Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Filtros adicionais











País/Região como assunto
Intervalo de ano
1.
J Biol Chem ; 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30425099

RESUMO

LATERAL ORGAN BOUNDARIES DOMAIN (LBD) proteins, a family of plant-specific transcription factors harboring a conserved LOB domain, are regulators of plant organ development. Recent studies have unraveled additional pivotal roles of the LBD protein family beyond defining lateral organ boundaries, such as pollen development and nitrogen metabolism. The structural basis for the molecular network of LBD-dependent processes remains to be deciphered. Here, we solved the first structure of the homodimeric LOB domain of Ramosa2 from wheat (TtRa2LD) to 1.9 Å resolution. Our crystal structure reveals structural features shared with other zinc-finger transcriptional factors, as well as some features unique to LBD proteins. Formation of the TtRa2LD homodimer relied on hydrophobic interactions of its coiled-coil motifs. Several specific motifs/domains of the LBD protein were also involved in maintaining its overall conformation. The intricate assembly within and between the monomers determined the precise spatial configuration of the two zinc fingers that recognize palindromic DNA sequences. Biochemical, molecular modeling, and small-angle X-ray scattering (SAXS) experiments indicated that dimerization is important for cooperative DNA binding and discrimination of palindromic DNA through a molecular calipers mechanism. Along with previously published data, this study enables us to establish an atomic-scale mechanistic model for LBD proteins as transcriptional regulators in plants.

2.
J Biol Chem ; 293(48): 18504-18513, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30305390

RESUMO

G-quadruplexes (G4s) are four-stranded DNA structures formed by Hoogsteen base pairing between stacked sets of four guanines. Pif1 helicase plays critical roles in suppressing genomic instability in the yeast Saccharomyces cerevisiae by resolving G4s. However, the structural properties of G4s in S. cerevisiae and the substrate preference of Pif1 for different G4s remain unknown. Here, using CD spectroscopy and 83 G4 motifs from S. cerevisiae ranging in length from 30 to 60 nucleotides, we first show that G4 structures can be formed with a broad range of loop sizes in vitro and that a parallel conformation is favored. Using single-molecule FRET analysis, we then systematically addressed Pif1-mediated unwinding of various G4s and found that Pif1 is sensitive to G4 stability. Moreover, Pif1 preferentially unfolded antiparallel G4s rather than parallel G4s having similar stability. Furthermore, our results indicate that most G4 structures in S. cerevisiae sequences have long loops and can be efficiently unfolded by Pif1 because of their low stability. However, we also found that G4 structures with short loops can be barely unfolded. This study highlights the formidable capability of Pif1 to resolve the majority of G4s in S. cerevisiae sequences, narrows the fractions of G4s that may be challenging for genomic stability, and provides a framework for understanding the influence of different G4s on genomic stability via their processing by Pif1.

3.
J Phys Chem B ; 122(41): 9499-9506, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30269502

RESUMO

The G-triplex is a kind of DNA structure formed by G-rich sequences. Previous studies have shown that it is an intermediate for the folding of G-quadruplex and has an antiparallel structure. The folding dynamics of this G-triplex structure, however, have not been well studied until now. In addition, whether a parallel G-triplex structure exists, remains unknown. In this study, by using single-molecule fluorescence resonance energy transfer and circular dichroism spectroscopy methods, we have studied the folding dynamics of the G-triplex and revealed at the single-molecule level, for the first time, that G-triplexes have both parallel and antiparallel structures. Moreover, we have investigated the effects of proximal DNA on G-triplex folding. We have found that both single-stranded TTA and double-stranded DNA at either end of a G-triplex sequence can reduce its folding speed. More interestingly, when located at the 5' end of a G-triplex sequence, the proximal DNA will favor the folding of parallel over antiparallel G-triplex structures. As G-triplex is an intermediate for G-quadruplex folding, the present results may also shed new light on the folding properties of G-quadruplex structures, in terms of dynamics, stability, and the effects of proximal DNA.

4.
Biochem Biophys Res Commun ; 504(1): 334-339, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30190128

RESUMO

RNA helicases are almost ubiquitous important enzymes that take part in multiple aspects of RNA metabolism. Prokaryotes encode fewer RNA helicases than eukaryotes, suggesting that individual prokaryotic RNA helicases may take on multiple roles. The specific functions and molecular mechanisms of bacterial DEAH/RHA helicases are poorly understood, and no structures are available of these bacterial enzymes. Here, we report the first crystal structure of the DEAH/RHA helicase HrpB of Escherichia coli in a complex with ADP•AlF4. It showed an atypical globular structure, consisting of two RecA domains, an HA2 domain and an OB domain, similar to eukaryotic DEAH/RHA helicases. Notably, it showed a unique C-terminal extension that has never been reported before. Activity assays indicated that EcHrpB binds RNA but not DNA, and does not exhibit unwinding activity in vitro. Thus, within cells, the EcHrpB may function in helicase activity-independent RNA metabolic processes.

5.
Data Brief ; 20: 805-811, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30211279

RESUMO

This data article contains descriptive and experimental data on the construction, expression, and simple characterization of AG11-843 and AG11-1581. AG1 is an important member of the DUF1220 protein family. It׳s hard to get the recombinant protein because of its DNA sequence. The DNA sequence were optimized by proper design, cloned by overlap PCR and constructed into expression vector. AG11-843 and AG11-1581.were over expressed in Escherichia coli, purified and analyzed by dynamic light scattering and gel filtration analysis. An effective technique is provided to construct and express proteins with complicated sequences.

6.
Protein Expr Purif ; 152: 71-76, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29870801

RESUMO

AG1, a member of the DUF1220 protein family, exhibits the most extreme human lineage-specific copy number expansion of any protein-coding sequence in the genome. These variations in copy number have been linked to both brain evolution among primates and brain size in humans. Unfortunately, our current understanding of the structure and function of these proteins is limited because current cloning and expression techniques fail to consistently produce recombinant protein for in vitro studies. The present work describes a method for amino acid and DNA sequence optimization and synthesis, recombinant protein expression and analysis of two AG1 fragments, AG11-843 and AG11-1581. It was first necessary to modify the nucleotide sequence, while holding the GC content at 52.9%. The genes were then sectionally synthesized by overlap PCR. The resulting segments were cloned into the pET-15 b-sumo expression vector and subsequently transformed into BL21 (DE3) cells. After inducing their expression, the AG11-843 and AG11-1581 proteins were isolated and purified. Furthermore, using dynamic light scattering and gel filtration analysis, AG11-843 and AG11-1581 were shown to be present in tetrameric and dimeric forms in solution. To our knowledge, this is the first study to synthesize and express fragments of the DUF1220 protein family for in vitro analysis. Taken together, the proven utility and versatility of this method indicate that it can be used as an effective technique to construct and express other proteins with complicated sequences, thus providing the means to study their function and structure in vitro.

7.
J Phys Chem B ; 122(22): 5790-5796, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29733603

RESUMO

Helicases harness the energy of nucleotide triphosphate hydrolysis to unwind double-stranded DNA (dsDNA) in discrete steps. In spite of intensive studies, the mechanism of stepping is still poorly understood. Here, we applied single-molecule fluorescent resonant energy transfer to characterize the stepping of two nonring helicases, Escherichia coli RecQ ( E. coli RecQ) and Saccharomyces cerevisiae Pif1 (ScPif1). Our data showed that when forked dsDNA with free overhangs are used as substrates, both E. coli RecQ and ScPif1 unwind the dsDNA in nonuniform steps that distribute over broad ranges. When tension is exerted on the overhangs, the overall profile of the step-size distribution of ScPif1 is narrowed, whereas that of E. coli RecQ remains unchanged. Moreover, the measured step sizes of the both helicases concentrate on integral multiples of a half base pair. We propose a universal stepping mechanism, in which a helicase breaks one base pair at a time and sequesters the nascent nucleotides and then releases them after a random number of base-pair breaking events. The mechanism can interpret the observed unwinding patterns quantitatively and provides a general view of the helicase activity.

8.
Structure ; 26(3): 403-415.e4, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29429875

RESUMO

Helicase DHX36 plays essential roles in cell development and differentiation at least partially by resolving G-quadruplex (G4) structures. Here we report crystal structures of the Drosophila homolog of DHX36 (DmDHX36) in complex with RNA and a series of DNAs. By combining structural, small-angle X-ray scattering, molecular dynamics simulation, and single-molecule fluorescence studies, we revealed that positively charged amino acids in RecA2 and OB-like domains constitute an elaborate structural pocket at the nucleic acid entrance, in which negatively charged G4 DNA is tightly bound and partially destabilized. The G4 DNA is then completely unfolded through the 3'-5' translocation activity of the helicase. Furthermore, crystal structures and DNA binding assays show that G-rich DNA is preferentially recognized and in the presence of ATP, specifically bound by DmDHX36, which may cooperatively enhance the G-rich DNA translocation and G4 unfolding. On the basis of these results, a conceptual G4 DNA-resolving mechanism is proposed.

9.
Nucleic Acids Res ; 46(3): 1486-1500, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29202194

RESUMO

The Saccharomyces cerevisiae Pif1 protein (ScPif1p) is the prototypical member of the Pif1 family of DNA helicases. ScPif1p is involved in the maintenance of mitochondrial, ribosomal and telomeric DNA and suppresses genome instability at G-quadruplex motifs. Here, we report the crystal structures of a truncated ScPif1p (ScPif1p237-780) in complex with different ssDNAs. Our results have revealed that a yeast-specific insertion domain protruding from the 2B domain folds as a bundle bearing an α-helix, α16. The α16 helix regulates the helicase activities of ScPif1p through interactions with the previously identified loop3. Furthermore, a biologically relevant dimeric structure has been identified, which can be further specifically stabilized by G-quadruplex DNA. Basing on structural analyses and mutational studies with DNA binding and unwinding assays, a potential G-quadruplex DNA binding site in ScPif1p monomers is suggested. Our results also show that ScPif1p uses the Q-motif to preferentially hydrolyze ATP, and a G-rich tract is preferentially recognized by more residues, consistent with previous biochemical observations. These findings provide a structural and mechanistic basis for understanding the multifunctional ScPif1p.

10.
FEBS J ; 284(23): 4051-4065, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28986969

RESUMO

Non-canonical four-stranded G-quadruplex (G4) DNA structures can form in G-rich sequences that are widely distributed throughout the genome. The presence of G4 structures can impair DNA replication by hindering the progress of replicative polymerases (Pols), and failure to resolve these structures can lead to genetic instability. In the present study, we combined different approaches to address the question of whether and how Escherichia coli Pol I resolves G4 obstacles during DNA replication and/or repair. We found that E. coli Pol I-catalyzed DNA synthesis could be arrested by G4 structures at low protein concentrations and the degree of inhibition was strongly dependent on the stability of the G4 structures. Interestingly, at high protein concentrations, E. coli Pol I was able to overcome some kinds of G4 obstacles without the involvement of other molecules and could achieve complete replication of G4 DNA. Mechanistic studies suggested that multiple Pol I proteins might be implicated in G4 unfolding, and the disruption of G4 structures requires energy derived from dNTP hydrolysis. The present work not only reveals an unrealized function of E. coli Pol I, but also presents a possible mechanism by which G4 structures can be resolved during DNA replication and/or repair in E. coli.


Assuntos
DNA Polimerase I/metabolismo , Replicação do DNA , Proteínas de Escherichia coli/metabolismo , Quadruplex G , Sequência de Bases , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Modelos Genéticos , Modelos Moleculares , Conformação de Ácido Nucleico
11.
Nucleic Acids Res ; 45(19): 11401-11412, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28977514

RESUMO

G-quadruplex (G4) can be formed by G-rich DNA sequences that are widely distributed throughout the human genome. Although G-triplex and G-hairpin have been proposed as G4 folding intermediates, their formation still requires further investigation by experiments. Here, we employed single-molecule FRET to characterize the folding dynamics of G4 from human telomeric sequence. First, we observed four states during G4 folding initially assigned to be anti-parallel G4, G-triplex, G-hairpin and unfolded ssDNA. Then we constructed putative intra-strand G-triplex, G-hairpin structures and confirmed their existences in both NaCl and KCl. Further studies revealed those structures are going through dynamic transitions between different states and show relatively weak dependence on cations, unlike G4. Based on those results and molecular dynamics simulations, we proposed a multi-pathway folding mechanism for human telomeric G4. The present work may shed new light on our current understanding about the existence and stability of G4 intermediate states.


Assuntos
DNA/química , Quadruplex G , Conformação de Ácido Nucleico , Telômero/genética , DNA/genética , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Microscopia de Fluorescência , Simulação de Dinâmica Molecular , Transdução de Sinais/genética
12.
Biosci Rep ; 37(4)2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28588052

RESUMO

G-quadruplexes are special structures existing at the ends of human telomeres, the folding kinetics of which are essential for their functions, such as in the maintenance of genome stability and the protection of chromosome ends. In the present study, we investigated the folding kinetics of G-quadruplex in different monovalent cation environments and determined the detailed kinetic parameters for Na+- and K+-induced G-quadruplex folding, and for its structural transition from the basket-type Na+ form to the hybrid-type K+ form. More interestingly, although Li+ was often used in previous studies of G-quadruplex folding as a control ion supposed to have no effect, we have found that Li+ can actually influence the folding kinetics of both Na+- and K+-induced G-quadruplexes significantly and in different ways, by changing the folding fraction of Na+-induced G-quadruplexes and greatly increasing the folding rates of K+-induced G-quadruplexes. The present study may shed new light on the roles of monovalent cations in G-quadruplex folding and should be useful for further studies of the underlying folding mechanism.


Assuntos
Quadruplex G , Lítio/química , Potássio/química , Sódio/química , Cátions Monovalentes/química , Cinética
13.
J Biochem ; 162(3): 183-191, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338731

RESUMO

Mutations in human BLM helicase give rise to the autosomal recessive Bloom syndrome, which shows high predisposition to types of malignant tumours. Though lots of biochemical and structural investigations have shed lights on the helicase core, structural investigations of the whole BLM protein are still limited due to its low stability and production. Here by comparing with the expression systems and functions of other BLM homologues, we developed the heterologous high-level expression and high-yield purification systems for Gallus gallus BLM (gBLM) in Escherichia coli. Subsequent DNA binding and unwinding determinations demonstrated that gBLM was a vigorous atypical DNA structure specific helicase, which not only showed high preference for the 3'-tailed DNA structures but also could efficiently unwind bubble DNA structures with blunt-ends, indicating its biological roles in processing DNA metabolism intermediates. Further comparative analysis between gBLM and gBLM Core revealed that the long N-terminal domain facilitated the binding affinity of forked and bubble DNA structures and it was also required for the DNA unwinding activities of gBLM. Thus, we present the first enzymatic characterization of gBLM and its N-terminal domain, providing a new model for probing the mechanism and structure of human BLM.


Assuntos
RecQ Helicases/isolamento & purificação , RecQ Helicases/metabolismo , Animais , Galinhas
14.
Sci Rep ; 7: 43954, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28266653

RESUMO

Werner syndrome is caused by mutations in the WRN gene encoding WRN helicase. A knowledge of WRN helicase's DNA unwinding mechanism in vitro is helpful for predicting its behaviors in vivo, and then understanding their biological functions. In the present study, for deeply understanding the DNA unwinding mechanism of WRN, we comprehensively characterized the DNA unwinding properties of chicken WRN helicase core in details, by taking advantages of single-molecule fluorescence resonance energy transfer (smFRET) method. We showed that WRN exhibits repetitive DNA unwinding and translocation behaviors on different DNA structures, including forked, overhanging and G-quadruplex-containing DNAs with an apparently limited unwinding processivity. It was further revealed that the repetitive behaviors were caused by reciprocating of WRN along the same ssDNA, rather than by complete dissociation from and rebinding to substrates or by strand switching. The present study sheds new light on the mechanism for WRN functioning.


Assuntos
Galinhas , DNA Helicases/metabolismo , DNA/metabolismo , Helicase da Síndrome de Werner/metabolismo , Animais , Transferência Ressonante de Energia de Fluorescência , Imagem Individual de Molécula
15.
J Biol Chem ; 292(14): 5909-5920, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28228481

RESUMO

Helicases play a critical role in processes such as replication or recombination by unwinding double-stranded DNA; mutations of these genes can therefore have devastating biological consequences. In humans, mutations in genes of three members of the RecQ family helicases (blm, wrn, and recq4) give rise to three strikingly distinctive clinical phenotypes: Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome, respectively. However, the molecular basis for these varying phenotypic outcomes is unclear, in part because a full mechanistic description of helicase activity is lacking. Because the helicase core domains are highly conserved, it has been postulated that functional differences among family members might be explained by significant differences in the N-terminal domains, but these domains are poorly characterized. To help fill this gap, we now describe bioinformatics, biochemical, and structural data for three vertebrate BLM proteins. We pair high resolution crystal structures with SAXS analysis to describe an internal, highly conserved sequence we term the dimerization helical bundle in N-terminal domain (DHBN). We show that, despite the N-terminal domain being loosely structured and potentially lacking a defined three-dimensional structure in general, the DHBN exists as a dimeric structure required for higher order oligomer assembly. Interestingly, the unwinding amplitude and rate decrease as BLM is assembled from dimer into hexamer, and also, the stable DHBN dimer can be dissociated upon ATP hydrolysis. Thus, the structural and biochemical characterizations of N-terminal domains will provide new insights into how the N-terminal domain affects the structural and functional organization of the full BLM molecule.


Assuntos
Trifosfato de Adenosina/química , Proteínas Aviárias/química , Galinhas , Multimerização Proteica , RecQ Helicases/química , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Cristalografia por Raios X , Domínios Proteicos , Estrutura Quaternária de Proteína , RecQ Helicases/genética , RecQ Helicases/metabolismo
16.
Sci Rep ; 7: 42865, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28216645

RESUMO

3'-5' exonucleases are frequently found to be associated to polymerases or helicases domains in the same enzyme or could function as autonomous entities. Here we uncovered that Candida albicans Pif1 (CaPif1) displays a 3'-5' exonuclease activity besides its main helicase activity. These two latter activities appear to reside on the same polypeptide and the new exonuclease activity could be mapped to the helicase core domain. We clearly show that CaPif1 displays exclusively exonuclease activity and unambiguously establish the directionality of the exonuclease activity as the 3'-to-5' polarity. The enzyme appears to follow the two-metal-ion driven hydrolyzing activity exhibited by most of the nucleases, as shown by its dependence of magnesium and also by the identification of aspartic residues. Interestingly, an excellent correlation could be found between the presence of the conserved residues and the exonuclease activity when testing activities on Pif1 enzymes from eight fungal organisms. In contrast to others proteins endowed with the double helicase/exonuclease functionality, CaPif1 differs in the fact that the two activities are embedded in the same helicase domain and not located on separated domains. Our findings may suggest a biochemical basis for mechanistic studies of Pif1 family helicases.


Assuntos
Candida albicans/enzimologia , DNA Helicases/química , DNA Helicases/metabolismo , Exonucleases/metabolismo , Sequência de Aminoácidos , Candida albicans/química , Sequência Conservada , Exonucleases/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Hidrólise , Magnésio/metabolismo , Domínios Proteicos
17.
Biochem Biophys Res Commun ; 478(3): 1153-7, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27543204

RESUMO

Recombinase-mediated homologous recombination (HR) in which strands are exchanged between two similar or identical DNA molecules is essential for maintaining genome fidelity and generating genetic diversity. It is believed that HR comprises two distinct stages: an initial alignment with stringent homology checking followed by stepwise heteroduplex expansion. If and how homology checking takes place during heteroduplex expansion, however, remains unknown. In addition, the number of base pairs (bp) involved in each step is still under debate. By using single-molecule approaches to catch transient intermediates in RecA-mediated HR with different degrees of homology, we show that (i) the expansion proceeds with step sizes of multiples of 3 bp, (ii) the step sizes follow wide distributions that are similar to that of initial alignment lengths, and (iii) each distribution can be divided into a short-scale and a long-scale part irrespective of the degree of homology. Our results suggest an iterative mechanism of strand exchange in which ssDNA-RecA filament interrogates double-stranded DNA using a short tract (6-15 bp) for quick checking and a long tract (>18 bp) for stringent sequence comparison. The present work provides novel insights into the physical and structural bases of DNA recombination.


Assuntos
Recombinação Homóloga , Recombinases Rec A/química , Recombinases Rec A/metabolismo , Homologia de Sequência do Ácido Nucleico , Pareamento Incorreto de Bases , Transferência Ressonante de Energia de Fluorescência , Fenômenos Magnéticos , Ácidos Nucleicos Heteroduplexes
18.
Nucleic Acids Res ; 44(17): 8385-94, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27471032

RESUMO

Alternative DNA structures that deviate from B-form double-stranded DNA such as G-quadruplex (G4) DNA can be formed by G-rich sequences that are widely distributed throughout the human genome. We have previously shown that Pif1p not only unfolds G4, but also unwinds the downstream duplex DNA in a G4-stimulated manner. In the present study, we further characterized the G4-stimulated duplex DNA unwinding phenomenon by means of single-molecule fluorescence resonance energy transfer. It was found that Pif1p did not unwind the partial duplex DNA immediately after unfolding the upstream G4 structure, but rather, it would dwell at the ss/dsDNA junction with a 'waiting time'. Further studies revealed that the waiting time was in fact related to a protein dimerization process that was sensitive to ssDNA sequence and would become rapid if the sequence is G-rich. Furthermore, we identified that the G-rich sequence, as the G4 structure, equally stimulates duplex DNA unwinding. The present work sheds new light on the molecular mechanism by which G4-unwinding helicase Pif1p resolves physiological G4/duplex DNA structures in cells.


Assuntos
Biocatálise , DNA Helicases/metabolismo , DNA de Cadeia Simples/metabolismo , DNA/metabolismo , Quadruplex G , Desnaturação de Ácido Nucleico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Replicação do DNA , Multimerização Proteica , Especificidade por Substrato , Fatores de Tempo
19.
Sci Rep ; 6: 26225, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27194376

RESUMO

Cadmium is a toxic metal that inactivates DNA-repair proteins via multiple mechanisms, including zinc substitution. In this study, we investigated the effect of Cd(2+) on the Bloom protein (BLM), a DNA-repair helicase carrying a zinc-binding domain (ZBD) and playing a critical role to ensure genomic stability. One characteristics of BLM-deficient cells is the elevated rate of sister chromatid exchanges, a phenomenon that is also induced by Cd(2+). Here, we show that Cd(2+) strongly inhibits both ATPase and helicase activities of BLM. Cd(2+) primarily prevents BLM-DNA interaction via its binding to sulfhydryl groups of solvent-exposed cysteine residues and, concomitantly, promotes the formation of large BLM multimers/aggregates. In contrast to previously described Cd(2+) effects on other zinc-containing DNA-repair proteins, the ZBD appears to play a minor role in the Cd(2+)-mediated inhibition. While the Cd(2+)-dependent formation of inactive multimers and the defect of DNA-binding were fully reversible upon addition of EDTA, the inhibition of the DNA unwinding activity was not counteracted by EDTA, indicating another mechanism of inhibition by Cd(2+) relative to the targeting of a catalytic residue. Altogether, our results provide new clues for understanding the mechanism behind the ZBD-independent inactivation of BLM by Cd(2+) leading to accumulation of DNA double-strand breaks.


Assuntos
Cádmio/toxicidade , Inibidores Enzimáticos/toxicidade , RecQ Helicases/antagonistas & inibidores , Adenosina Trifosfatases/antagonistas & inibidores , DNA/metabolismo , DNA Helicases/antagonistas & inibidores , Ácido Edético/metabolismo , Ligação Proteica
20.
Nucleic Acids Res ; 44(9): 4330-9, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27098034

RESUMO

Pif1 is a prototypical member of the 5' to 3' DNA helicase family conserved from bacteria to human. It has a high binding affinity for DNA, but unwinds double-stranded DNA (dsDNA) with a low processivity. Efficient DNA unwinding has been observed only at high protein concentrations that favor dimerization of Pif1. In this research, we used single-molecule fluorescence resonance energy transfer (smFRET) and magnetic tweezers (MT) to study the DNA unwinding activity of Saccharomyces cerevisiae Pif1 (Pif1) under different forces exerted on the tails of a forked dsDNA. We found that Pif1 can unwind the forked DNA repetitively for many unwinding-rezipping cycles at zero force. However, Pif1 was found to have a very limited processivity in each cycle because it loosened its strong association with the tracking strand readily, which explains why Pif1 cannot be observed to unwind DNA efficiently in bulk assays at low protein concentrations. The force enhanced the unwinding rate and the total unwinding length of Pif1 significantly. With a force of 9 pN, the rate and length were enhanced by more than 3- and 20-fold, respectively. Our results imply that the DNA unwinding activity of Pif1 can be regulated by force. The relevance of this characteristic of Pif1 to its cellular functions is discussed.


Assuntos
DNA Helicases/química , Proteínas de Saccharomyces cerevisiae/química , Trifosfato de Adenosina/química , DNA Fúngico/química , Cinética , Saccharomyces cerevisiae/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA