasia/prevenção & controle , Neoplasias de Mama Triplo Negativas/terapia , Animais , Antígeno CD47/metabolismo , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Melanoma/imunologia , Melanoma/secundário , Proteínas de Membrana/agonistas , Proteínas de Membrana/imunologia , Camundongos , Nanopartículas/administração & dosagem , Recidiva Local de Neoplasia/imunologia , Nucleotídeos Cíclicos/administração & dosagem , Receptores Imunológicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Neoplasias de Mama Triplo Negativas/imunologia , Evasão Tumoral/efeitos dos fármacos , Evasão Tumoral/imunologia , Microambiente Tumoral/imunologia
13.
Pediatr Pulmonol ; 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33104291

RESUMO

BACKGROUND: Occlusive granulation tissue formation, as one of the most common sequelae of chronic foreign body aspiration, can cause tracheobronchial obstruction and delayed fixed airway stenosis necessitating interventions. The aim of this study was to explore the clinical efficacy and safety of interventional therapy via flexible bronchoscopy for treatment of granulation tissue related airway obstruction secondary to foreign body aspiration in children. METHOD: Patients with long-term foreign body related granulation tissue were treated with flexible bronchoscopy therapeutic modalities, including forceps, cryotherapy, holmium laser, and balloon dilatation. Clinical efficacy was evaluated by clinical symptoms and endoscopic manifestations. RESULTS: A total of eight patients with granulation tissue hyperplasia caused by foreign body in bronchus, with a median age of 29.5 (range, 18-54) months, underwent interventional therapy between January 2016 and December 2019. Four patients received forceps and CO2 cryotherapy and one patient required forceps only. The remaining three patients received holmium laser combined with CO2 cryotherapy, and one of them required additional balloon dilatation. Four cases required a second cryotherapy procedure, and one case received three cryotherapy procedures for extensive granulation tissue. The treatment efficacy was 100% without complications. CONCLUSION: Interventional procedure via flexible bronchoscopy is a safe, reliable, and effective method in the management of tracheobronchial obstruction and stenosis caused by foreign body-related granulation tissue hyperplasia. It is worthy of clinical application.

14.
Oncol Rep ; 44(5): 2317-2318, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33000270

RESUMO

The authors of the above article drew to our attention that they had identified three instances of data overlapping between data panels, suggesting that data purportedly showing results obtained under different experimental conditions had been derived from the same original source. Comparing between the two figures, two pairs of panels in Fig. 4B (the Mimics control and blank experiments for the U87 and U251 cell lines) were shown to be overlapping, and a further pair of panels showed overlapping data in Fig. 6B (the data panels for the miR­375 mi + .pCDNA/RWDD3 and miR­375 mi + .pCDNA experiments for the U87 cell line). The authors were able to re­examine the original data files and retrieve the correct data panels. The errors in these figures arose through inadvertently assembling Figs. 4 and 6 incorrectly. The revised versions of Figs. 4 and 6, featuring the corrected data panels for the Mimics control and blank experiments for the U87 and U251 cell lines in Fig. 4B, and the correct data for the U87 cell line in Fig. 6B, are shown opposite and on the next page, respectively. Note that the corrections to the data shown in these Figures do not affect the overall conclusions reported in the paper. The authors are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish this Corrigendum, and apologize to the readership for any inconvenience caused. [the original article was published in Oncology Reports 39: 1825-1834, 2018; DOI: 10.3892/or.2018.6261].

15.
Front Immunol ; 11: 1934, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013847

RESUMO

Long non-coding RNA (lncRNA) is pivotal for multiple sclerosis (MS), but the potential mechanism of lncRNA PVT1 in MS animal model, experimental autoimmune encephalomyelitis (EAE) still remains unclear. In this study, macrophages were firstly isolated and induced to polarize into M2 macrophages. M2 macrophage-derived exosomes (M2-exos) were extracted and identified, and EAE mouse model was established and treated with M2-exos. The effect of M2-exos on EAE mice was evaluated by clinical scores. The proportion of Treg and Th17 cells in spinal cord cells and splenocytes, and levels of inflammatory factors were measured. The targeting relationships among PVT1, miR-21-5p, and SOCS5 were verified. The expression of JAKs/STAT3 pathway-related proteins was measured. After M2-exo treatment, the clinical score of EAE mice decreased, and demyelination and inflammatory infiltration improved; Th17 cells decreased, Treg cells increased, and the levels of inflammatory factors decreased significantly. SOCS5 and PVT1 were downregulated and miR-21-5p was upregulated in EAE mice. PVT1 could sponge miR-21-5p to regulate SOCS5. SOCS5 alleviated EAE symptoms by repressing the JAKs/STAT3 pathway. Together, M2-exos-carried lncRNA PVT1 sponged miR-21-5p to upregulate SOCS5 and inactivate the JAKs/STAT3 pathway, thus reducing inflammation and protecting EAE mice. This study may offer novel treatments for MS.

16.
Hortic Res ; 7: 165, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33082971

RESUMO

Cerasus serrulata is a flowering cherry germplasm resource for ornamental purposes. In this work, we present a de novo chromosome-scale genome assembly of C. serrulata by the use of Nanopore and Hi-C sequencing technologies. The assembled C. serrulata genome is 265.40 Mb across 304 contigs and 67 scaffolds, with a contig N50 of 1.56 Mb and a scaffold N50 of 31.12 Mb. It contains 29,094 coding genes, 27,611 (94.90%) of which are annotated in at least one functional database. Synteny analysis indicated that C. serrulata and C. avium have 333 syntenic blocks composed of 14,072 genes. Blocks on chromosome 01 of C. serrulata are distributed on all chromosomes of C. avium, implying that chromosome 01 is the most ancient or active of the chromosomes. The comparative genomic analysis confirmed that C. serrulata has 740 expanded gene families, 1031 contracted gene families, and 228 rapidly evolving gene families. By the use of 656 single-copy orthologs, a phylogenetic tree composed of 10 species was constructed. The present C. serrulata species diverged from Prunus yedoensis ~17.34 million years ago (Mya), while the divergence of C. serrulata and C. avium was estimated to have occurred ∼21.44 Mya. In addition, a total of 148 MADS-box family gene members were identified in C. serrulata, accompanying the loss of the AGL32 subfamily and the expansion of the SVP subfamily. The MYB and WRKY gene families comprising 372 and 66 genes could be divided into seven and eight subfamilies in C. serrulata, respectively, based on clustering analysis. Nine hundred forty-one plant disease-resistance genes (R-genes) were detected by searching C. serrulata within the PRGdb. This research provides high-quality genomic information about C. serrulata as well as insights into the evolutionary history of Cerasus species.

17.
BMC Cancer ; 20(1): 982, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046035

RESUMO

BACKGROUND: 5-10% of patients are diagnosed with metastatic breast cancer (MBC) at the initial diagnosis. This study aimed to develop a nomogram to predict the overall survival (OS) of these patients. METHODS: de novo MBC patients diagnosed in 2010-2016 were identified from the Surveillance, Epidemiology, and End Results (SEER) database. They were randomly divided into a training and a validation cohort with a ratio of 2:1. The best subsets of covariates were identified to develop a nomogram predicting OS based on the smallest Akaike Information Criterion (AIC) value in the multivariate Cox models. The discrimination and calibration of the nomogram were evaluated using the Concordance index, the area under the time-dependent receiver operating characteristic curve (AUC) and calibration curves. RESULTS: In this study, we included 7986 patients with de novo MBC. The median follow-up time was 36 months (range: 0-83 months). Five thousand three-hundred twenty four patients were allocated into the training cohort while 2662 were allocated into the validation cohort. In the training cohort, age at diagnosis, race, marital status, differentiation grade, subtype, T stage, bone metastasis, brain metastasis, liver metastasis, lung metastasis, surgery and chemotherapy were selected to create the nomogram estimating the 1-, 3- and 5- year OS based on the smallest AIC value in the multivariate Cox models. The nomogram achieved a Concordance index of 0.723 (95% CI, 0.713-0.733) in the training cohort and 0.719 (95% CI, 0.705-0.734) in the validation cohort. AUC values of the nomogram indicated good specificity and sensitivity in the training and validation cohort. Calibration curves showed a favorable consistency between the predicted and actual survival probabilities. CONCLUSION: The developed nomogram reliably predicted OS in patients with de novo MBC and presented a favorable discrimination ability. While further validation is needed, this may be a useful tool in clinical practice.

18.
J Clin Neurosci ; 79: 108-112, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33070876

RESUMO

PURPOSE: Differential diagnosis between neuromyelitis optica spectrum disorders (NMOSD) and multiple sclerosis (MS) at early stage remains challenging at present. Pruritus is reported as a common or specific feature in NMOSD with serum aquaporin-4 immunoglobulin G antibodies (AQP4-IgG). We aim to verify whether pruritus can help in distinguishing NMOSD from MS. METHODS: We retrospectively reviewed the medical records of consecutive cases of NMOSD and MS patients, demographic data, clinical features, whether or not had pruritus, serum AQP4-IgG status and magnetic resonance imaging (MRI) results. RESULTS: 21.0% (22/105) of NMOSD patients and 2.1% (2/96) of MS patients reported pruritus during disease course (p < 0.01). 20.5% (18/88) of AQP4-IgG positive and 23.5% (4/17) of AQP4-IgG negative NMOSD patients reported pruritus during disease course (p = 0.775). 12.4% (13/105) of NMOSD and 1.0% (1/96) of MS patients reported pruritus at the first attack episode of disease (p < 0.01). 20.0% (21/105) of NMOSD and 1.0% (1/96) of MS patients reported pruritus at the first and second attack episodes of disease (p < 0.01). CONCLUSION: Pruritus is a common and relatively specific feature in either AQP4-IgG positive or negative NMOSD. Pruritus occurs more frequently in NMOSD than MS, which may help in distinguishing NMOSD from MS, especially at early stage.

19.
Oncol Rep ; 44(6): 2792, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33125093

RESUMO

The authors of the above article drew to our attention that, in the above paper, they had identified three instances of data overlapping between data panels, suggesting that data purportedly showing results obtained under different experimental conditions had been derived from the same original source. Comparing among the data panels, two pairs of panels in Fig. 4B were shown to be overlapping, and a further pair of panels showed overlapping data in Fig. 6B. The authors were presented with an opportunity to correct their figures in a Corrigendum, although it has subsequently come to light that the replacement figures themselves featured problems with overlapping data. Given the errors that have been identified in the compilation of the figures in this article, the Editor of Oncology Reports has decided that this article should be retracted from the publication owing to a lack of overall confidence in the presented data. The authors all agree to the retraction of this article, and the Editor and the authors apologize for any inconvenience that might result from this retraction. [the original article was published in Oncology Reports 39: 1825-1834, 2018; DOI: 10.3892/or.2018.6261].

20.
Sci Rep ; 10(1): 17633, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33077860

RESUMO

The distribution, characteristics of extracellular polymeric substances (EPS) of Phanerochaete chrysosporium under Pb2+ stress and the influence on Pb removal were investigated. Polysaccharides was found to be the main composition in both soluble EPS (SEPS) and bounded EPS (BEPS). More polysaccharides and protein in BEPS were detected with the increased Pb2+ concentration. The ratio of Pb amount distributed in BEPS to the total Pb removed by the fungal biomass gradually decreased from 91.66 to 61.27% in group with 50 mg/L of initial Pb2+, but kept at about 35% or 25% in groups with higher Pb2+. It implies that BEPS played a certain role in the lead removal process, and the role of BEPS was relatively more important in the removal of lower concentration of Pb2+ and in the initial period of Pb removal. With FTIR analysis and Pb2+ adsorption experiment, more effective functional groups and better Pb2+ adsorption capacity was demonstrated in BEPS than in SEPS. SEM-EDS analysis demonstrated that part of Pb immobilized in BEPS was in the form of Pb precipitation. The increased molecular weight in SEPS and more polysaccharides in BEPS were probably beneficial for the adhesion of Pb precipitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA