Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Cybern ; 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32149664

RESUMO

Smartphones are changing humans' lifestyles. Mobile applications (apps) on smartphones serve as entries for users to access a wide range of services in our daily lives. The apps installed on one's smartphone convey lots of personal information, such as demographics, interests, and needs. This provides a new lens to understand smartphone users. However, it is difficult to compactly characterize a user with his/her installed app list. In this article, a user representation framework is proposed, where we model the underlying relations between apps and users with Boolean matrix factorization (BMF). It builds a compact user subspace by discovering basic components from installed app lists. Each basic component encapsulates a semantic interpretation of a series of special-purpose apps, which is a reflection of user needs and interests. Each user is represented by a linear combination of the semantic basic components. With this user representation framework, we use supervised and unsupervised learning methods to understand users, including mining user attributes, discovering user groups, and labeling semantic tags to users. Extensive experiments were conducted on three data subsets from a large-scale real-world dataset for evaluation, each consisting of installed app lists from over 10,000 users. The results demonstrated the effectiveness of our user representation framework.

2.
Adv Mater ; : e1906836, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32045051

RESUMO

Catastrophic battery failure due to internal short is extremely difficult to detect and mitigate. In order to enable the next-generation lithium-metal batteries, a "fail safe" mechanism for internal short is highly desirable. Here, a novel separator design and approach is introduced to mitigate the effects of an internal short circuit by limiting the self-discharge current to prevent cell temperature rise. A nano-composite Janus separator-with a fully electronically insulating side contacting the anode and a partially electronically conductive (PEC) coating with tunable conductivity contacting the cathode-is implemented to intercept dendrites, control internal short circuit resistance, and slowly drain cell capacity. Galvanostatic cycling experiments demonstrate Li-metal batteries with the Janus separator perform normally before shorting, which then results in a gradual increase of internal self-discharge over >25 cycles due to PEC-mitigated shorting. This is contrasted by a sudden voltage drop and complete failure seen with a single layer separator. Potentiostatic charging abuse tests of Li-metal pouch cells result in dendrites completely penetrating the single-layer separator causing high short circuit current and large cell temperature increase; conversely, negligible current and temperature rise occurs with the Janus separator where post mortem electron microscopy shows the PEC layer successfully intercepts dendrites.

3.
J Nanosci Nanotechnol ; 20(4): 2267-2276, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31492236

RESUMO

Two-dimensional (2D) BiOBr nanosheets (NSs) have attracted considerable interest as photocatalysts. The surface active sites of BiOBr NSs are crucial in determining the photocatalytic performance of these materials under visible light. The modification of the surface state of BiOBr NSs with multiple charged groups has been scarcely studied as a way to increase the number of surface active sites and the corresponding photocatalytic activity. Herein, vanadate-rich 2D BiOBr/Bi NSs were in-situ fabricated without adding strong reductants and subsequently used for visible-light-driven photocatalysis. Even under reductant-free condition, we were able to simultaneously deposit Bi0 and vanadate groups on the surface of pristine BiOBr NSs. The corresponding formation mechanism was also explored in a subsequent step. Compared to pristine BiOBr NSs and BiOBr/Bi NSs, the vanadate-rich BiOBr/Bi NSs prepared herein exhibited superior adsorption and enhanced photodegradation of Rhodamine B (RhB) under visible light illumination.

4.
Mol Cancer ; 18(1): 187, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31856843

RESUMO

BACKGROUND: The majority of breast cancer patients die of metastasis rather than primary tumors, whereas the molecular mechanisms orchestrating cancer metastasis remains poorly understood. Long noncoding RNAs (lncRNA) have been shown to regulate cancer occurrence and progression. However, the lncRNAs that drive metastasis in cancer patients and their underlying mechanisms are still largely unknown. METHODS: lncRNAs highly expressed in metastatic lymph nodes were identified by microarray. Survival analysis were made by Kaplan-Meier method. Cell proliferation, migration, and invasion assay was performed to confirm the phenotype of LINC02273. Tail vein model and mammary fat pad model were used for in vivo study. RNA pull-down and RIP assay were used to confirm the interaction of hnRNPL and LINC02273. Chromatin isolation by RNA purification followed by sequencing (ChIRP-seq), RNA-seq, ChIP-seq, and luciferase reporter assay reveal hnRNPL-LINC02273 regulates AGR2. Antisense oligonucleotides were used for in vivo treatment. RESULTS: We identified a novel long noncoding RNA LINC02273, whose expression was significantly elevated in metastatic lesions compared to the primary tumors, by genetic screen of matched tumor samples. Increased LINC02273 promoted breast cancer metastasis in vitro and in vivo. We further showed that LINC02273 was stabilized by hnRNPL, a protein increased in metastatic lesions, in breast cancer cells. Mechanistically, hnRNPL-LINC02273 formed a complex which activated AGR2 transcription and promoted cancer metastasis. The recruitment of hnRNPL-LINC02273 complex to AGR2 promoter region epigenetically upregulated AGR2 by augmenting local H3K4me3 and H3K27ac levels. Combination of AGR2 and LINC02273 was an independent prognostic factor for predicting breast cancer patient survival. Moreover, our data revealed that LINC02273-targeting antisense oligonucleotides (ASO) substantially inhibited breast cancer metastasis in vivo. CONCLUSIONS: Our findings uncover a key role of LINC02273-hnRNPL-AGR2 axis in breast cancer metastasis and provide potential novel therapeutic targets for metastatic breast cancer intervention.

6.
Adv Exp Med Biol ; 1101: 123-147, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31729674

RESUMO

Brain-machine interface (BMI) provides a bidirectional pathway between the brain and external facilities. The machine-to-brain pathway makes it possible to send artificial information back into the biological brain, interfering neural activities and generating sensations. The idea of the BMI-assisted bio-robotic animal system is accomplished by stimulations on specific sites of the nervous system. With the technology of BMI, animals' locomotion behavior can be precisely controlled as robots, which made the animal turning into bio-robot. In this chapter, we reviewed our lab works focused on rat-robot navigation. The principles of rat-robot system have been briefly described first, including the target brain sites chosen for locomotion control and the design of remote control system. Some methodological advances made by optogenetic technologies for better modulation control have then been introduced. Besides, we also introduced our implementation of "mind-controlled" rat navigation system. Moreover, we have presented our efforts made on combining biological intelligence with artificial intelligence, with developments of automatic control and training system assisted with images or voices inputs. We concluded this chapter by discussing further developments to acquire environmental information as well as promising applications with write-in BMIs.


Assuntos
Controle Comportamental , Interfaces Cérebro-Computador , Robótica , Animais , Encéfalo/fisiologia , Locomoção , Ratos
8.
Theranostics ; 9(23): 6840-6855, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31660072

RESUMO

Background: Chemotherapy resistance is a major problem in breast cancer treatment and a leading cause of mortality in breast cancer patients. Biomarkers for chemotherapy resistance is under investigation. Methods: Paclitaxel resistant cells were established and subjected to RNA sequencing. Analysis combined with two additional RNA-seq datasets was conducted. CapG expression in patients with adjuvant chemotherapy was studied in breast cancer resection specimens using IHC and related to pathological response and disease-free survival. Paclitaxel resistance was assessed by half-maximal inhibitory concentrations (IC50) and a mouse xenograft model. Results: Increased expression of actin-binding protein CapG strongly correlated with the resistance to paclitaxel chemotherapy and decreased probability to achieve pathological complete response in breast cancer patients. Overexpressing CapG significantly enhanced paclitaxel resistance in breast cancer cells and xenograft tumors. High CapG level also significantly correlated with shorter relapse-free survival as well as hyper-activation of PI3K/Akt signaling in breast cancer patients. Mechanistically, CapG enhanced PIK3R1 expression which led to increased PI3K/Akt activation. Unexpectedly, CapG was found to bind to the variant-specific promoter of PIK3R1/P50 and directly enhance its transcription. We also identified p300/CBP as a transcriptional coregulator of CapG, which is recruited to PIK3R1 promoter through interaction with CapG, thereby increasing PIK3R1/P50 transcription by enhancing histone H3K27 acetylation. Consistently, inhibiting p300/CBP substantially decreased CapG-dependent upregulation of PIK3R1/P50 and subsequent PI3K/Akt activation, resulting in increased sensitivity to paclitaxel treatment in breast cancer cells. Conclusion: High CapG levels may predict poor paclitaxel response in breast cancer patients. Targeting CapG-mediated hyperactivation of PI3K/Akt pathway may mitigate resistance to chemotherapy in breast cancer.

9.
Biomater Sci ; 7(12): 5097-5111, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31524205

RESUMO

In order to improve the stability of AgNPs and decrease the dosage of Daptomycin for killing bacteria, a reduced graphene oxide (rGO) was used for simultaneously anchoring AgNPs and Daptomycin to prepare rGO@Ag@Dap nanocomposites. In vitro experiments showed that the nanocomposites can efficiently kill four kinds of pathogenic bacteria, especially two kinds of Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) through damaging cell integrity, producing ROS, decreasing ATP and GSH and disrupting bacterial metabolism. Against Gram-positive bacteria, the rGO@Ag@Dap nanocomposites showed a cooperative antibacterial effect. Moreover, in vivo experiments showed that rGO@Ag@Dap can improve the healing of wounds infected with bacteria by efficiently killing the bacteria on the wounds and further promoting skin regeneration and dense collagen deposition. In summary, the above results suggest that the cooperative function of AgNPs with Daptomycin can significantly improve antibacterial efficiency against infectious diseases caused by bacteria, especially for therapies made ineffective due to the drug resistance of pathogenic bacteria.

10.
IEEE Trans Neural Syst Rehabil Eng ; 27(10): 1942-1951, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31484126

RESUMO

OBJECTIVE: Brain network connectivity analysis plays an important role in computer-aided automatic localization of seizure onset zone (SOZ) from Intracranial Electroencephalography (iEEG). However, how to accurately compute brain network dynamics is still not well addressed. This work aims to develop an effective measure to find out the dynamics for SOZ localization. METHODS: Given multiple-channel iEEG signals, the ictal process involves continuous changes of information propagation. In each time slot, the connectivity relationship between channels can be represented as a matrix. Since the matrices from different time slots do not lie on vector spaces, the similarity between them cannot be computed directly. In this paper, we regard the matrices as points on a Riemannian manifold, so that the similarity can be measured by the geodesic distance on the manifold. It addresses the information-losing problem in existing methods using a vector to approximate a matrix. With the Riemannian method, the brain network dynamics are figured out by clustering methods. A temporal segmentation process is applied to refine the segments for SOZ localization. RESULTS: Our method is evaluated on six epilepsy patients, and the SOZ localization performance is evaluated by the area under the curve (AUC) score. Overall, our method obtains an average AUC score of 0.875, which outperforms the existing approaches. CONCLUSION: Our method preserves more information in measuring the relationship between brain connectivity descriptors, thus is more robust for SOZ localization. SIGNIFICANCE: Our method has great potentials for clinical epilepsy treatments.

11.
Sci Rep ; 9(1): 1321, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718518

RESUMO

Brain-machine interfaces (BMIs) provide a promising information channel between the biological brain and external devices and are applied in building brain-to-device control. Prior studies have explored the feasibility of establishing a brain-brain interface (BBI) across various brains via the combination of BMIs. However, using BBI to realize the efficient multidegree control of a living creature, such as a rat, to complete a navigation task in a complex environment has yet to be shown. In this study, we developed a BBI from the human brain to a rat implanted with microelectrodes (i.e., rat cyborg), which integrated electroencephalogram-based motor imagery and brain stimulation to realize human mind control of the rat's continuous locomotion. Control instructions were transferred from continuous motor imagery decoding results with the proposed control models and were wirelessly sent to the rat cyborg through brain micro-electrical stimulation. The results showed that rat cyborgs could be smoothly and successfully navigated by the human mind to complete a navigation task in a complex maze. Our experiments indicated that the cooperation through transmitting multidimensional information between two brains by computer-assisted BBI is promising.

12.
Cancer Res ; 79(11): 2909-2922, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30737234

RESUMO

Solar ultraviolet radiation (UVR) suppresses skin immunity, which facilitates initiation of skin lesions and establishment of tumors by promoting immune evasion. It is unclear whether immune checkpoints are involved in the modulation of skin immunity by UVR. Here, we report that UVR exposure significantly increased expression of immune checkpoint molecule PD-L1 in melanoma cells. The damage-associated molecular patterns molecule HMGB1 was secreted by melanocytes and keratinocytes upon UVR, which subsequently activated the receptor for advanced glycation endproducts (RAGE) receptor to promote NF-κB- and IRF3-dependent transcription of PD-L1 in melanocytes. UVR exposure significantly reduced the susceptibility of melanoma cells to CD8+ T-cell-dependent cytotoxicity, which was mitigated by inhibiting the HMGB1/TBK1/IRF3/NF-κB cascade or by blocking the PD-1/PD-L1 checkpoint. Taken together, our findings demonstrate that UVR-induced upregulation of PD-L1 contributes to immune suppression in the skin microenvironment, which may promote immune evasion of oncogenic cells and drive melanoma initiation and progression. SIGNIFICANCE: These findings identify PD-L1 as a critical component of UV-induced immune suppression in the skin, which facilitates immunoevasion of oncogenic melanocytes and development of melanoma.See related commentary by Sahu, p. 2805.


Assuntos
Proteína HMGB1 , Raios Ultravioleta , Antígeno B7-H1/genética , NF-kappa B , Receptor para Produtos Finais de Glicação Avançada , Regulação para Cima
13.
Curr Med Chem ; 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30714518

RESUMO

BACKGROUND: Gastric cancer is a major malignancy that has high incidence rates worldwide. Approximately 30% of patients with gastric cancer have progressed into advanced stages at the time of diagnosis. Chemotherapy is the standard-of-care for most advanced gastric cancer and elicits variable responses among patients. Personalized chemotherapy based on genetic information of individual patients with gastric cancer has gained increasing attention among oncologists for guiding chemotherapeutic regimens. METHOD: This review summarizes recent progress of individualized chemotherapy in gastric cancer guided by phamacogenomics. Variable medical research search engines, such as PubMed, Google Scholar, SpringerLink and ScienceDirect, were used to retrieve related literature. Only peer reviewed journal articles were selected for further analyses. RESULTS AND CONCLUSION: The efficiency of chemotherapy in patients with gastric cancer is not only determined by chemotherapeutic drugs but is also directly and indirectly influenced by functionally correlative genes. Individual gene alteration or polymorphism remarkably affects patients' responses to particular chemotherapy. Most studies have focused on the influence of single-gene alteration on a selected drug, and only few works explored the interaction between therapeutics and a panel of genes. Individualized chemotherapy regimens guided by genetic survey of multiple-gene panel are expected to remarkably improve the treatment efficacy in patients with advanced gastric cancer and may become the new standard for personalizing chemotherapy for gastric cancer in the near future.

14.
Nanoscale Res Lett ; 14(1): 35, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30684022

RESUMO

For an economical use of solar energy, photocatalysts that are sufficiently efficient, stable, and capable of harvesting light are required. Composite heterostructures composed of noble metals and semiconductors exhibited the excellent in catalytic application. Here, 1D Ag/Au/AgCl hollow heterostructures are synthesized by galvanic replacement reaction (GRR) from Ag nanowires (NWs). The catalytic properties of these as-obtained Ag/Au/AgCl hollow heterostructures with different ratios are investigated by reducing 4-nitrophenol (Nip) into 4-aminophenol (Amp) in the presence of NaBH4, and the influence of AgCl semiconductor to the catalytic performances of Ag/Au bimetals is also investigated. These hollow heterostructures show the higher catalytic properties than pure Ag NWs, and the AgCl not only act as supporting materials, but the excess AgCl is also the obstacle for contact of Ag/Au bimetals with reactive species. Moreover, the photocatalytic performances of these hollow heterostructures are carried out by degradation of acid orange 7 (AO7) under UV and visible light. These Ag/Au/AgCl hollow heterostructures present the higher photocatalytic activities than pure Ag NWs and commercial TiO2 (P25), and the Ag/Au bimetals enhance the photocatalytic activity of AgCl semiconductor via the localized surface plasmon resonance (LSPR) and plasmon resonance energy transfer (PRET) mechanisms. The as-synthesized 1D Ag/Au/AgCl hollow heterostructures with multifunction could apply in practical environmental remedy by catalytic manners.

15.
Breast Cancer Res ; 20(1): 117, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30285805

RESUMO

BACKGROUND: Metastasis is responsible for a significant number of breast cancer-related deaths. Hypoxia, a primary driving force of cancer metastasis, induces the expression of BHLHE40, a transcription regulator. This study aimed to elucidate the function of BHLHE40 in the metastatic process of breast cancer cells. METHODS: To define the role of BHLHE40 in breast cancer, BHLHE40 expression was knocked down by a lentiviral construct expressing a short hairpin RNA against BHLHE40 or knocked out by the CRISPR/Cas9 editing system. Orthotopic xenograft and experimental metastasis (tail vein injection) mouse models were used to analyze the role of BHLHE40 in lung metastasis of breast cancer. Global gene expression analysis and public database mining were performed to identify signaling pathways regulated by BHLHE40 in breast cancer. The action mechanism of BHLHE40 was examined by chromatin immunoprecipitation (ChIP), co-immunoprecipitation (CoIP), exosome analysis, and cell-based assays for metastatic potential. RESULTS: BHLHE40 knockdown significantly reduced primary tumor growth and lung metastasis in orthotopic xenograft and experimental metastasis models of breast cancer. Gene expression analysis implicated a role of BHLHE40 in transcriptional activation of heparin-binding epidermal growth factor (HBEGF). ChIP and CoIP assays revealed that BHLHE40 induces HBEGF transcription by blocking DNA binding of histone deacetylases (HDAC)1 and HDAC2. Cell-based assays showed that HBEGF is secreted through exosomes and acts to promote cell survival and migration. Public databases provided evidence linking high expression of BHLHE40 and HBEGF to poor prognosis of triple-negative breast cancer. CONCLUSION: This study reveals a novel role of BHLHE40 in promoting tumor cell survival and migration by regulating HBEGF secretion.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Proteínas de Homeodomínio/genética , Neoplasias Pulmonares/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Feminino , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Células MCF-7 , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Fenótipo , Interferência de RNA , Terapêutica com RNAi/métodos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
16.
IEEE Trans Biomed Eng ; 65(9): 1953-1963, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29993397

RESUMO

OBJECTIVE: Computer-aided estimation of brain connectivity aims to reveal information propagation in brain automatically, which has great potential in clinical applications, e.g., epilepsy foci diagnosis. Granger causality is an effective tool for directional connection analysis in multivariate time series. However, most existing methods based on Granger causality assume fixed time lags in information transmission, while the propagation delay between brain signals is usually changing constantly. METHODS: We propose a Granger causality estimator based on the recurrent neural network, called RNN-GC, to deal with the multivariate brain connectivity detection problem. Our model takes input of time-series signals with arbitrary length of transmission time lags and learns the information flow from the data using the gated RNN model, i.e., long short-term memory (LSTM). The LSTM model can sequentially update the gates in memory cells to determine how many preceding points should be considered for prediction. Therefore, the LSTM-based RNN-GC estimator works well on varying-length time lags and shows effectiveness even on very long transmission delays. RESULTS: Experiments are carried out in comparison with other methods using both simulation data and epileptic electroencephalography signals. The RNN-GC estimator achieves superior performance in brain connectivity estimation and shows robustness in modeling multivariate connections with varying-length time lags. CONCLUSION: The RNN-GC method is capable of modeling nonlinear and varying-length lagged information transmission and effective in directional brain connectivity estimation. SIGNIFICANCE: The proposed method is promising to serve as a robust brain connection analysis tool in clinical applications.


Assuntos
Encéfalo/fisiologia , Rede Nervosa/fisiologia , Processamento de Sinais Assistido por Computador , Algoritmos , Eletroencefalografia/métodos , Epilepsia/fisiopatologia , Humanos , Modelos Estatísticos
17.
Cardiovasc Ther ; 36(5): e12441, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29869835

RESUMO

BACKGROUND: The prognosis of patients with coronary artery disease (CAD) at hospital discharge was constantly varying, and postdischarge risk of ischemic events remain a concern. However, risk prediction tools to identify risk of ischemia for these patients has not yet been reported. AIMS: We sought to develop a scoring system for predicting long-term ischemic events in CAD patients receiving antiplatelet therapy that would be beneficial in appropriate personalized decision-making for these patients. METHODS: In this prospective Optimal antiPlatelet Therapy for Chinese patients with Coronary Artery Disease (OPT-CAD, NCT01735305) registry, a total of 14 032 patients with CAD receiving at least one kind of antiplatelet agent were enrolled from 107 centers across China, from January 2012 to March 2014. The risk scoring system was developed in a derivation cohort (enrolled initially 10 000 patients in the database) using a logistic regression model and was subsequently tested in a validation cohort (the last 4032 patients). Points in risk score were assigned based on the multivariable odds ratio of each factor. Ischemic events were defined as the composite of cardiac death, myocardial infarction or stroke. RESULTS: Ischemic events occurred in 342 (3.4%) patients in the derivation cohort and 160 (4.0%) patients in the validation cohort during 1-year follow-up. The OPT-CAD score, ranging from 0-257 points, consist of 10 independent risk factors, including age (0-71 points), heart rates (0-36 points), hypertension (0-20 points), prior myocardial infarction (16 points), prior stroke (16 points), renal insufficient (21 points), anemia (19 points), low ejection fraction (22 points), positive cardiac troponin (23 points) and ST-segment deviation (13 points). In predicting 1-year ischemic events, the area under receiver operating characteristics curve were 0.73 and 0.72 in derivation and validation cohort, respectively. The incidences of ischemic events in low- (0-90 points), medium- (91-150 points) and high-risk (≥151 points) patients were 1.6%, 5.5%, and 15.0%, respectively. Compared to GRACE score, OPT-CAD score had a better discrimination in predicting ischemic events and all-cause mortality (ischemic events: 0.72 vs 0.65, all-cause mortality: 0.79 vs 0.72, both P < .001). CONCLUSIONS: Among CAD patients, a risk score based on 10 baseline clinical variables performed better than the GRACE risk score in predicting long-term ischemic events. However, further research is needed to assess the value of the OPT-CAD score in guiding the management of antiplatelet therapy for patients with CAD.


Assuntos
Doença da Artéria Coronariana/terapia , Técnicas de Apoio para a Decisão , Inibidores da Agregação de Plaquetas/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , China , Tomada de Decisão Clínica , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/mortalidade , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inibidores da Agregação de Plaquetas/efeitos adversos , Valor Preditivo dos Testes , Estudos Prospectivos , Sistema de Registros , Reprodutibilidade dos Testes , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
18.
Dalton Trans ; 47(24): 8110-8120, 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29878017

RESUMO

The construction of defect states is an effective method for regulating the energy band structure of photocatalytic semiconductor materials. Establishing defect states effectively is a particularly significant strategy to improve the photoelectric conversion efficiency. Herein, we report a peculiar method to manufacture defect states in indium-doped Bi2MoO6 by changing the valence state of the doped indium element. By increasing the amount of doped indium, different doping forms and valence states are produced, which causes distortion of crystal structure, generation of oxygen vacancies and variation in the elemental valence state. Specifically, when Bi is substituted with In(3-x)+, the acceptor energy level becomes higher than the valence band due to the p-type-like doping, which widens the width of the valence band and drives the up-shift of the valence band edges, resulting in narrowed bandgap and improved photoresponse ability. In addition, the photoelectrochemical performance tests using the In-doped Bi2MoO6 show that low-valent indium doping effectively improves the carrier separation efficiency, reduces the transmission impedance, and greatly improves the photocatalytic reduction performance of Cr(vi). This study provides a new insight to the design of efficient photocatalysts for the green and sustainable treatment of Cr(vi) pollution.

19.
BMC Microbiol ; 18(1): 51, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29866052

RESUMO

BACKGROUND: Exploiting soil microorganisms in the rhizosphere of plants can significantly improve agricultural productivity; however, the mechanism by which microorganisms specifically affect agricultural productivity is poorly understood. To clarify this uncertainly, the rhizospheric microbial communities of super rice plants at various growth stages were analysed using 16S rRNA high-throughput gene sequencing; microbial communities were then related to soil properties and rice productivity. RESULTS: The rhizospheric bacterial communities were characterized by the phyla Proteobacteria, Acidobacteria, Chloroflexi, and Verrucomicrobia during all stages of rice growth. Rice production differed by approximately 30% between high- and low-yield sites that had uniform fertilization regimes and climatic conditions, suggesting the key role of microbial communities. Mantel tests showed a strong correlation between soil conditions and rhizospheric bacterial communities, and microorganisms had different effects on crop yield. Among the four growing periods, the rhizospheric bacterial communities present during the heading stage showed a more significant correlation (p <  0.05) with crop yield, suggesting their potential in regulating crop production. The biological properties (i.e., microbes) reflected the situation of agricultural land better than the physicochemical characterics (i.e., nutrient elements), which provides theoretical support for agronomic production. Molecular ecological network (MEN) analysis suggested that differences in productivity were caused by the interaction between the soil characteristics and the bacterial communities. CONCLUSIONS: During the heading stage of rice cropping, the rhizospheric microbial community is vital for the resulting rice yield. According to network analysis, the cooperative relationship (i.e., positive interaction) between between microbes may contribute significantly to yield, and the biological properties (i.e., microbes) better reflected the real conditions of agricultural land than did the physicochemical characteristics (i.e., nutrient elements).


Assuntos
Bactérias/classificação , Oryza/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Bactérias/genética , Biodiversidade , Produtos Agrícolas/crescimento & desenvolvimento , DNA Bacteriano/genética , DNA Ribossômico/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Filogenia , Rizosfera , Microbiologia do Solo
20.
Theranostics ; 8(9): 2549-2564, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721098

RESUMO

Macrophage-capping protein (CAPG) has been shown to promote cancer cell metastasis, although the mechanism remains poorly understood. Methods: Breast cancer (BC) tissue microarray was used to test the role of CAPG in the prognosis of BC patients. Xenograft mice model was used to validate the metastasis promotion role of CAPG in vivo. Gene expression array, chromatin immunoprecipitation and luciferase report assay were performed to search for the target genes of CAPG. Protein immunoprecipitation, MS/MS analysis, tissue microarray and histone methyltransferase assay were used to explore the mechanism of CAPG regulating stanniocalcin 1 (STC-1) transcription. Results: We demonstrate a novel mechanism by which CAPG enhances BC metastasis via promoting the transcription of the pro-metastatic gene STC-1, contributing to increased metastasis in BC. Mechanistically, CAPG competes with the transcriptional repressor arginine methyltransferase 5 (PRMT5) for binding to the STC-1 promoter, leading to reduced histone H4R3 methylation and enhanced STC-1 transcription. Our study also indicates that both CAPG and PRMT5 are independent prognostic factors for BC patient survival. High CAPG level is associated with poor survival, while high PRMT5 expression favors a better prognosis in BC patients. Conclusion: Our findings identify a novel role of CAPG in the promotion of BC metastasis by epigenetically enhancing STC-1 transcription.


Assuntos
Neoplasias da Mama/genética , Glicoproteínas/genética , Proteínas dos Microfilamentos/genética , Proteínas Nucleares/genética , Proteína-Arginina N-Metiltransferases/genética , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Pré-Escolar , Imunoprecipitação da Cromatina/métodos , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Xenoenxertos , Humanos , Células MCF-7 , Metilação , Camundongos , Camundongos Endogâmicos NOD , Prognóstico , Regiões Promotoras Genéticas/genética , Transcrição Genética/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA