Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 12(10): 5932-5941, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32108836

RESUMO

In this work, a novel two-dimensional (2D) ultrathin metal-organic layer (MOL) based on the aggregation-induced emission (AIE) ligand H4ETTC (H4ETTC = 4',4''',4''''',4'''''''-(ethene-1,1,2,2-tetrayl)tetrakis(([1,1'-biphenyl]-4-carboxylic acid))) was developed and used to construct a novel electrochemiluminescence (ECL) aptasensor for ultrasensitive detection of carcinoembryonic antigen (CEA). The newly synthesized AIE luminogen (AIEgen)-based MOL (Hf-ETTC-MOL) yielded a higher ECL intensity and efficiency than did H4ETTC monomers, H4ETTC aggregates and 3D bulk Hf-ETTC-MOF. This improvement occurred not only because the ETTC ligands were coordinatively immobilized in a rigid MOL matrix, which restricted the intramolecular free rotation and vibration of these ligands and then reduced the non-radiative transition, but also because the porous ultrathin 2D MOL greatly shortened the transport distances of ions, electrons, coreactant (triethylamine, TEA) and coreactant intermediates (TEA˙ and TEA˙+), which made more ETTC luminophores able to be excited and yielded a high ECL efficiency. On the basis of using the Hf-ETTC-MOL as a novel ECL emitter and rolling circle amplification (RCA) as a signal amplification strategy, the constructed ECL aptasensor exhibited a linear range from 1 fg mL-1 to 1 ng mL-1 with a detection limit of 0.63 fg mL-1. This work has opened up new prospects for developing novel ECL materials and is expected to lead to increased interest in using AIEgen-based MOLs for ECL sensing.

2.
Biosens Bioelectron ; 155: 112099, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32090871

RESUMO

Herein, a new phenomenon of enhanced electrochemiluminescence (ECL) emission by restricting intramolecular motion in the 2D ultra-thin Zr12-adb (adb = 9,10-anthracene dibenzoate) metal-organic framework (MOF) nanoplate was discovered for the first time. The coordination immobilization of adb in porous ultra-thin Zr12-adb nanoplate endowed the Zr12-adb excellent ECL performance, including stronger ECL signal and higher ECL efficiency relative to those of H2adb monomers and H2adb aggregates. In the 2D Zr12-adb nanoplate, the bridging ligand adb was stretched and fixed between two Zr12 clusters, which restricted intramolecular rotations and suppressed unnecessary energy loss caused by self-rotation, thereby remarkably improved the ECL intensity and efficiency. More importantly, the porous ultra-thin structure of Zr12-adb MOF nanoplate not only allowed the coreactants to diffuse into the MOF interior, making both internal and external adb be excited, but also shortened the migration distance of electrons, ions, coreactants and coreactant intermediates, which further improved the ECL efficiency of Zr12-adb and overcame the shortcoming of H2adb aggregates in which the internal luminophores were not easily excited. Regarding the excellent ECL properties above, Zr12-adb nanoplate was selected as a new ECL emitter incorporated with the bipedal walking molecular machine together to fabricate a biosensor for sensitive detection of mucin 1. The enhanced ECL by restriction of intramolecular motions in MOFs provided a new pathway to improve ECL intensity and efficiency, which lighted up a lamp for the design and manufacture of high-performance ECL materials based on MOFs, thus offering new opportunities to develop ultrasensitive ECL biosensors.

3.
Anal Chem ; 92(4): 3380-3387, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-31967795

RESUMO

Here, we discovered that rigidifying the tetraphenylethylene (TPE)-based ligand H4TCBPE (H4TCBPE = 1,1,2,2-tetra(4-carboxylbiphenyl)ethylene) into Hf-based metal-organic framework (Hf-TCBPE) could lead to a stronger electrochemiluminescence (ECL) emission in comparison to H4TCBPE aggregates and H4TCBPE monomers. Due to the lack of close-packed TCBPE chromophores in Hf-TCBPE, which was required for aggregation-induced ECL (AI-ECL) enhancement, we defined this unprecedented phenomenon as matrix coordination-induced ECL (MCI-ECL) enhancement. The strong ECL intensity of Hf-TCBPE not only originated from the fixation of the TCBPE ligand between Hf6 clusters that restricted the intramolecular free motions of TCBPE and suppressed the nonradiative relaxation but also stemmed from the high porosity of Hf-TCBPE that rendered both internal and external TCBPE chromophores able to be excited. Considering the unique ECL characteristic of Hf-TCBPE, we combined the new ECL indicator of Hf-TCBPE as well as the phosphate-terminal ferrocene (Fc)-labeled hairpin DNA (Fc-HP3) aptamer together as a signal probe (Hf-TCBPE/Fc-HP3), which was employed to construct a novel "off-on" ECL sensor for ultrasensitive mucin 1 (MUC1) detection with the assistance of the exonuclease III (Exo III)-assisted recycling amplification strategy. As expected, the ECL sensor displayed a desirable linear response range from 1 fg/mL to 1 ng/mL and the detection limit down to 0.49 fg/mL. The MCI-ECL enhancement demonstrated by the Hf-TCBPE developed a new and promising strategy to design and synthesize high-performance metal-organic framework (MOF)-based ECL materials for constructing ultrasensitive ECL sensors.

4.
Nanoscale ; 11(20): 10056-10063, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31089604

RESUMO

3D bulk metal-organic frameworks (MOFs) have received growing interest in electrochemiluminescence (ECL) assays because they can provide a high specific surface for loading a large quantity of ECL luminophores, but the ECL efficiency of bulk MOFs is still low since some interior luminophores are difficult to be excited. Herein, an ultrathin 2D metal-organic layer (MOL) for grafting self-enhanced ruthenium complexes (Ru-l-Lys) was first synthesized to greatly increase the utilization ratio of luminophores. Compared with 3D bulk MOFs, ultrathin 2D MOL could provide more accessible postmodification sites for grafting the Ru-l-Lys complexes; the self-enhanced Ru-l-Lys complexes on MOL were easily excited by electrons due to the shortened ion/electron-transport distance and the removal of diffusion barriers. Furthermore, the electron transfer path between the Ru(ii) luminophore and coreactant (l-Lys) was shortened and the energy loss of the luminophores decreased, which significantly improved the ECL efficiency. As expected, our work manifested that the Zr-MOL's loading amount of Ru-l-Lys was about 1.23-fold higher than that of a 3D bulk Zr-MOF, and the ECL intensity and efficiency of Ru-l-Lys-Zr-MOL were around 93.45-fold and 1.64-fold higher than those of control Ru-l-Lys-Zr-MOF, respectively. Considering all of these merits, in this work, we utilized the prepared Ru-l-Lys-Zr-MOL as a highly efficient ECL indicator for the first time to fabricate a highly sensitive self-enhanced aptasensor for mucin 1 (MUC1) determination. The proposed aptasensor showed high sensitivity with a linear range from 1 fg mL-1 to 100 pg mL-1 with a detection limit of 0.72 fg mL-1; it also exhibited excellent specificity and stability. It is noteworthy that this work not only provides a new strategy to design and synthesize high-performance ECL materials, but also opens a new way to develop ultrasensitive ECL sensors for bioanalysis.


Assuntos
Medições Luminescentes/métodos , Estruturas Metalorgânicas/química , Mucina-1/análise , Técnicas Biossensoriais , Limite de Detecção , Lisina/química , Rutênio/química , Zircônio/química
5.
Biosens Bioelectron ; 135: 95-101, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31004926

RESUMO

This work utilized ultrathin metal-organic layer (MOL) to immobilize luminophores for effectively shortening the ion/electron-transport distance and relieving the diffusional constraints of ion/electron, which greatly enhanced the ECL efficiency and intensity. Moreover, the MOL's immobilization amount of luminophores should be higher than these of bulk MOFs because MOLs possess more accessible postmodification sites for the luminophores with minimal diffusion barriers. As expected, our proof-of-concept experiment indicated that the Hf-MOL's loading number of Ru(bpy)2(mcpbpy)2+ was about 1.74 times that of a 3D mesoporous MOF (PCN-777), and the ECL efficiency and intensity of PEI@Ru-Hf-MOL were around 1.27 times and 14.5 times those of PEI@Ru-PCN-777, respectively. In view of these merits, this work utilized the prepared PEI@Ru-Hf-MOL as a highly efficient sensing platform for simple, rapid and sensitive detection of mucin 1, which exhibited a broad linearity from 1 fg/mL to 10 ng/mL and a low detection limit of 0.48 fg/mL. This work provided a practicable strategy to develop high-performance ECL materials, and therefore opened up a new avenue to design ultrasensitive ECL biosensors, which expanded the application potential of MOLs in ECL assays.


Assuntos
Complexos de Coordenação/química , Háfnio/química , Substâncias Luminescentes/química , Mucina-1/sangue , Anticorpos Imobilizados/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Humanos , Imunoensaio/métodos , Medições Luminescentes/métodos , Modelos Moleculares
6.
J Org Chem ; 83(15): 7648-7658, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-29799747

RESUMO

A Brønsted acid-promoted, unprecedented formal (3 + 2) annulation strategy for the synthesis of multisubstituted furan-3-carbothioates is reported. This transformation represents the first regioselective annulation of α-oxo ketene dithio-acetals as 1,3-bis-nucleophiles in a cascade manner. The choice of isoindoline-1,3-dione-derived propargyl alcohols is crucial to the uncommon annulation mode between an alkyne-type bis-electrophile and a 1,3-bis-nucleophile under metal-free conditions. The scale-up of the synthesis and several interesting transformations of an as-synthesized product were further investigated. A Nazarov-like cyclization is proposed for the ring-closure process according to the experimental observations.

7.
ACS Appl Mater Interfaces ; 10(18): 15913-15919, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29676561

RESUMO

In this work, a novel mesoporous luminescence-functionalized metal-organic framework (Ru-PCN-777) with high stability and excellent electrochemiluminescence (ECL) performance was synthesized by immobilizing Ru(bpy)2(mcpbpy)2+ on the Zr6 cluster of PCN-777 via a strong coordination bond between Zr4+ and -COO-. Consequently, the Ru(bpy)2(mcpbpy)2+ could not only cover the surface of PCN-777 but also graft into the interior of PCN-777, which greatly increased the loading amount of Ru(bpy)2(mcpbpy)2+ and effectively prevented the leaching of the Ru(bpy)2(mcpbpy)2+ resulting in a stable and high ECL response. Considering the above merits, we utilized the mesoporous Ru-PCN-777 to construct an ECL immunosensor to detect mucin 1 (MUC1) based on proximity-induced intramolecular DNA strand displacement (PiDSD). The ECL signal was further enhanced by the enzyme-assisted DNA recycling amplification strategy. As expected, the immunosensor had excellent sensitivity, specificity, and responded wide linearly to the concentration of MUC1 from 100 fg/mL to 100 ng/mL with a low detection limit of 33.3 fg/mL (S/N = 3). It is the first time that mesoporous Zr-MOF was introduced into ECL system to assay biomolecules, which might expand the application of mesoporous metal-organic frameworks (MOFs) in bioanalysis. This work indicates that the use of highly stable mesoporous luminescence-functionalized MOFs to enhance the ECL intensity and stability is a feasible strategy for designing and constructing high-performance ECL materials, and therefore may shed light on new ways to develop highly sensitive and selective ECL sensors.


Assuntos
Luminescência , Técnicas Biossensoriais , Técnicas Eletroquímicas , Limite de Detecção , Medições Luminescentes , Porosidade
8.
Chemistry ; 23(44): 10638-10643, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28580690

RESUMO

Studying inter-dimensional phase transitions of zeolitic-imidazolate frameworks (ZIFs) is essential for developing strategies in controlling morphology and properties. Herein, the inter-dimensional topotactic phase transformations of 3D ZIF-67 to 2D ZIF-L are investigated in detail by employing a simple and efficient solvent-induced growth method. In addition to ZIF-67 and ZIF-L, a series of novel core-shell composites of ZIF-67@ZIF-L, with unprecedented morphologies, are also obtained and well-defined. The different behaviors of the amine hydrogen of 2-MIM in the solvents play a pivotal role for inter-dimensional phase transformations, and in combination with the concentration of 2-MIM, the 2D to 3D phase transformations are also revealed. The findings are very beneficial for morphological design of the ZIFs, along with exploration of the corresponding properties. Impressively, Co-ZIFs exhibit interesting tunable CO2 adsorption behaviors with the phase evolution, which might bring broader understanding for designing CO2 detection and adsorption devices.

9.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 2): m127, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23424417

RESUMO

In the title compound, [Zn(C(14)H(17)N(5)O(3))(C(9)H(4)O(6))(H(2)O)(2)]·H(2)O, the complex mol-ecule exists in a zwitterionic form. The Zn(II) ion exhibits a distorted tetra-gonal-pyramidal geometry, being coordinated by two O atoms from the zwitterionic 8-ethyl-5-oxo-2-(piperazin-4-ium-1-yl)-5,8-dihydro-pyrido[2,3-d]pyrimidine-6-carboxyl-ate (L) ligand, one O atom from the 5-carb-oxy-benzene-1,3-dicarboxyl-ate dianion, [Hbtc](2-), and two O atoms from two aqua ligands. In the crystal, N-H⋯O and O-H⋯O hydrogen bonds link the components into a three-dimensional structure. The crystal packing exhibits π-π inter-actions between the aromatic rings, with centroid-centroid distances in the range 3.466 (3)-3.667 (3) Å.

10.
J Org Chem ; 77(18): 8332-7, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22928706

RESUMO

Bis(thiazole) pincer palladium complexes showed efficient catalytic activity for the Suzuki-Miyaura coupling of aryl halides, allowing the synthesis of biaryls with very high turnover numbers and turnover frequencies. The complexes were successfully applied in the scalable and green synthesis of the key intermediates of bioactive LUF5771 and its analogues.

11.
Dalton Trans ; 40(21): 5680-3, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21526249

RESUMO

The first two chiral homometallic coordination frameworks with homochiral helical [Co(Oct)O(Trp)Co(Td)O(Trp)](n) ferrimagnetic chains, exhibiting a unique coexistence of chirality and slow magnetic relaxation in one material, are reported.


Assuntos
Cobalto/química , Magnetismo , Polímeros/química , Complexos de Coordenação/química , Estereoisomerismo , Temperatura Ambiente , Triptofano/química
12.
Dalton Trans ; 40(14): 3601-9, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21373655

RESUMO

Two novel NCN-pincer complex precursors bearing frameworks of 2,6-bis(oxazol-4-yl)benzene (A) and 2-(thiazol-4-yl)-6-(oxazol-4-yl)benzene (B) were synthesized. Palladations of A and B afforded two new bis(azole) pincer complexes, [(A-κ(3)NCN)PdBr] (1) and [(B-κ(3)NCN)PdBr] (2). Both complexes were fully characterized by NMR, MS, DSC-TGA and single-crystal X-ray diffraction analysis. Complex 1 crystallizes in a noncentrosymmetric orthorhombic space group Cmc2(1) (No. 36, Z=4). Complex 2 crystallizes in a centrosymmetric monoclinic space group P2(1)/n (No. 14, Z=4). Despite the similarity in their chemical formulas, the structures of the two complexes are subtly different: they are built up of two-dimensional supramolecular layers with identical topology, but stacked in different sequences, i.e., the layers in complex 1 are stacked in an AAAA-type fashion, while those in complex 2 are stacked in an alternating AA(-1)AA(-1) sequence (A denotes a layer; A(-1) stands for A's inversion symmetry equivalent). In addition, the complexes showed good catalytic activity toward Mizoroki-Heck reactions.

13.
Inorg Chem ; 46(10): 4158-66, 2007 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-17447758

RESUMO

Self-assembly of long V-shaped ligands and d10 metal salts in the presence of a linear bidentate ligand affords two unprecedented self-penetrating coordination networks {[Zn4(bptc)2(bpy)4].(C5H3N).4H2O}n (1) and {[Cd2(sdba)2(bpy)(H2O)2].2H2O}n (2) (bptc = 3,3',4,4'-benzophenonetetracarboxylate, sdba = 4,4'-sulfonyldibenzoate, bpy = 4,4'-bipyridine). Their structures were determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectra, X-ray powder diffraction, and TG analyses. 1 adopts a novel 3D framework containing three types of molecular braids, among which the quintuple-stranded molecular braid represents the highest-stranded molecular braid presently known for entangled systems. 2 is an uncommon self-penetrating 2D network containing pseudo-Borromean links and double-stranded helices. More interestingly, when the strong hydrogen bonds between layers are taken into account, the resulting net of 2 becomes an eight-connected 3D self-penetrating network with an unprecedented (421.67) topology, which represents the highest connected topology presently known in self-penetrating systems. Furthermore, the photoluminescent properties of 1 and 2 were studied.

14.
Chemistry ; 12(25): 6528-41, 2006 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16773662

RESUMO

Rational self-assembly of a long V-shaped 3,3',4,4'-benzophenonetetracarboxylate (bptc) ligand and metal salts in the presence of linear bidentate ligand yield a series of novel pillared helical-layer complexes, namely, [Cu2(bptc)(bpy)2] (1), [M3(Hbptc)2(bpy)3(H2O)4].2 H2O (M = Fe(2) and Ni(3)), [Co2(bptc)(bpy)(H2O)].0.5 bpy (4), [Cd2(bptc)(bpy)(H2O)2].H2O (5), [Mn2(bptc)(bpy)1.5(H2O)3] (6) and [M2(bptc)(bpy)0.5(H2O)5].0.5 bpy (M = Mn(7), Mg(8) and Co(9), bpy=4,4'-bipyridine). Their structures were determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectra, and thermogravimetric (TG) analyses. The structure of 1 consists of two types of chiral layers, one left-handed and the other right-handed, which are connected by bpy pillars to generate a novel 3D open framework featuring four distinct helical chains. Compounds 2 and 3 are isostructural and feature 3D structures formed from the interconnection of arm-shaped helical layers with bpy pillars. Compound 4 is a pillared helical double-layer complex containing four different types of helices, among which the nine-fold interwoven helices constructed from triple-stranded helical motifs are unprecedented. Compound 5 exhibits a novel 3D covalent framework which features nanosized tubular channels. These channels are built from helical layers pillared by bptc ligands. The structure of 6 is constructed from {Mn(bptc)(H2O)}n2n- layers, which consist of left- and right-handed helical chains, pillared by [Mn2(bpy)3(H2O)4]4+ complexes into a 3D framework. To the best of our knowledge, compounds 1-6 are the first examples of pillared helical-layer coordination polymers. Compounds 7-9 are isostructural and exhibit interesting 2D helical double-layer structures, which are constructed from {M(bptc)(H2O)2}n2n- ribbons cross-linked by [M2(bpy)(H2O)6]4+ complexes. Furthermore, the 3D supramolecular structures of 7-9 are similar to the 3D structure of 6, and the 2D structure of 7 can be transformed into the 3D structure of 6 at higher reaction temperature. By inspection of the structures of 1-9, it is believed that the V-shaped bptc ligand and V-shaped phthalic group of the bptc ligand are important for the formation of the helical structures. The magnetic behavior of compounds 1, 2, 4, 6, and 9 was studied and indicated the existence of antiferromagnetic interactions. Moreover, compound 5 shows intense photoluminescence at room temperature.

16.
Chemistry ; 11(22): 6673-86, 2005 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-16092144

RESUMO

Reactions of the antimicrobial fluoroquinolone ciprofloxacin (cfH) with metal salts in the presence of aromatic polycarboxylate ligands or under basic conditions produce fourteen new metal-cfH complexes, namely, [Ba2(cf)2(1,4-bdc)(H2O)2] x H2O (1), [Sr6(cf)6(1,4-bdc)3(H2O)6] x 2H2O (2), [M2(cfH)2(bptc)(H2O)2] x 8H2O (M = Mn3 and Cd4), [M(cfH)(1,3-bdc)] (M = Mn5, Co6, and Zn7), [Zn2(cfH)4(1,4-bdc)](1,4-bdc) x 13H2O (8), [Ca(cfH)2(1,2-Hbdc)2] x 2H2O (9) and [M(cf)2] x 2.5H2O (M = Mn10, Co11, Zn12, Cd13, and Mg14) (1,4-bdc = 1,4-benzenedicarboxylate, bptc = 3,3',4,4'-benzophenonetetracarboxylate, 1,3-bdc = 1,3-benzenedicarboxylate, 1,2-bdc = 1,2-benzenedicarboxylate). Their structures were determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectra, and thermogravimetric analyses. The structures of 1 and 2 consist of unique two-dimensional arm-shaped layers. Compounds 3 and 4 are isostructural and feature one-dimensional structures formed from the interconnection of [M2(cfH)2(H2O)2] dimers with bptc ligands. Compounds 5-7 are isostructural and contain double-chain-like ribbons constructed from [M2(cfH)2(CO2)2] dimers and 1,3-bdc. Compound 8 consists of a pair of [Zn(cfH)2]2+ fragments bridged by a 1,4-bdc into a dinuclear dumbbell structure. Compound 9 is a neutral monomeric complex. To the best of our knowledge, compounds 1-9 are the first examples of metal-quinolone complexes that contain aromatic polycarboxylate ligands. Compounds 10-14 are isostructural and exhibit interesting two-dimensional rhombic grids featuring large cavities with dimensions of 13.6x13.6 A. Up to now, polymeric extended metal-cfH complexes have never been reported.


Assuntos
Ciprofloxacino/química , Metais Pesados/química , Compostos Organometálicos/química , Cristalização , Cristalografia por Raios X , Medições Luminescentes , Magnetismo , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Fotoquímica , Temperatura Ambiente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA