RESUMO
Purpose: Surgical site infection (SSI) is a rare and serious complication of total knee arthroplasty (TKA), which causes a poor prognosis for patients. The purpose of this study was to explore the effect of intraosseous (IO) antibiotics in preventing infection and complications after TKA compared with intravenous (IV) antibiotics and to provide a certain theoretical basis for clinical treatment. Methods: The review process was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched the PubMed, Embase, Ovid, Web of Science, and the Cochrane Central Register of Controlled Trials databases about trials on IO antibiotics (into the proximal tibia before skin incision) to prevent infections in TKA from the respective inception dates to September 30, 2022. The infection occurred within 3 months after surgery. Both researchers individually screened the studies in accordance with the inclusion and exclusion criteria, performed the literature quality evaluation and data extraction, and used Stata 17 software for data analysis. Results: Five studies that enrolled 3801 patients were included in this meta-analysis. The results showed that IO antibiotics were effective in reducing the incidence of SSI (OR: 0.25, P = 0.001) and periprosthetic joint infections (OR: 0.16, P = 0.004) relative to IV. Moreover, the percentage of infection due to Gram-positive bacteria (OR: 0.18, P = 0.025) was reduced in the IO group compared with that in IV group, but Gram-negative bacteria levels were not significantly reduced (P = 0.14). There was no difference between the two groups for other systemic adverse effects of the drug. Conclusions: IO antibiotics in TKA are safe and effective alternatives to IV antibiotics. Large randomized clinical studies comparing infection rates and related complications with IO and IV antibiotics are required.
RESUMO
Light has been shown to relieve pain, but the underlying neural mechanisms remain unknown. Here, we show that low-intensity (200 lux) green light treatment exerts antinociceptive effects through a neural circuit from the visual cortex projecting to the anterior cingulate cortex (ACC) in mice. Specifically, viral tracing, in vivo two-photon calcium imaging, and fiber photometry recordings show that green light activated glutamatergic projections from the medial part of the secondary visual cortex (V2MGlu) to GABAergic neurons in the ACC, which drives inhibition of local glutamatergic neurons (V2MGluâACCGABAâGlu). Optogenetic or chemogenetic activation of the V2MGluâACCGABAâGlu circuit mimics green-light-induced antinociception in both neuropathic and inflammatory pain model mice. Artificial inhibition of ACC-projecting V2MGlu neurons abolishes the antinociception induced by green light. Taken together, our study shows the V2M-ACC circuit as a potential candidate mediating green-light-induced antinociceptive effects.
RESUMO
Background: Sea-level residents experience altitude sickness when they hike or visit altitudes above ~2,500 m due to the hypobaric hypoxia (HH) conditions at such places. HH has been shown to drive cardiac inflammation in both ventricles by inducing maladaptive metabolic reprogramming of macrophages, which evokes aggravated proinflammatory responses, promoting myocarditis, fibrotic remodeling, arrhythmias, heart failure, and sudden deaths. The use of salidroside or altitude preconditioning (AP) before visiting high altitudes has been extensively shown to exert cardioprotective effects. Even so, both therapeutic interventions have geographical limitations and/or are inaccessible/unavailable to the majority of the population as drawbacks. Meanwhile, occlusion preconditioning (OP) has been extensively demonstrated to prevent hypoxia-induced cardiomyocyte damage by triggering endogenous cardioprotective cascades to mitigate myocardial damage. Herein, with the notion that OP can be conveniently applied anywhere, we sought to explore it as an alternative therapeutic intervention for preventing HH-induced myocarditis, remodeling, and arrhythmias. Methods: OP intervention (6 cycles of 5 min occlusion with 200 mmHg for 5 min and 5 min reperfusion at 0 mmHg - applying to alternate hindlimb daily for 7 consecutive days) was performed, and its impact on cardiac electric activity, immunoregulation, myocardial remodeling, metabolic homeostasis, oxidative stress responses, and behavioral outcomes were assessed before and after exposure to HH in mice. In humans, before and after the application of OP intervention (6 cycles of 5 min occlusion with 130% of systolic pressure and 5 min reperfusion at 0 mmHg - applying to alternate upper limb daily for 6 consecutive days), all subjects were assessed by cardiopulmonary exercise testing (CPET). Results: Comparing the outcomes of OP to AP intervention, we observed that similar to the latter, OP preserved cardiac electric activity, mitigated maladaptive myocardial remodeling, induced adaptive immunomodulation and metabolic homeostasis in the heart, enhanced antioxidant defenses, and conferred resistance against HH-induce anxiety-related behavior. Additionally, OP enhanced respiratory and oxygen-carrying capacity, metabolic homeostasis, and endurance in humans. Conclusions: Overall, these findings demonstrate that OP is a potent alternative therapeutic intervention for preventing hypoxia-induced myocarditis, cardiac remodeling, arrhythmias, and cardiometabolic disorders and could potentially ameliorate the progression of other inflammatory, metabolic, and oxidative stress-related diseases.
Assuntos
Antioxidantes , Miocardite , Humanos , Animais , Camundongos , Homeostase , Arritmias Cardíacas , HipóxiaRESUMO
Ciwujia injection is commonly used to treat cerebrovascular and central nervous system diseases in clinical practice. It can significantly improve blood lipid levels and endothelial cell function in patients with acute cerebral infarction and promote the proliferation of neural stem cells in cerebral ischemic brain tissues. The injection has also been reported to have good curative effects on cerebrovascular diseases, such as hypertension and cerebral infarction. At present, the material basis of Ciwujia injection remains incompletely understood, and only two studies have reported dozens of components, which were determined using high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF MS). Unfortunately, the lack of research on this injection restricts the in-depth study of its therapeutic mechanism.In the present study, a qualitative method based on ultra-high performance liquid chromatography-quadrupole-electrostatic field orbitrap high-resolution mass spectrometry (UHPLC-Q/Orbitrap HRMS) was developed to analyze the chemical components of Ciwujia injection. Separation was performed on a BEH Shield RP18 column (100 mm×2.1 mm, 1.7 µm) using 0.1% formic acid aqueous solution (A) and acetonitrile (B) as the mobile phases, and gradient elution was performed as follows: 0-2 min, 0%B; 2-4 min, 0%B-5%B; 4-15 min, 5%B-20%B; 15-15.1 min, 20%B-90%B; 15.1-17 min, 90%B. The flow rate and column temperature were set to 0.4 mL/min and 30 â respectively. MS1 and MS2 data were acquired in both positive- and negative-ion modes using a mass spectrometer equipped with an HESI source. For data post-processing, a self-built library including component names, molecular formulas, and chemical structures was established by collecting information on the isolated chemical compounds of Acanthopanax senticosus. The chemical components of the injection were identified by comparison with standard compounds or MS2 data in commercial databases or literature based on precise relative molecular mass and fragment ion information. The fragmentation patterns were also considered. For example, the MS2 data of 3-caffeoylquinic acid (chlorogenic acid), 4-caffeoylquinic acid (cryptochlorogenic acid), and 5-caffeoylquinic acid (neochlorogenic acid) were first analyzed. The results indicated that these compounds possessed similar fragmentation behaviors, yielding product ions at m/z 173 and m/z 179 simultaneously. However, the abundance of the product ion at m/z 173 was much higher in 4-caffeoylquinic acid than in 5-caffeoylquinic acid or 3-caffeoylquinic acid, and the fragment signal at m/z 179 was much stronger for 5-caffeoylquinic acid than for 3-caffeoylquinic acid. Four caffeoylquinic acids were identified using a combination of abundance information and retention times. MS2 data in commercial database and literature were also used to identify unknown constituents. For example, compound 88 was successfully identified as possessing a relative molecular mass and neutral losses similar to those of sinapaldehyde using the database, and compound 80 was identified as salvadoraside because its molecular and fragmentation behaviors were consistent with those reported in the literature. A total of 102 constituents, including 62 phenylpropanoids, 23 organic acids, 7 nucleosides, 1 iridoid, and 9 other compounds, were identified. The phenylpropanoids can be further classified as phenylpropionic acids, phenylpropanols, benzenepropanals, coumarins, and lignans. Among the detected compounds, 16 compounds were confirmed using reference compounds and 65 compounds were identified in Ciwujia injection for the first time. This study is the first to report the feasibility of using the UHPLC-Q/Orbitrap HRMS method to quickly and comprehensively analyze the chemical components of Ciwujia injection. The 27 newly discovered phenylpropanoids provide further material basis for the clinical treatment of neurological diseases and new research targets for the in-depth elucidation of the pharmacodynamic mechanism of Ciwujia injection and its related preparations.
Assuntos
Eleutherococcus , Humanos , Cromatografia Líquida de Alta Pressão , Ácido Clorogênico , Eletricidade EstáticaRESUMO
The sensitive detection of ten-eleven translocation (TET) dioxygenase is of significance for understanding the demethylation mechanism of 5-methylocytosine (5mC), which is responsible for a wide range of biological functions that can affect gene expression in eukaryotic species. Here, a non-label and sensitive fluorescence biosensing method for TET assay using TET1 as the model target molecule is established on the basis of target-triggered Mg2+-dependent DNAzyme and catalytic hairpin assembly (CHA)-mediated multiple signal amplification cascades. 5mC sites in the hairpin DNA probe are first oxidized by TET1 into 5-carboxycytosine, which are further reduced by pyridine borane into dihydrouracil, followed by its recognition and cleavage by the USER enzyme to liberate active DNAzyme and G-quadruplex sequences from the probe. The DNAzyme further cyclically cleaves the substrate hairpins to trigger subsequent CHA reaction and DNAzyme cleavage cycles for yielding many G-quadruplex strands. Thioflavin T dye then intercalates into G-quadruplexes to cause a magnificent increase of fluorescence for high sensitivity assay of TET1 with 47 fM detection limit. And, application of this method for TET1 monitoring in diluted serum has also been confirmed.
Assuntos
Técnicas Biossensoriais , DNA Catalítico , Quadruplex G , DNA Catalítico/química , Sondas de DNA , Corantes , Catálise , Técnicas Biossensoriais/métodos , Limite de DetecçãoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Jinfeng Pill (JFP) is a classical Chinese medicine formula and composed of 9 herbs, including Epimedium brevicornu Maxim (Yinyanghuo), Cervus elaphus Linnaeus (Lurong), Panax ginseng C.A.Mey. (Renshen), Equus asinus (EJiao), Ligustrum lucidum W.T.Aiton (Nvzhenzi), Reynoutria multiflora (Thunb.) Moldenke (Heshouwu), Curculigo orchioides Gaertn (Xianmao), Neolitsea cassia (L.) Kosterm. (Rougui) and Leonurus japonicus Houtt. (Yimucao). The formula is clinically used to regulate menstrual cycle and alleviate polycystic ovarian syndrome due to its capabilities of ovulation induction. It is therefore presumed that JFP could be used for the therapy of premature ovarian insufficiency (POI) but the assumed efficacy has not been fully substantiated in experiment. AIM OF STUDY: To evaluate the effectiveness of JFP on cyclophosphamide (CTX)-induced POI and preliminarily explore its potential mechanisms of action. MATERIAL AND METHODS: An experimental rat model of POI was established by using CTX induction to assess the efficacy of JFP. The potential targets of action for JFP alleviating POI were predicted by the combination of network pharmacology and transcriptomics and finally validating by RT-qPCR and Western blot. RESULTS: JFP alleviated the damages of ovarian tissue induced by CTX in the rat model of POI via significantly decreasing serum levels of FSH and LH and the ratio of FSH/LH and increasing the levels of E2 and AMH, accompanied with promoting ovarian folliculogenesis and follicle maturity and reversing the depletion of follicle pool. With the analysis of network pharmacology, pathways in cancer, proteoglycans in cancer, PI3K-AKT, TNF and FoxO signaling pathways were predicted to be influenced by JFP. The results of RNA-seq further revealed that IL-17 signaling pathway was the most important pathway regulated by both CTX and JFP, following by transcriptional misregulation in cancer and proteoglycans in cancer. Combining the two analytical methods, JFP likely targeted genes associated with immune regulation, including COX-2, HSP90AA1, FOS, MMP3 and MAPK11 and pathways, including IL-17,Th17 cell differentiation and TNF signaling pathway. Finally, JFP was validated to regulate the mRNA expression of FOS, FOSB, FOSL1, MMP3, MMP13 and COX-2 and decrease the release of IL-17A and the protein expression of IL-6 and suppress the phosphorylation of MEK1/2 and ERK1/2 in CTX induced POI rats. CONCLUSION: Jinfeng Pill is effective to ameliorate the symptoms of POI induced by CTX in the model of rats and its action is likely associated with suppressing IL-17A/IL-6 axis and the activity of MEK1/2-ERK1/2 signaling.
Assuntos
Menopausa Precoce , Insuficiência Ovariana Primária , Animais , Feminino , Humanos , Ratos , Ciclo-Oxigenase 2 , Ciclofosfamida , Hormônio Foliculoestimulante , Interleucina-17 , Interleucina-6 , Metaloproteinase 3 da Matriz , Quinases de Proteína Quinase Ativadas por Mitógeno , Fosfatidilinositol 3-Quinases/metabolismo , Insuficiência Ovariana Primária/induzido quimicamente , MAP Quinases Reguladas por Sinal ExtracelularRESUMO
BACKGROUND: Streptococcus mutans (S. mutans) is considered the most relevant bacteria during the transition of the non-pathogenic commensal oral microbial community to plaque biofilms that promote the development of dental caries. Oregano (Origanum vulgare L.), is a universally natural flavoring and its essential oil has been demonstrated to have good antibacterial effects. However, the specific antibacterial mechanism of oregano essential oil (OEO) against S. mutans is still not completely understood. METHODS: In this work, the composition of two different OEOs was determined by GCâMS. Disk-diffusion method, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined to assess their antimicrobial effect on S. mutans. The inhibition of acid production, hydrophobicity, biofilm formation and real-time PCR for gtfB/C/D, spaP, gbpB, vicR, relA and brpA mRNA expression by S. mutans were assessed to preliminarily investigate the mechanisms of action. Molecular docking was performed to simulate the interactions with the virulence proteins and active constituents. MTT test using immortalized human keratinocytes cells was also performed to investigate cytotoxicity. RESULTS: Compared with the positive drug Penicillin /streptomycin 100X (DIZ: 34.13 ± 0.85 mm, MIC: 0.78125 µL/mL, MBC: 6.25 µL/mL), the essential oils of Origanum vulgare L. (DIZ: 80 mm, MIC: 0.625µL/mL, MBC:2.5µL/mL) and Origanum heracleoticum L. (DIZ: 39.67 ± 0.81 mm, MIC: 0.625µL/mL, MBC: 1.25µL/mL) could also exhibit similar effects to inhibit the acid production and reduce the hydrophobicity and biofilm formation of S. mutans at 1/2-1MIC concentration. And gene expression of gtfB/C/D, spaP, gbpB, vicR and relA were found to be downregulated. Due to the composition of essential oils from different sources being highly variable, through effective network pharmacology analysis, we found that OEOs contained many effective compounds, like carvacrol and its biosynthetic precursors γ-terpinene and p-cymene, which may directly target several virulence proteins of S. mutans. Besides, no toxic effect was instigated by OEOs at 0.1 µL/mL in the immortalized human keratinocytes cells. CONCLUSION: The integrated analysis in the present study suggested that OEO might be a potential antibacterial agent for the prevention of dental caries.
Assuntos
Cárie Dentária , Óleos Voláteis , Origanum , Humanos , Óleos Voláteis/farmacologia , Streptococcus mutans , Simulação de Acoplamento Molecular , Antibacterianos/farmacologiaRESUMO
Introduction: Speller is the best way to express the performance of the brain-computer interface (BCI) paradigm. Due to its advantages of short analysis time and high accuracy, the SSVEP paradigm has been widely used in the BCI speller system based on the wet electrode. It is widely known that the wet electrode operation is cumbersome and that the subjects have a poor experience. In addition, in the asynchronous SSVEP system based on threshold analysis, the system flickers continuously from the beginning to the end of the experiment, which leads to visual fatigue. The dry electrode has a simple operation and provides a comfortable experience for subjects. The EOG signal can avoid the stimulation of SSVEP for a long time, thus reducing fatigue. Methods: This study first designed the brain-controlled switch based on continuous blinking EOG signal and SSVEP signal to improve the flexibility of the BCI speller. Second, in order to increase the number of speller instructions, we designed the time-space frequency conversion (TSFC) SSVEP stimulus paradigm by constantly changing the time and space frequency of SSVEP sub-stimulus blocks, and designed a speller in a dry electrode environment. Results: Seven subjects participated and completed the experiments. The results showed that the accuracy of the brain-controlled switch designed in this study was up to 94.64%, and all the subjects could use the speller flexibly. The designed 60-character speller based on the TSFC-SSVEP stimulus paradigm has an accuracy rate of 90.18% and an information transmission rate (ITR) of 117.05 bits/min. All subjects can output the specified characters in a short time. Discussion: This study designed and implemented a multi-instruction SSVEP speller based on dry electrode. Through the combination of EOG and SSVEP signals, the speller can be flexibly controlled. The frequency of SSVEP stimulation sub-block is recoded in time and space by TSFC-SSVEP stimulation paradigm, which greatly improves the number of output instructions of BCI system in dry electrode environment. This work only uses FBCCA algorithm to test the stimulus paradigm, which requires a long stimulus time. In the future, we will use trained algorithms to study stimulus paradigm to improve its overall performance.
RESUMO
Dysregulated maternal fatty acid metabolism increases the risk of congenital heart disease (CHD) in offspring with an unknown mechanism, and the effect of folic acid fortification in preventing CHD is controversial. Using gas chromatography coupled to either a flame ionization detector or mass spectrometer (GC-FID/MS) analysis, we find that the palmitic acid (PA) concentration increases significantly in serum samples of pregnant women bearing children with CHD. Feeding pregnant mice with PA increased CHD risk in offspring and cannot be rescued by folic acid supplementation. We further find that PA promotes methionyl-tRNA synthetase (MARS) expression and protein lysine homocysteinylation (K-Hcy) of GATA4 and results in GATA4 inhibition and abnormal heart development. Targeting K-Hcy modification by either genetic ablation of Mars or using N-acetyl-L-cysteine (NAC) decreases CHD onset in high-PA-diet-fed mice. In summary, our work links maternal malnutrition and MARS/K-Hcy with the onset of CHD and provides a potential strategy in preventing CHD by targeting K-Hcy other than folic acid supplementation.
Assuntos
Cardiopatias Congênitas , Infarto do Miocárdio , Humanos , Feminino , Camundongos , Gravidez , Animais , Ácido Palmítico , Cardiopatias Congênitas/genética , Ácido Fólico/farmacologia , Transdução de SinaisRESUMO
We report here a highly sensitive fluorescent thrombin biomarker sensing method by integrating the DNA walker and CRISPR/Cas12a system. The presence of thrombin causes the localization of DNA moving arms on AuNP tracks via their proximity bindings with the dye-labeled probes immobilized on AuNPs. With the assistance of the primer and DNA polymerase, the arm sequences move continuously on the AuNP tracks to generate many CRISPR/Cas12a-responsive dsDNAs, which push the dye to move away from AuNPs to restore its fluorescence. Moreover, the dsDNAs can be recognized and cut by the CRISPR/Cas12a to trigger its trans-cleavage activity for cyclically cleaving the fluorescently quenched signal probes on the AuNP tracks, which liberates the dye from AuNPs to further enhance the fluorescence restoration to achieve highly sensitive thrombin assay with detection limit of 29.5 fM. Selectively detecting thrombin against other interference proteins and in diluted serums by such sensing method has also been verified, making it an attractive approach for monitoring other protein biomarkers at low levels for the diagnosis of diseases.
Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Sistemas CRISPR-Cas , Ouro , Trombina , DNA/genéticaRESUMO
INTRODUCTION: Degenerative temporomandibular joint diseases (DJDs) are common diseases in dental practice, characterized by a series of degenerative processes in the temporomandibular joint. Early clinical detection of DJD by dental practitioners can be beneficial to prevent or alleviate the further progression of the disease. This study aimed to develop a cephalogram-based multidimensional nomogram to screen DJD. METHODS: A total of 502 patients (170 normal and 332 with DJD) were randomly assigned to a training set (n = 351) or a validation set (n = 151). Thirty-six cephalometric parameters were extracted from the cephalograms to be used as input for a predictive machine-learning algorithm. Multivariable logistic regression was used to construct a combined model for visualization in the form of a nomogram. Receiver operating characteristic curve, calibration testing, and decision curve analyses were conducted to evaluate the performance of the combined model. RESULTS: A Ceph score consisting of 22 cephalometric parameters were significantly associated with DJD (P <0.01). A combined model that consisted of Ceph scores and clinical features (including age, gender, limited mouth opening, crepitus, etc.) performed well in the receiver operating characteristic curve (area under the curve, 0.893), calibration test, and decision curve analyses, indicating its potential clinical value. CONCLUSIONS: This study constructed and verified a multidimensional nomogram consisting of Ceph scores and clinical features, which may contribute to the clinical screening of DJD in dental practice. Future studies are needed to test the reliability of the model with similar parameters.
Assuntos
Odontólogos , Transtornos da Articulação Temporomandibular , Humanos , Reprodutibilidade dos Testes , Papel Profissional , Transtornos da Articulação Temporomandibular/diagnóstico por imagem , Aprendizado de MáquinaRESUMO
Breast-conserving surgery (BCS) is the predominant treatment approach for initial breast cancer. However, due to a lack of effective methods evaluating BCS margins, local recurrence caused by positive margins remains an issue. Accordingly, radiation therapy (RT) is a common modality in patients with advanced breast cancer. However, while RT also protects normal tissue and enhances tumor bed doses to improve therapeutic effects, current radiosensitizers cannot meet these urgent clinical needs. To address this, a novel self-assembled multifunctional nanoprobe (NP) gadolinium (Gd)-diethylenetriaminepentaacetic acid-human serum albumin (HSA)@indocyanine green-Bevacizumab (NPs-Bev) is synthesized to improve the efficacy of fluorescence-image-guided BCS and RT. Fluorescence image guidance of the second near infrared NP improves complete resection in tumor-bearing mice and accurately discriminates between benign and malignant mammary tissue in transgenic mice. Moreover, targeting tumors with NPs induces more reactive oxygen species under X-ray radiation therapy, which not only increases RT sensitivity, but also reduces tumor progression in mice. Interestingly, self-assembled NPs-Bev using HSA, the magnetic resonance contrast agent and Bevacizumab-targeting vascular growth factor A, which are clinically safe reagents, are safe in vitro and in vivo. Therefore, the novel self-assembled NPs provide a solid precision therapy platform to treat breast cancer.
RESUMO
Diabetic patients frequently experience neuropathic pain, which currently lacks effective treatments. The mechanisms underlying diabetic neuropathic pain remain unclear. The anterior cingulate cortex (ACC) is well-known to participate in the processing and transformation of pain information derived from internal and external sensory stimulation. Accumulating evidence shows that dysfunction of microglia in the central nervous system contributes to many diseases, including chronic pain and neurodegenerative diseases. In this study, we investigated the role of microglial chemokine CXCL12 and its neuronal receptor CXCR4 in diabetic pain development in a mouse diabetic model established by injection of streptozotocin (STZ). Pain sensitization was assessed by the left hindpaw pain threshold in von Frey filament test. Iba1+ microglia in ACC was examined using combined immunohistochemistry and three-dimensional reconstruction. The activity of glutamatergic neurons in ACC (ACCGlu) was detected by whole-cell recording in ACC slices from STZ mice, in vivo multi-tetrode electrophysiological and fiber photometric recordings. We showed that microglia in ACC was significantly activated and microglial CXCL12 expression was up-regulated at the 7-th week post-injection, resulting in hyperactivity of ACCGlu and pain sensitization. Pharmacological inhibition of microglia or blockade of CXCR4 in ACC by infusing minocycline or AMD3100 significantly alleviated diabetic pain through preventing ACCGlu hyperactivity in STZ mice. In addition, inhibition of microglia by infusing minocycline markedly decreased STZ-induced upregulation of microglial CXCL12. Together, this study demonstrated that microglia-mediated ACCGlu hyperactivity drives the development of diabetic pain via the CXCL12/CXCR4 signaling, thus revealing viable therapeutic targets for the treatment of diabetic pain.
RESUMO
In order to fortify γ-aminobutyric acid (GABA) of brown glutinous rice (BGR), pre-germination strategy was employed, and effects of low-frequency (28 kHz) ultrasound treatment combined with CaCl2 stress on the sprout length, germination rate, morphology, color, water, total polyphenol content (TPC), starch, protein, GABA contents and relevant metabolites were investigated. The germination rate would be inhibited under CaCl2 concentration ≥ 2.0 % during 24 h soaking without ultrasound treatment, and no significant difference was also observed combined with 9 h ultrasound treatment. Ultrasound treatment was beneficial to water absorption, TPC enrichment, energy metabolism, lipid metabolism and protein hydrolysis. Higher contents of GABA (3.29 folds), pyruvic acid (7.63 folds), glycerol (4.88 folds), glutamate (2.02 folds) and glucose (1.32 folds) were obtained due to the antagonistic effect between the 30 w ultrasound treatment and 2.0 % CaCl2 stress at the 9 h pre-germination, and energy, lipid and protein metabolomic pathways were all involved in the GABA accumulation.
Assuntos
Oryza , Oryza/metabolismo , Cloreto de Cálcio , Ácido gama-Aminobutírico/metabolismo , Estresse Salino , Água/metabolismo , Germinação , Sementes/metabolismoRESUMO
Human activities, including urbanization, industrialization, agricultural pollution, and land use, have contributed to the increased fragmentation of natural habitats and decreased biodiversity in Zhejiang Province as a result of socioeconomic development. Numerous studies have demonstrated that the protection of ecologically significant species can play a crucial role in restoring biodiversity. Emeia pseudosauteri is regarded as an excellent environmental indicator, umbrella and flagship species because of its unique ecological attributes and strong public appeal. Assessing and predicting the potential suitable distribution area of this species in Zhejiang Province can help in the widespread conservation of biodiversity. We used the MaxEnt ecological niche model to evaluate the habitat suitability of E. pseudosauteri in Zhejiang Province to understand the potential distribution pattern and environmental characteristics of suitable habitats for this species, and used the AUC (area under the receiver operating characteristic curve) and TSS (true skill statistics) to evaluate the model performance. The results showed that the mean AUC value was 0.985, the standard deviation was 0.011, the TSS average value was 0.81, and the model prediction results were excellent. Among the 11 environmental variables used for modeling, temperature seasonality (Bio_4), altitude (Alt) and distance to rivers (Riv_dis) were the key variables affecting the distribution area of E. pseudosauteri, with contributions of 33.5%, 30% and 15.9%, respectively. Its main suitable distribution area is in southern Zhejiang Province and near rivers, at an altitude of 50-300 m, with a seasonal variation in temperature of 7.7-8 °C. Examples include the Ou River, Nanxi River, Wuxi River, and their tributary watersheds. This study can provide a theoretical basis for determining the scope of E. pseudosauteri habitat protection, population restoration, resource management and industrial development in local areas.
Assuntos
Agricultura , Vaga-Lumes , Humanos , Animais , Altitude , Biodiversidade , ClimaRESUMO
INTRODUCTION: For investigating the mechanism of brain injury caused by chronic fluorosis, this study was designed to determine whether NRH:quinone oxidoreductase 2 (NQO2) can influence autophagic disruption and oxidative stress induced in the central nervous system exposed to a high level of fluoride. METHODS: Sprague-Dawley rats drank tap water containing different concentrations of fluoride for 3 or 6 months. SH-SY5Y cells were either transfected with NQO2 RNA interference or treated with NQO2 inhibitor or activator and at the same time exposed to fluoride. The enrichment of gene signaling pathways related to autophagy was evaluated by Gene Set Enrichment Analysis; expressions of NQO2 and autophagy-related protein 5 (ATG5), LC3-II and p62, and mammalian target of rapamycin (mTOR) were quantified by Western-blotting or fluorescent staining; and the levels of malondialdehyde (MDA) and superoxide dismutase (SOD) assayed biochemically and reactive oxygen species (ROS) detected by flow cytometry. RESULTS: In the hippocampal CA3 region of rats exposed to high fluoride, the morphological characteristics of neurons were altered; the numbers of autophagosomes in the cytoplasm and the levels of NQO2 increased; the level of p-mTOR was decreased, and the levels of ATG5, LC3-II and p62 were elevated; and genes related to autophagy enriched. In vitro, in addition to similar changes in NQO2, p-mTOR, ATG5, LC3 II, and p62, exposure of SH-SY5Y cells to fluoride enhanced MDA and ROS contents and reduced SOD activity. Inhibition of NQO2 with RNAi or an inhibitor attenuated the disturbance of the autophagic flux and enhanced oxidative stress in these cells exposed to high fluoride. CONCLUSION: Our findings indicate that NQO2 may be involved in regulating autophagy and oxidative stress and thereby exerts an impact on brain injury caused by chronic fluorosis.
Assuntos
Lesões Encefálicas , Neuroblastoma , Quinona Redutases , Ratos , Humanos , Animais , Fluoretos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ratos Sprague-Dawley , Quinona Redutases/metabolismo , Estresse Oxidativo , Autofagia , Serina-Treonina Quinases TOR/metabolismo , Hipocampo/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Mamíferos/metabolismoRESUMO
BACKGROUND: Potential protection against the neurotoxic damages of high levels of fluoride on rats and SH-SY5Y cells by extract of Ginkgo biloba leaves, as well as underlying mechanisms, were examined. METHODS: The rats were divided randomly into 4 groups, i.e., control, treatment with the extract (100 mg/kg body weight, gavage once daily), treatment with fluoride (50 ppm F- in drinking water) and combined treatment with both; SH-SY5Y cells exposed to fluoride and fluoride in combination with the extract or 4-Amino-1,8-naphthalimide (4-ANI), an inhibitor of poly (ADP-ribose) polymerase-1 (PARP-1). Spatial learning and memory in the rats were assessed employing Morris water maze test; the contents of fluoride in brains and urine by fluoride ion-selective electrode; cytotoxicity of fluoride was by CCK-8 kit; the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and the content of malondialdehyde (MDA) by appropriate kits; the level of 8-hydroxydeoxyguanosine (8-OHdG) was by ELISA; the content of ROS and frequency of apoptosis by flow cytometry; the expressions of phospho-histone H2A.X(Ser139), PARP-1, poly (ADP-ribose) (PAR) and Sirtuin-1 (SIRT1) by Western blotting or immunofluorescence. RESULTS: The rats with prolong treatment of fluoride exhibited dental fluorosis, the increased contents of fluoride in brains and urine and the declined ability of learning and memory. In the hippocampus of the rats and SH-SY5Y cells exposed to fluoride, the levels of ROS, MDA, apoptosis, 8-OHdG and the protein expressions of histone H2A.X(Ser139), PARP-1 and PAR were all elevated; the activities of SOD and GSH-Px and the protein expression of SIRT1 reduced. Interestingly, the treatment of Ginkgo biloba extract attenuated these neurotoxic effects on rats and SH-SY5Y cells exposed to fluoride and the treatment of 4-ANI produced a neuroprotective effect against fluoride exposure. CONCLUSION: Ginkgo biloba extract attenuated neurotoxic damages induced by fluoride exposure to rats and SH-SY5Y cells and the underlying mechanism might involve the inhibition of PARP-1 and the promotion of SIRT1.
Assuntos
Fluoretos , Neuroblastoma , Humanos , Animais , Ratos , Fluoretos/farmacologia , HistonasRESUMO
Delayed fracture union and nonunion are common complications of fracture encountered, while Low-intensity pulsed ultrasound (LIPUS) can stimulate bone regeneration. Still, the underlying mechanism of LIPUS on bone regeneration has been poorly understood, which resulted in varied outcomes in the clinic. Therefore, figuring out the mechanism of LIPUS on bone regeneration can lay the foundation for better use of LIPUS in clinical bone regenerative therapies. In this study, we created transgenic mice to reveal the relationship between the periosteal cells' fate and the number of ciliated cells under the LIPUS stimulation. In vitro, we isolated the periosteal cell and aim to figure out the relationship between LIPUS and HDAC6-mediated ciliogenesis and find out a potential target for LIPUS-based bone regeneration strategies. The results showed that LIPUS promoted femoral bone defect regeneration and enhanced osteogenic differentiation of Prrx1+ cells. However, these pro-effects were significantly weakened when the Prrx1+ cell's primary cilia were knocked down. Besides, LIPUS stimulated the formation of Prrx1+ cells' primary cilia in the bone defect microenvironment. In vitro, the results supported that LIPUS enhanced the osteogenic differentiation of Prrx1+ cells through HDAC6-mediated ciliogenesis. In conclusion, λ LIPUS could promote the osteogenic differentiation of Prrx1+ cells to stimulate bone regeneration and inhibit the expression of HDAC6 to increase the prevalence of primary cilia in Prrx1+ cells. LIPUS could enhance the osteogenic differentiation of Prrx1+ cells mainly through HDAC6-mediated ciliogenesis.
Assuntos
Fraturas Ósseas , Osteogênese , Animais , Camundongos , Regeneração Óssea , Diferenciação Celular , Camundongos Transgênicos , Osteogênese/fisiologia , Ondas UltrassônicasRESUMO
A cross-sectional study was conducted in 2016 in Zhejiang Province, China, to evaluate the body burdens of metals and metalloids associated with renal dysfunction in populations living near electroplating industries. We recruited 236 subjects and performed physical examinations, determined the blood and urinary levels of arsenic (As), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), antimony (Sb), and selenium (Se) by an inductively coupled plasma mass spectrometer (ICP-MS), and measured three renal impairment biomarkers, namely nacetyl-ß-D-glucosaminidase (NAG), retinol-binding protein (RBP), and ß2-microglobulin (BMG). The proportion of abnormal nasal symptoms in the exposure group (10.1%) was much higher than in the control group (0; p < 0.05). The blood and urinary levels of As, Cd, and Se in the exposure group were significantly higher than those in the control group (p < 0.05). The blood levels of Mn and Pb, as well as the urinary levels of Cr and Ni, were significantly higher in the exposure group than in the control group (p < 0.05). The exposure group demonstrated higher levels of NAG, RBP, and BMG than the control group (0.51 vs. 0.14 mg/g creatinine, 12.79 vs. 9.26 IU/g creatinine, and 1.39 vs. 0.78 mg/g creatinine, respectively; p < 0.05). Urinary BMG was positively correlated with urinary Cd levels (r = 0.223, p < 0.05), while urinary RBP was correlated with blood Cd levels (r = 0.151, p < 0.05) and urinary Cd, Cr, Ni, and Se levels (r = 0.220, 0.303, 0.162, and 0.306, respectively; p < 0.05). In conclusion, our study indicated that a population living in the vicinity of electroplating industries had high body burdens of certain metals and metalloids associated with non-negligible renal dysfunction.
RESUMO
OBJECTIVES: The diagnostic utility of poor body composition measures in sarcopenia remains unclear. We hypothesize that the skeletal muscle gauge [combination of skeletal muscle mass index (SMI) and skeletal muscle density (SMD); SMG = SMI × SMD] would have significant diagnostic and predictive value in certain regions and populations. DESIGN: Prospective cross-sectional study. SETTING AND PARTICIPANTS: We examined inpatients age ≥60 years with or without cancer and with gastrointestinal disorders. METHODS: We used computed tomography (CT) image metrics in the 12th thoracic (T12), third lumbar (L3), erector spinae muscle (ESM), and psoas muscle (PM) regions to establish correlations with the 2019 Asian Working Group for Sarcopenia Consensus and used receiver operating characteristic area under the curve (AUC) to compare differences between metrics. Associations between CT metrics and mortality were reported as relative risk after adjustments. RESULTS: We evaluated 385 patients (median age, 69.0 years; 60.8% men) and found consistent trends in cancer (49.6%) and noncancer (50.4%) cohorts. SMG had a stronger correlation with muscle mass than SMD [mean rho: 0.68 (range, 0.59â0.73) vs 0.39 (range, 0.28â0.48); all P < .05] in T12, L3, and PM regions and a stronger correlation with muscle function than SMI [mean rho: 0.60 (range, 0.50â0.77) vs 0.36 (range, 0.22â0.58); all P < .05] in T12, ESM, and L3 regions. SMG outperformed SMI in diagnostic accuracy in all regions, particularly for L3 (AUC: 0.87â0.88 vs 0.80â0.82; both P < .05). PM gauge and L3SMG did not differ, whereas EMG (ESM gauge) or T12SMG and L3SMG did (AUC: 0.80â0.82 vs 0.87â0.88; all P < .05). L3SMI, L3SMD, T12SMG, EMG, and PM gauge showed no association with 1-year cancer-related mortality after adjusting for confounders; however, L3SMG [relative risk = 0.92 (0.85â0.99); P = .023) was. CONCLUSIONS AND IMPLICATIONS: L3SMG covers all features of sarcopenia with more diagnostic value than other metrics, allowing a complete sarcopenia assessment with CT alone and not just in populations with cancer.