Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
1.
Food Chem ; 371: 131176, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34601212

RESUMO

Microbial fermentation is the critical step of Pu-erh tea manufacture, which will induce dramatic changes in the chemical composition and content of tea. In this research, we applied multi-methods based on UHPLC-Q-TOF/MS to profile the dynamic changes of oligopeptides, free amino acids, and derivatives (OPADs) during Pu-erh fermentation and predicted the potential bioactivities in silico. A total of 60 oligopeptides, 18 free amino acids, and 42 amino acid derivatives were identified, and the contents of most of them decreased after fermentation. But several N-acetyl amino acids increased 7-36 times after fermentation, and they might be the potential inhibitors of neurokinin-1 receptor. Moreover, the results of metamicrobiology showed Aspergillus niger and Aspergillus luchuensis were more prominent to metabolize protein, oligopeptides, and amino acids. Overall, these findings provide valuable insights about dynamic variations of OPADs during Pu-erh tea fermentation and are beneficial for guiding practical fermentation and quality control of Pu-erh tea.


Assuntos
Aminoácidos , Chá , Aspergillus , Cromatografia Líquida de Alta Pressão , Fermentação , Oligopeptídeos , Espectrometria de Massas em Tandem
2.
Food Chem ; 372: 131188, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34624779

RESUMO

The present study assessed the nutritional composition of coffee silverskin (CSS) obtained from arabica roasted coffee. Following validated analytical methods, CSS resulted to be a high source of proteins (14.2 g/100 g) and dietary fibers (51.5 g/100 g). Moreover, the mineral analysis revealed high contents of calcium (1.1 g/100 g) and potassium (1.0 g/100 g). To date, this study provided the widest mineral profile of CSS with 30 minerals targeted including 23 microminerals with high levels of iron (238.0 mg/kg), manganese (46.7 mg/kg), copper (37.9 mg/kg), and zinc (31.9 mg/kg). Moreover, vitamins B2 (0.18-0.2 mg/kg) and B3 (2.5-3.1 mg/kg) were studied and reported for the first time in CSS. ß-sitosterol (77.1 mg/kg), campesterol, stigmasterol, and Δ5-avenasterol, were also observed from the phytosterol analysis of CSS with a total level of 98.4 mg/kg. This rich nutritional profile highlights the potential values of CSS for innovative reuses in bioactive ingredients development.


Assuntos
Fitosteróis , Complexo Vitamínico B , Café , Minerais , Estigmasterol
3.
Food Chem ; 372: 131175, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34653779

RESUMO

An accurate hydrophilic interaction liquid chromatography coupled mass spectrometry (HILIC-MS) method is presented to characterize starch digestion by α-amylase and measure the inhibition properties of flavonoids against α-amylase in vitro. Eleven products were found as 1 â†’ 4 linkage glucose oligosaccharides with different degrees of polymerization (DPs) from 2 to 12. The products with DPs of 2, 3, 6, 7, and 9 had higher yields. The product with DP of 9 had the highest yields, which first increased and then decreased with the reaction time. Pelargonidin has the best inhibition activity on all enzyme products. The 3'-hydroxyl of B-ring enhanced the inhibition activity of flavonol and flavone but weakened that of anthocyanin. The C-ring 3-hydroxyl increased the inhibition effect of flavonol on maltose but decreased that on the products with higher DPs than flavone. The HILIC-MS method can provide more detailed information on enzyme products for the study of flavonoids inhibiting α-amylase.


Assuntos
Flavonoides , alfa-Amilases Pancreáticas , Cromatografia Líquida , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas , Amido
4.
Food Chem ; 373(Pt A): 131449, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34715631

RESUMO

This study investigated the effect of pulsed electric field assisted freezing treatment on the freezing characteristics of rice flour gel under output voltages varying from 0 to 25 kV. The results indicated that by applying a pulsed electric field, the phase change time decreased. Scanning electron microscopy images indicated that pulsed electric field treatment led to the formation of rounder and smaller ice crystals. For further understanding and quantifying the interaction between rice flour gel and a pulsed electric field, the relative permittivity of rice flour gel with and without the addition of salt was measured between 100 and 3100 kHz and -20 and 20 °C. Relative permittivity increased with decreasing frequency or increasing temperature, and sharp variation was observed during the phase transition period. In addition, salt was proved to be an effective additive for increasing relative permittivity.

5.
Food Chem ; 373(Pt A): 131392, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34742043

RESUMO

A sesquiterpene quinone, ilimaquinone, was accessed for its cellular antioxidant efficacy and possible antimicrobial mechanism of action against foodborne pathogens (Staphylococcus aureus and Escherichia coli) in vitro and in vivo. Ilimaquinone was found to be protective against H2O2-induced oxidative stress as validated by the reduction in the ROS levels, including increasing expression of SOD1 and SOD2 enzymes. Furthermore, ilimaquinone evoked MIC against S. aureus and E. coli within the range of 125-250 µg/mL. Ilimaquinone established its antimicrobial mode of action against both tested pathogens as evident by bacterial membrane depolarization, loss of nuclear genetic material, potassium ion, and release of extracellular ATP, as well as compromised membrane permeabilization and cellular component damage. Also, ilimaquinone showed no teratogenic effect against zebrafish, suggesting its nontoxic nature. Moreover, ilimaquinone significantly reduced the S. aureus count without affecting the sensory properties and color values of cold-storaged ground chicken meat even under temperature abuse condition.

6.
Food Chem ; 366: 130626, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34325244

RESUMO

The protective effects of the peptides Asp-Asp-Asp-Tyr (DDDY) and Asp-Tyr-Asp-Asp (DYDD) against AAPH-induced HepG2 cells are unclear. Our objective was to investigate the active sites of these peptides and their cellular antioxidant mechanism. DDDY and DYDD show a direct free radical scavenging effect in reducing ROS levels and maintained cellular antioxidant enzymes at normal levels. The quantum chemistry analysis of the electronic properties of antioxidant activity showed that DYDD has a greater energy in the highest occupied molecular orbital than DDDY, and O58-H59 and N10-H12 were identified as the active antioxidant sites in DYDD and DDDY, respectively, indicating that the inconsistent arrangement of amino acids affects the distribution of the highest occupied orbital energy as well as the active sites; thus, influences the antioxidant activity of peptides. It provide valuable insights into the antioxidant active sites of peptides.


Assuntos
Estresse Oxidativo , Peptídeos , Antioxidantes/farmacologia , Domínio Catalítico , Dipeptídeos
7.
Food Chem ; 367: 130743, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34384982

RESUMO

Berry fruits consumption has increased in recent years because they are rich sources of polyphenols with reported health benefits. The aim of the present work was to develop a new comprehensive and fast HPLC-MS/MS method for simultaneous determination of 36 phenolic compounds (7 anthocyanins, 9 flavonols, 4 flavan-3-ols, 2 dihydrochalcones, 2 flavanones and 12 phenolic acids) present in blueberry, strawberry, and their fruit jam. Blueberry fruits showed higher contents of anthocyanins, flavonols and phenolic acids, while strawberry fruits exhibited higher contents of flavan-3-ols, dihydrochalcones and flavanones. Anthocyanins were the main phenolic constituents in both berries. Furthermore, the higher total phenolic content in the blueberry fruit and jam justified their greater antioxidant capacity measured by DPPH free radical assay, compared to strawberry. In conclusion, this new HPLC-MS/MS method is useful and reliable for quality control and authentication analyses of blueberry and strawberry fruits and their commercial food products, such as jams.


Assuntos
Mirtilos Azuis (Planta) , Fragaria , Antocianinas/análise , Antioxidantes , Cromatografia Líquida de Alta Pressão , Frutas/química , Polifenóis , Espectrometria de Massas em Tandem
8.
Food Chem ; 370: 131315, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34788958

RESUMO

Currently, agricultural production generates large amounts of organic waste, both from the maintenance of farms and crops (agricultural wastes) and from the industrialization of the product (food industry waste). In the case of Actinidia cultivation, agricultural waste groups together leaves, flowers, stems and roots while food industry by-products are represented by discarded fruits, skin and seeds. All these matrices are now underexploited and so, they can be revalued as a natural source of ingredients to be applied in food, cosmetic or pharmaceutical industries. Kiwifruit composition (phenolic compounds, volatile compounds, vitamins, minerals, dietary fiber, etc.) is an outstanding basis, especially for its high content in vitamin C and phenolic compounds. These compounds possess antioxidant, anti-inflammatory or antimicrobial activities, among other beneficial properties for health, but stand out for their digestive enhancement and prebiotic role. Although the biological properties of kiwi fruit have been analyzed, few studies show the high content of compounds with biological functions present in these by-products. Therefore, agricultural and food industry wastes derived from processing kiwi are regarded as useful matrices for the development of innovative applications in the food (pectins, softeners, milk coagulants, and colorants), cosmetic (ecological pigments) and pharmaceutical industry (fortified, functional, nutraceutical, or prebiotic foods). This strategy will provide economic and environmental benefits, turning this industry into a sustainable and environmentally friendly production system, promoting a circular and sustainable economy.


Assuntos
Aditivos Alimentares , Frutas , Agricultura , Antioxidantes , Indústria Alimentícia , Sementes
9.
Elife ; 102021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34738906

RESUMO

Ten-eleven translocation methylcytosine dioxygenase 1 (TET1) is involved in multiple biological functions in cell development, differentiation, and transcriptional regulation. Tet1 deficient mice display the defects of murine glucose metabolism. However, the role of TET1 in metabolic homeostasis keeps unknown. Here, our finding demonstrates that hepatic TET1 physically interacts with silent information regulator T1 (SIRT1) via its C-terminal and activates its deacetylase activity, further regulating the acetylation-dependent cellular translocalization of transcriptional factors PGC-1α and FOXO1, resulting in the activation of hepatic gluconeogenic gene expression that includes PPARGC1A, G6PC, and SLC2A4. Importantly, the hepatic gluconeogenic gene activation program induced by fasting is inhibited in Tet1 heterozygous mice livers. The adenosine 5'-monophosphate-activated protein kinase (AMPK) activators metformin or AICAR-two compounds that mimic fasting-elevate hepatic gluconeogenic gene expression dependent on in turn activation of the AMPK-TET1-SIRT1 axis. Collectively, our study identifies TET1 as a SIRT1 coactivator and demonstrates that the AMPK-TET1-SIRT1 axis represents a potential mechanism or therapeutic target for glucose metabolism or metabolic diseases.

10.
J Agric Food Chem ; 69(45): 13510-13523, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34739249

RESUMO

Dendrobium officinale polysaccharide (DOP) attenuates inflammatory bowel disease (IBD), but its role in regulating cross-talk between intestinal epithelial cells (IEC) and macrophages against IBD is unclear. This study aimed to investigate DOP protective effects on the intestinal inflammatory response through regulation by miRNA in small extracellular vesicles (sEVs). Our results show that DOP interfered with the secretion of small extracellular vesicles (DIEs) by IEC, which reduced the levels of inflammatory mediators. Increased miR-433-3p expression in DIEs was identified as an important protector against intestinal inflammation. DOP regulated the loading of miR-433-3p by hnRNPA2B1 into the intestinal sEV to increase the abundance of miR-433-3p. DIEs delivered miR-433-3p to lipopolysaccharide-induced macrophages and targeted the MAPK8 gene, leading to inhibition of the MAPK signaling pathway and reduced production of inflammatory cytokines. One protective mechanism of DOP is mediated by intestinal sEV containing miR-433-3p, which is a potential therapeutic agent for the prevention of inflammatory factor accumulation from excessive intestinal macrophage activity and for restoring homeostasis in the intestinal microenvironment.


Assuntos
Dendrobium , Vesículas Extracelulares , MicroRNAs , Dendrobium/genética , Inflamação/tratamento farmacológico , Inflamação/genética , MicroRNAs/genética , Polissacarídeos
11.
Food Funct ; 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34779464

RESUMO

Omega-9 fatty acids represent some of the main mono-unsaturated fatty acids (MUFA) found in plant and animal sources. They can be synthesized endogenously in the human body, but they do not fully provide all the body's requirements. Consequently, they are considered as partially essential fatty acids. MUFA represent a healthier alternative to saturated animal fats and have several health benefits, including the prevention of metabolic syndrome (MetS) and its complications. This review concentrates on the major MUFA pharmacological activities in the context of MetS management, including alleviating cardiovascular disease (CVD) and dyslipidemia, central obesity, non-alcoholic fatty liver disease (NAFLD), and type 2 diabetes mellitus (T2DM). The beneficial effects of MUFA for CVD were found to be consistent with those of polyunsaturated fatty acids (PUFA) for the alleviation of systolic and diastolic blood pressure and high low density lipoprotein cholesterol (LDLc) and triacylglcerol (TAG) levels, albeit MUFA had a more favorable effect on decreasing night systolic blood pressure (SBP). To reduce the obesity profile, the use of MUFA was found to induce a higher oxidation rate with a higher energy expenditure, compared with PUFA. For NAFLD, PUFA was found to be a better potential drug candidate for the improvement of liver steatosis in children than MUFA. Any advantageous outcomes from using MUFA for diabetes and insulin resistance (IR) compared to using PUFA were found to be either non-significant or resulted from a small number of meta-analyses. Such an increase in the number of studies of the mechanisms of action require more clinical and epidemiological studies to confirm the beneficial outcomes, especially over a long-term treatment period.

12.
Int J Mol Sci ; 22(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34769460

RESUMO

Arachidonic acid (AA) is an essential fatty acid that is released by phospholipids in cell membranes and metabolized by cyclooxygenase (COX), cytochrome P450 (CYP) enzymes, and lipid oxygenase (LOX) pathways to regulate complex cardiovascular function under physiological and pathological conditions. Various AA metabolites include prostaglandins, prostacyclin, thromboxanes, hydroxyeicosatetraenoic acids, leukotrienes, lipoxins, and epoxyeicosatrienoic acids. The AA metabolites play important and differential roles in the modulation of vascular tone, and cardiovascular complications including atherosclerosis, hypertension, and myocardial infarction upon actions to different receptors and vascular beds. This article reviews the roles of AA metabolism in cardiovascular health and disease as well as their potential therapeutic implication.

13.
Crit Rev Food Sci Nutr ; : 1-19, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34606395

RESUMO

Mangiferin is a potential candidate for use in nutraceutical and functional food applications due to its numerous bioactivities. However, the low bioavailability of mangiferin is a major limitation for establishing efficacy for use. This review describes current information on known food sources and factors that influence mangiferin contents, absorption, and metabolism features, and recent progress that has come from research efforts to increase the bioavailability of mangiferin. We also list patents that targeted to enhance mangiferin bioavailability. Mangifera indica L. is the major dietary source for mangiferin, a xanthone that varies widely in different parts of the plant and is influenced by many factors that involve plant propagation and post-harvest processing. Mangiferin absorption occurs mostly in the small intestine by passive diffusion with varying absorption capacities in different segments of the gastrointestinal tract. Recent research has led to the development of novel technologies to encapsulate mangiferin in nano/microparticle carrier systems as well as generate mangiferin derivatives to improve solubility and bioavailability. Preclinical studies reported that mangiferin < 2000 mg/kg is generally nontoxic. The safety and the increase in bioavailability are key limiting factors for developing successful applications for mangiferin as a nutritional dietary supplement or nutraceutical.

14.
Food Funct ; 12(20): 9527-9548, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34664581

RESUMO

Since ancient times, litchi has been well recognized as a functional food for the management of various ailments. Many bioactives, including flavanoids, anthocyanins, phenolics, sesquiterpenes, triterpenes, and lignans, have been identified from litchi with a myriad of biological properties both in vitro and in vivo. In spite of the extensive research progress, systemic reviews regarding the bioactives of litchi are rather scarce. Therefore, it is crucial to comprehensively analyze the pharmacological activities and the structure-activity relationships of the abundant bioactives of litchi. Besides, more and more studies have focused on litchi preservation and development of its by-products, which is significant for enhancing the economic value of litchi. Based on the analysis of published articles and patents, this review aims to reveal the development trends of litchi in the healthcare field by providing a systematic summary of the pharmacological activities of its extracts, its phytochemical composition, and the nutritional and potential health benefits of litchi seed, pulp and pericarp with structure-activity relationship analysis. In addition, its by-products also exhibited promising development potential in the field of material science and environmental protection. Furthermore, this study also provides an overview of the strategies of the postharvest storage and processing of litchi.

15.
Food Res Int ; 149: 110712, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34600700

RESUMO

The development of colon-specific carrier systems using polysaccharides for oral delivery of nutraceuticals is of great importance for the treatment and/or prevention of inflammatory bowel diseases. In this study, self-assembly with the assistance of vortexing and pulsed-ultrasonication was employed to develop a Fibersol®-2 (a digestion-resistant polysaccharide) and lipoid S75 based novel nanocarrier (denoted as nanofibersolosome) for the colonic delivery of cyanidin-3-O-glucoside (C3G). A series of nanofibersolosome formulations (CFS-0.5-4, 0.5-4 represent the ratios of Fibersol®-2:lipoid S75) were developed and their performance was compared with Fibersol®-2-free reference lipid formulation (CFS-0). The nanofibersolosomes (<150 nm) were spherical and unilamellar with high negative surface charge (-38 to -51 mV) and good encapsulation efficiency (EE > 90%). They performed much better than CFS-0 in retaining their physical properties during freeze drying, preventing particle aggregation, and retaining C3G during storage (4 and 25 ℃) and thermal treatments (40, 60, and 80 ℃). They also exhibited significantly higher stability during simulated gastrointestinal digestion than CFS-0. These desirable features of the nanofibersolosomes (especially CFS-0.5 and CFS-1) led to the efficient delivery of higher concentrations of C3G to the colon than CFS-0. Moreover, gastrointestinal-digested and colonic-fermented nanofibersolosome samples exhibited significantly higher DPPH radical scavenging activity and stronger promoting effect on short-chain fatty acid generation than CFS-0. These in vitro findings indicate that the novel nanofibersolosome possesses great potential for the colonic delivery of C3G and likely other hydrophilic labile phytochemicals that merits further evaluation in in vivo models.


Assuntos
Colo , Glucosídeos , Antocianinas , Interações Hidrofóbicas e Hidrofílicas , Polissacarídeos
16.
Mol Nutr Food Res ; : e2100252, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34636497

RESUMO

Diabetes mellitus (DM) is a cluster of physiological dysfunctions typified by persistent hyperglycemia. Diet plays a paramount role in human health, and regular consumption of a fruit- and vegetable-rich diet can delay or prevent DM and its associated complications. The promising effect of fruits and vegetables could be partly attributed to their antioxidant constituents, including carotenoids. Carotenoids are natural antioxidants that occur in many vegetables, fruits, microalgae, and other natural sources. Astaxanthin is a xanthophyll carotenoid predominantly present in microalgae and some red-colored marine organisms. It is currently marketed as a health supplement and is well-known for its antioxidant capacity. Accumulating evidence indicates that astaxanthin exerts its beneficial effects against DM by acting on various molecular targets and signaling pathways in multiple organs/tissues. Astaxanthin can lower blood glucose levels by preserving ß-cell function, improving insulin resistance (IR), and increasing insulin secretion. This manuscript summarizes the connection between glucose homeostasis, oxidative stress, and DM. This is followed by a review of recent studies on astaxanthin's pharmacological effects against IR, microvascular (diabetic retinopathy, diabetic nephropathy, and neurological damage), and macrovascular DM complications emphasizing the cellular and molecular mechanisms involved. A few lines of clinical evidence supporting its antidiabetic potential are also highlighted.

17.
Int J Mol Sci ; 22(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34639057

RESUMO

Ferula penninervis Regel & Schmalh. is a perennial plant used in Kazakh traditional folk medicine to treat epilepsy, neurosis, rheumatism, gastroduodenal ulcers, dyspepsia, wounds, abscesses or tumors. The aim of this work was to isolate series of sesquiterpene lactones from a crude methanolic root extract and investigate their in vitro cytotoxic potential against androgen-dependent prostate cancer LNCaP and epithelial prostate PNT2 cells, as well as to evaluate their melanin production inhibitory effects in murine melanoma B16F10 cells stimulated with α-melanocyte-stimulating hormone (αMSH). Two new (penninervin P and penninervin Q) and five known (olgin, laferin, olgoferin, oferin and daucoguainolactone F) guaiane-type sesquiterpene lactones were isolated with the use of a simple and fast liquid-liquid chromatography method. Olgin and laferin showed the most promising cytotoxic effects in LNCaP cells (IC50 of 31.03 and 23.26 µg/mL, respectively). Additionally, olgin, laferin, olgoferin, and oferin (10 µg/mL) potently impaired melanin release (40.67-65.48% of αMSH + cells) without influencing the viability of B16F10 cells. In summary, our findings might indicate that guaiane-type sesquiterpene lactones from F. penninervis could be regarded as promising candidates for further research in discovering new therapeutic agents with anti-prostate cancer and skin depigmentation properties.


Assuntos
Cromatografia Líquida , Ferula/química , Lactonas/isolamento & purificação , Lactonas/farmacologia , Melaninas/antagonistas & inibidores , Sesquiterpenos de Guaiano/isolamento & purificação , Sesquiterpenos de Guaiano/farmacologia , Animais , Antineoplásicos , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida/métodos , Relação Dose-Resposta a Droga , Humanos , Lactonas/química , Melanoma Experimental , Camundongos , Estrutura Molecular , Extratos Vegetais/química , Raízes de Plantas/química , Sesquiterpenos de Guaiano/química , Análise Espectral
18.
Molecules ; 26(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34684800

RESUMO

Androstenedione is a steroidal hormone produced in male and female gonads, as well as in the adrenal glands, and it is known for its key role in the production of estrogen and testosterone. Androstenedione is also sold as an oral supplement, that is being utilized to increase testosterone levels. Simply known as "andro" by athletes, it is commonly touted as a natural alternative to anabolic steroids. By boosting testosterone levels, it is thought to be an enhancer for athletic performance, build body muscles, reduce fats, increase energy, maintain healthy RBCs, and increase sexual performance. Nevertheless, several of these effects are not yet scientifically proven. Though commonly used as a supplement for body building, it is listed among performance-enhancing drugs (PEDs) which is banned by the World Anti-Doping Agency, as well as the International Olympic Committee. This review focuses on the action mechanism behind androstenedione's health effects, and further side effects including clinical features, populations at risk, pharmacokinetics, metabolism, and toxicokinetics. A review of androstenedione regulation in drug doping is also presented.


Assuntos
Androstenodiona/farmacologia , Anabolizantes/farmacologia , Androstenodiona/metabolismo , Androstenodiona/toxicidade , Animais , Atletas , Desempenho Atlético , Suplementos Nutricionais/toxicidade , Doping nos Esportes , Feminino , Humanos , Masculino , Fatores Sexuais , Testosterona/metabolismo
19.
Pharmacol Ther ; : 107994, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34571111

RESUMO

Helicobacter pylori (H. pylori) is a major causative agent of chronic gastritis, gastric ulcer and gastric carcinoma. H. pylori cytotoxin associated antigen A (CagA) plays a crucial role in the development of gastric cancer. Gastric cancer is associated with glycosylation alterations in glycoproteins and glycolipids on the cell surface. H. pylori cytotoxin associated antigen A (CagA) plays a significant role in the progression of gastric cancer through post-translation modification of fucosylation to develop gastric cancer. The involvement of a variety of sugar antigens in the progression and development of gastric cancer has been investigated, including type II blood group antigens. Lewis Y (LeY) is overexpressed on the tumor cell surface either as a glycoprotein or glycolipid. LeY is a difucosylated oligosaccharide, which is catalyzed by fucosyltransferases such as FUT4 (α1,3). FUT4/LeY overexpression may serve as potential correlative biomarkers for the prognosis of gastric cancer. We discuss the various aspects of H. pylori in relation to fucosyltransferases (FUT1-FUT9) and its fucosylated Lewis antigens (LeY, LeX, LeA, and LeB) and gastric cancer. In this review, we summarize the carcinogenic effect of H. pylori CagA in association with LeY and its synthesis enzyme FUT4 in the development of gastric cancer as well as discuss its importance in the prognosis and its inhibition by combination therapy of anti-LeY antibody and celecoxib through MAPK signaling pathway preventing gastric carcinogenesis.

20.
Crit Rev Food Sci Nutr ; : 1-26, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34553653

RESUMO

Vascular diseases arise due to vascular endothelium dysfunction in response to several pro-inflammatory stimuli and invading pathogens. Thickening of the vessel wall, formation of atherosclerotic plaques consisting of proliferating smooth muscle cells, macrophages and lymphocytes are the major consequences of impaired endothelium resulting in atherosclerosis, hypercholesterolemia, hypertension, type 2 diabetes mellitus, chronic renal failure and many others. Decreased nitric oxide (NO) bioavailability was found to be associated with anomalous endothelial function because of either its reduced production level by endothelial NO synthase (eNOS) which synthesize this potent endogenous vasodilator from L-arginine or its enhanced breakdown due to severe oxidative stress and eNOS uncoupling. Polyphenols are a group of bioactive compounds having more than 7000 chemical entities present in different cereals, fruits and vegetables. These natural compounds possess many OH groups which are largely responsible for their strong antioxidative, anti-inflammatory antithrombotic and anti-hypersensitive properties. Several flavonoid-derived polyphenols like flavones, isoflavones, flavanones, flavonols and anthocyanidins and non-flavonoid polyphenols like tannins, curcumins and resveratrol have attracted scientific interest for their beneficial effects in preventing endothelial dysfunction. This article will focus on in vitro as well as in vivo and clinical studies evidences of the polyphenols with eNOS modulating activity against vascular disease condition while their molecular mechanism will also be discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...