Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.533
Filtrar
1.
J Oleo Sci ; 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32404547

RESUMO

This study investigated the effect of papain on the demulsification of peanut oil body emulsion extracted using an aqueous enzymatic method and the associated mechanism. The highest free oil yield using papain (92.39%) was obtained under the following conditions: an enzymatic hydrolysis temperature of 55℃, sample-to-water ratio of 1:3, enzyme concentration of 1400 U/g, and an enzymatic hydrolysis time of 3 h. Papain degraded the peanut oil body protein to small-molecular-weight peptides (≤ 14.4 kDa). Compared to the emulsion before enzymatic hydrolysis, the amino acid content in the aqueous phase was higher after enzymatic hydrolysis, the viscosity of the oil body emulsion was lower, and the particle diameter of the emulsion was significantly larger. The following demulsification mechanism was derived. Papain degrades the protein on the peanut oil body and dissolves it in water. The outer side of the oil body loses the protection of electrostatic repulsion and steric hindrance provided by the membrane protein. This causes the viscosity of the emulsion system and the molecular steric hindrance to decrease. As a result, the oil droplets gather and eventually demulsify. The results of this study provide the theoretical basis for the instability in oil body emulsions and are expected to promote the application of enzymatic demulsification in industry.

2.
Kaohsiung J Med Sci ; 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32374939

RESUMO

Cisplatin, as one of the most effective chemotherapeutic agents, its clinical use is limited by serious side effect of nephrotoxicity. Cisplatin-induced nephrotoxicity is closely related to apoptosis induction and activation of caspase. The present study aimed to explore the potential protective effect of ginsenoside Rk1 (Rk1), a rare ginsenoside generated during steaming ginseng, on cisplatin-induced nephrotoxicity and the underlying mechanisms in human embryonic kidney 293 (HEK-293) cells. Our results showed that the reduced cell viability induced by cisplatin could significantly recover by Rk1. Furthermore, glutathione (GSH) as an oxidative index, was elevated and the lipid peroxidation product malondialdehyde (MDA) was significantly decreased after Rk1 treatment compared to the cisplatin group. Additionally, Rk1 can also decrease the ROS fluorescence expression and increase the protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) compared to the cisplatin group, which suggested a suppression of oxidative response. More importantly, the cisplatin-induced elevated protein levels of Bax, cleaved caspase-3, cleaved caspase-9, and decreased protein level of Bcl-2 were reversed after treatment with Rk1. Our results elucidated the possible protective mechanism of Rk1 for the first time, which may involve in its anti-oxidation and anti-apoptosis effects.

3.
Aging (Albany NY) ; 12(9): 8120-8136, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32381754

RESUMO

Osteoporosis is a common metabolic bone disorder in the elderly population. The accumulation of bone microdamage is a critical factor of osteoporotic fracture. Neuropeptide Y (NPY) has been reported to regulated bone metabolism through Y1 receptor (Y1R). In this study the effects and mechanisms of Y1R antagonist on prevention for osteoporosis were characterized. In the clinical experiment, compared with osteoarthritis (OA), osteoporosis (OP) showed significant osteoporotic bone microstructure and accumulation of bone microdamage. NPY and Y1R immunoreactivity in bone were stronger in OP group, and were both correlated with bone volume fraction (BV/TV). In vivo experiment, Y1R antagonist significantly improved osteoporotic microstructure in the ovariectomized (OVX) rats. And Y1R antagonist promoted RUNX2, OPG and inhibit RANKL, MMP9 in bone marrow. In vitro cell culture experiment, NPY inhibited osteogenesis, elevated RANKL/OPG ratio and downregulated the expression of cAMP, p-PKAs and p-CREB in BMSCs, treated with Y1R antagonist or 8-Bromo-cAMP could inhibit the effects of NPY. Together, Y1R antagonist improved the bone microstructure and reduced bone microdamage in OVX rats. NPY-Y1R could inhibit osteoblast differentiation of BMSCs via cAMP/PKA/CREB pathway. Our findings highlight the regulation of NPY-Y1R in bone metabolism as a potential therapy strategy for the prevention of osteoporosis and osteoporotic fracture.

4.
Aging (Albany NY) ; 12(9): 8484-8505, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32406866

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most common subtype among kidney cancer, which has poor prognosis. The aim of this study was to screen out novel prognostic biomarkers and therapeutic targets for immunotherapy, and some novel molecule drugs for ccRCC treatment. Immune scores ranged from -1109.36 to 2920.81 and stromal scores ranged from -1530.11 to 1955.39 were firstly calculated by applying ESTIMATE algorithm. Then 17 DEGs associated with immune score and stromal score were further identified. 6 candidate hub genes were screened out by performing overall survival (OS) and disease-free survival analyses based on TCGA-KIRC data, one of which including TGFBI was further regarded as hub gene associated with prognosis by calculating the R2 (R2 = 0.011, P = 0.018) and AUC (AUC = 0.874). The prognostic value of TGFBI was validated by performing OS, CSS, and PFS analyses based on GSE29609 and E-MTAB-3267. CMap analysis suggested that 3 molecule drugs might be novel choice for ccRCC treatment. Further analysis demonstrated that CNVs of TGFBI was associated with OS of patients with ccRCC. TGFBI expression was also correlated with histologic grade, pathologic stage, and immune infiltration level, significantly. TGFBI was the most relevant gene with OS among the candidate hub genes, which might be novel DNA methylation biomarkers for ccRCC. In conclusion, our findings indicated that TGFBI was correlated with prognosis of patients with ccRCC, which might be novel prognostic biomarkers, and targets for immunotherapy in ccRCC. Three small molecule drugs were also identified, which showed strong potential for ccRCC treatment.

5.
Brief Funct Genomics ; 19(3): 151-153, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32432687
6.
Food Funct ; 11(4): 2848-2860, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32246759

RESUMO

Capsaicin is the primary bioactive substance in red chili peppers, which produces the pungent flavor. During the past few decades, pharmacological benefits of capsaicin and its underlying mechanisms have been examined extensively. In this paper, major biological efficacies of capsaicin are reviewed, including analgesic, antioxidant, anti-inflammatory, anti-cancer, anti-obesity, cardio-protective, and metabolic modulation effects. Novel delivery systems, such as liposomes, micelles, micro/nano-emulsions, colloidal capsules and solid nanoparticles, for enhancing the oral bioavailability of capsaicin are also evaluated depending on the stability, encapsulation efficiency and biological properties. This review provides a theoretical basis for capsaicin to be further developed into a multi-functional ingredient with health-promoting functions in the nutraceutical industry.

7.
Food Funct ; 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32343758

RESUMO

Astaxanthin (AX) is a red-colored xanthophyll carotenoid with potent antioxidant, anti-inflammatory, and neuroprotective properties. However, the underlying in vivo mechanism by which AX protects the brain from oxidative stress remains unclear. In this study, we investigated the protective effect of AX on brain oxidative damage in a d-galactose-induced rat model of aging. We also explored its possible mechanism of action by analyzing the resulting serum metabolic profiles. Our results showed that AX significantly increased the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) by 26%, 30%, and 53%, respectively. AX also significantly increased the mitochondrial membrane potential by 18% when compared with the model group. Additionally, treatment with AX (15 mg kg-1) increased the activities of respiratory chain complexes I and IV by 50.17% and 122.87%, respectively. Furthermore, AX also improved age-related morphological changes in the cerebral cortex and hippocampus. Significant differences in serum metabolic profiles were observed between the d-galactose and AX treatment groups. AX corrected amino acid metabolic problems by increasing the levels of N-acetyl-l-leucine, N-acetyl-l-tyrosine, and methionine sulfoxide to protect nerve cells. This also allowed AX to regulate the pentose phosphate pathway by acting on ergotoxine, d-xylose-5-phosphoric, and thiamine, to against oxidative stress and apoptosis. Moreover, AX reduced the levels of both hyodeoxycholic acid and chenodeoxycholic acid though the primary bile acid biosynthesis pathway, resulting in improved brain mitochondrial dysfunction. In conclusion, AX likely enhances the brain's antioxidant defenses through these potential metabolic means, enabling the brain to resist mitochondrial dysfunction, improve neuronal damage, and protect the electron transmission of mitochondrial respiratory chain, thus preventing brain aging.

8.
Mol Cells ; 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32345003

RESUMO

The aim of this study was to explore the role of IL-6-miR-210 in the regulation of Tregs function and atrial fibrosis in atrial fibrillation (AF). The levels of interleukin (IL)-6 and IL-10 in AF patients were detected by using ELISA. Proportions of Treg cells were detected by fluorescence activated cell sorting analysis in AF patients. The expression of Foxp3, α-SMA, collagen I and collagen III were determined by western blot. The atrial mechanocytes were authenticated by vimentin immunostaining. The expression of miR-210 was performed by quantitative real-time PCR (qRT-PCR). TargetScan was used to predict potential targets of miR-210. The cardiomyocyte transverse sections in AF model group were observed by H&E staining. The myocardial filaments were observed by masson staining. The level of IL-6 was highly increased while the level of IL-10 (Tregs) was significantly decreased in AF patients as compared to normal control subjects, and IL-6 suppressed Tregs function and promoted the expression of α-SMA, collagen I and collagen III. Furthermore, miR-210 regulated Tregs function by targeting Foxp3, and IL-6 promoted expression of miR-210 via regulating hypoxia inducible factor-1α (HIF-1α). IL-6-miR-210 suppresses regulatory T cell function and promotes atrial fibrosis by targeting Foxp3.

9.
Cancer Lett ; 480: 1-3, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32229188
10.
BMC Infect Dis ; 20(1): 270, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264829

RESUMO

BACKGROUND: Scrub typhus is an acute febrile illness, which was caused by Orientia tsutsugamushi and transmitted through the bite of chiggers. The diagnosis of scrub typhus could be missed diagnosis due to the absence of the pathognomonic eschar. CASE PRESENTATION: A 76-year-old man was hospitalized with fever and kidney injury and was diagnosed of hemorrhagic fever with renal syndrome first. However, the situation of the illness deteriorated into refractory septic shock and multiple organ dysfunction rapidly,although the treatment of anti-sepsis was used in 3rd-5th day. Orientia tsutsugamushi was determined to be the causative pathogen by Next-generation sequencing of his plasma sample in 6th day. Then, the patient was treated with doxycycline and azithromycin and recovered quickly. CONCLUSIONS: Next-generation sequencing was a new diagnostic technology and could identify scrub typhus in accurately and fast without the pathognomonic eschar.

11.
Nanomedicine (Lond) ; 15(10): 951-968, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32255397

RESUMO

Aim: To develop nanomedicines for immuno-therapy of oral dysplasia and oral squamous cell carcinoma. Materials & methods: All-trans retinoic acid (ATRA)-poly(lactide-co-glycolide acid) (PLGA)-poly(ethylene glycol) (PEG)-programmed death-ligand 1 (PD-L1) nanomedicines were fabricated by loading ATRA into PLGA-PEG nanocarriers and modification using an anti-PD-L1 antibody. Results: ATRA-PLGA-PEG-PD-L1 nanoparticles showed fast cellular uptake, significantly inhibited proliferation and induced apoptosis in DOK and CAL27 cells. Moreover, in C3H tumor-bearing mice, ATRA-PLGA-PEG-PD-L1 nanoparticles more specifically targeted tumor cells, enhanced anticancer activity and reduced side effects when compared with free ATRA. Furthermore, CD8+ T cells were activated around PD-L1 positive cells in the tumor microenvironment after treatment. Conclusion: ATRA-PLGA-PEG-PD-L1 nanoparticles had low toxicity, high biocompatibility and specifically targeted oral dysplasia and squamous carcinoma cells both in vitro and in vivo.

12.
Int J Cardiol ; 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32334849

RESUMO

BACKGROUND: The JAK/STAT pathway is a vital transcription signaling pathway that regulates gene expression and cellular activity. Our recently published study highlighted the role of IL-17A in abdominal aortic aneurysm (AAA) formation and rupture. IL-17A has been proven to upregulate vascular endothelial growth factor (VEGF) expression in some diseases. However, no study has demonstrated the relationships among JAK2/STAT3, IL-17A and VEGF. Therefore, we hypothesized that IL-17A may up-regulate VEGF expression via the JAK2/STAT3 signaling pathway to amplify the inflammatory response, exacerbate neovascularization, and accelerate AAA progression. METHODS: To fully verify our hypothesis, two separate studies were performed: i) a study investigating the influence of JAK2/STAT3 on AAA formation and progression. ii) a study evaluating the relationship among IL-17A, JAK2/STAT3 and VEGF. Human tissues were collected from 7 AAA patients who underwent open surgery and 7 liver transplantation donors. All human aortic tissues were examined by histological and immunohistochemical staining, and Western blotting. Furthermore, mouse aortic tissues were also examined by histological and immunohistochemical staining and Western blotting, and the mouse aortic diameters were assessed by high-resolution Vevo 2100 microimaging system. RESULTS: Among human aortic tissues, JAK2/STAT3, IL-17A and VEGF expression levels were higher in AAA tissues than in control tissues. Group treated with WP1066 (a selective JAK2/STAT3 pathway inhibitor), IL-17A, and VEGF groups had AAA incidences of 25%, 40%, and 65%, respectively, while the control group had an incidence of 75%. Histopathological analysis revealed that the IL-17A- and VEGF-related inflammatory responses were attenuated by WP1066. Thus, blocking the JAK2/STAT3 pathway with WP1066 attenuated experimental AAA progression. In addition, in study ii, we found that IL-17A siRNA seemed to attenuate the expression of IL-17A and VEGF in vivo study; treatment with VEGF siRNA decreased the expression of VEGF, while IL-17A expression remained high. In an in vitro study, rhIL-17A treatment increased JAK2/STAT3 and VEGF expression in macrophages in a dose-dependent manner. CONCLUSION: Blocking the JAK2/STAT3 pathway with WP1066 (a JAK2/STAT3 specific inhibitor) attenuates experimental AAA progression. During AAA progression, IL-17A may influence the expression of VEGF via the JAK2/STAT3 signaling pathway. This potential mechanism may suggest a novel strategy for nonsurgical AAA treatment.

13.
Harmful Algae ; 93: 101760, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32307078

RESUMO

An unprecedented bi-macroalgal bloom caused by Ulva prolifera and Sargassum horneri occurred from spring to summer of 2017 in the western Yellow Sea (YS) of China, where annual large-scale green tides have prevailed for a decade. The distinct genesis and blooming dynamics of the two seaweed species were detected and described. Unlike the consistent raft-origin of the floating Ulva biomass, the massive pelagic S. horneri was derived from multiple sources (residual seaweeds from the previous winter bloom and those drifting from offshore water in the south). The scale of the green tide in 2017 was found smaller than the previous four years. We then discussed a number of hypotheses attributing to this reduction, including reduced epiphytic green algae from aquaculture rafts and the influences of the massive pelagic S. horneri. However, further research is needed to identify the origin of the pelagic S. horneri in the western YS and any affiliations with the benthic populations, and to elucidate the interactions of this species with the annual green tides and the ensuing consequences.

14.
Chin Med J (Engl) ; 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32251003

RESUMO

BACKGROUND: Critical patients with the 2019 coronavirus disease (COVID-19), even those whose nucleic acid test results had turned negative and those receiving maximal medical support, have been noted to progress to irreversible fatal respiratory failure. Lung transplantation (LT) as the sole therapy for end-stage pulmonary fibrosis related to acute respiratory distress syndrome has been considered as the ultimate rescue therapy for these patients. METHODS: From February 10 to March 10, 2020, three male patients were urgently assessed and listed for transplantation. After conducting a full ethical review and after obtaining assent from the family of the patients, we performed three LT procedures for COVID-19 patients with illness durations of >1 month and extremely high sequential organ failure assessment (SOFA) scores. RESULTS: Two of the three recipients survived post-LT and started participating in a rehabilitation program. Pearls of the LT team collaboration and perioperative logistics were summarized and continually improved. The pathological results of the explanted lungs were concordant with the critical clinical manifestation, and provided insight towards better understanding of the disease. Government health affair systems, virology detection tools, and modern communication technology all play key roles towards the survival of the patients and their rehabilitation. CONCLUSIONS: Lung transplantation can be performed in end-stage patients with respiratory failure due to COVID-19-related pulmonary fibrosis. If confirmed positive-turned-negative virology status without organ dysfunction, LT provided the final option for these patients to avoid certain death, with proper protection of transplant surgeons and medical staffs. By ensuring instant seamless care for both patients and medical teams, the goal of reducing the mortality rate and salvaging the lives of patients with COVID-19 can be attained.

15.
Lab Invest ; 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32238906

RESUMO

Talin and vinculin, both actin-cytoskeleton-related proteins, have been documented to participate in establishing bacterial infections, respectively, as the adapter protein to mediate cytoskeleton-driven dynamics of the plasma membrane. However, little is known regarding the potential role of the talin-vinculin complex during spotted fever group rickettsial and Ebola virus infections, two dreadful infectious diseases in humans. Many functional properties of proteins are determined by their participation in protein-protein complexes, in a temporal and/or spatial manner. To resolve the limitation of application in using mouse primary antibodies on archival, multiple formalin-fixed mouse tissue samples, which were collected from experiments requiring high biocontainment, we developed a practical strategic proximity ligation assay (PLA) capable of employing one primary antibody raised in mouse to probe talin-vinculin spatial proximal complex in mouse tissue. We observed an increase of talin-vinculin spatial proximities in the livers of spotted fever Rickettsia australis or Ebola virus-infected mice when compared with mock mice. Furthermore, using EPAC1-knockout mice, we found that deletion of EPAC1 could suppress the formation of spatial proximal complex of talin-vinculin in rickettsial infections. In addition, we observed increased colocalization between spatial proximity of talin-vinculin and filamentous actin-specific phalloidin staining in single survival mouse from an ordinarily lethal dose of rickettsial or Ebola virus infection. These findings may help to delineate a fresh insight into the mechanisms underlying liver specific pathogenesis during infection with spotted fever rickettsia or Ebola virus in the mouse model.

16.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 34(4): 428-434, 2020 Apr 15.
Artigo em Chinês | MEDLINE | ID: mdl-32291976

RESUMO

Objective: To discuss the safety and effectiveness of the improved technique by comparing the effects of low temperature bone cement infusion before and after the improvement in the percutaneous vertebroplasty (PVP). Methods: The clinical data of 170 patients (184 vertebrae) with osteoporotic vertebral compression fracture who met the selection criteria between January 2016 and January 2018 were retrospectively analyzed. All patients were treated with PVP by low-temperature bone cement perfusion technology. According to the technical improvement or not, the patients were divided into two groups: the group before the technical improvement (group A, 95 cases) and the group after the technical improvement (group B, 75 cases). In group A, the patients were treated by keeping the temperature of bone cement at 0℃ and parallel puncture; in group B, the patients were treated by increasing the temperature of bone cement or reducing the time of bone cement in ice salt water and cross puncture. There was no significant difference in gender, age, disease duration, T value of bone mineral density, operative segment, and preoperative vertebral compression rate, visual analogue scale (VAS) score between the two groups ( P>0.05). CT examination was performed immediately after operation, and the leakage rate of bone cement was calculated. The amount of bone cement perfusion and the proportion of bone cement in contact with the upper and lower endplates at the same time were compared between the two groups. The vertebral compression rate was calculated and the VAS score was used to evaluate the pain before operation, at immediate after operation, and last follow-up. Results: There was no complication such as incision infection, spinal nerve injury, or pulmonary embolism in both groups. There was no significant difference in the amount of bone cement perfusion between groups A and B ( t=0.175, P=0.861). There were 38 vertebral bodies (36.89%) in group A and 49 vertebral bodies (60.49%) in group B exposed to bone cement contacting with the upper and lower endplates at the same time, showing significant difference ( χ 2=10.132, P=0.001). Bone cement leakage occurred in 19 vertebral bodies (18.45%) in group A and 6 vertebral bodies (7.41%) in group B, also showing significant difference ( χ 2=4.706, P=0.030). The patients in group A and group B were followed up (13.3±1.2) months and (11.5±1.1) months, respectively. The vertebral compression rates of the two groups at immediate after operation were significantly lower than those before operation ( P<0.05), but the vertebral compression rate of group A at last follow-up was significantly higher than that at immediate after operation ( P<0.05), and there was no significant difference in group B between at immediate after operation and at last follow-up ( P>0.05). The VAS scores of the two groups at immediate after operation were significantly lower than those before operation ( P<0.05); but the VAS scores of group A at last follow-up were significantly higher than those at immediate after operation ( P<0.05) and there was no siginificant difference in group B ( P>0.05). There was no significant difference in VAS scores between the two groups at immediate after operation ( t=0.380, P=0.705); but at last follow-up, VAS score in group B was significantly lower than that in group A ( t=3.627, P=0.000). Conclusion: The improved advanced low-temperature bone cement perfusion technology during PVP by increasing the viscosity of bone cement combined with cross-puncture technology, can reduce bone cement leakage, improve the distribution of bone cement in the vertebral body, and reduce the risk of vertebral collapse, and achieve better effectiveness.

17.
Zhongguo Zhong Yao Za Zhi ; 45(1): 149-156, 2020 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-32237424

RESUMO

In this research, high-throughput sequencing was used to investigate the mechanism of Naoxintong Capsules(NXTC) in prevention of post-ischemic inflammation. First, microglia BV-2 inflammatory model was induced by 1.0 µg·mL~(-1) LPS to investigate the effect of intestinal absorption solution of NXTC(NXTCIA) at different concentrations(62.5, 31.25, 15.63, 7.81 µg·mL~(-1)) on LPS-induced BV-2 inflammatory factors in microglia. Then, an RNA-Seq high-throughput sequencing method was performed to identify the differentially expressed mRNAs in microglia BV-2 after pre-treatment with NXTC. GO and KEGG enrichment analysis was used to screen the potential biological processes and related signaling pathways of NXTC in inhibiting inflammation. The results showed that four NXTCIA concentrations could significantly inhibit the release of LPS-induced inflammatory mediators in BV-2 in a dose-dependent manner. Furthermore, high-throughput sequencing results showed that 392 mRNA transcripts were reversed following pre-treatment with NXTC. GO enrichment analysis showed that the transcripts reversed by NXTC were mainly involved in Toll-like receptor signaling pathway, chemokine signaling pathway, and TNF signaling pathway. Taken together, our findings showed that NXTC treatment could provide protective effects against inflammatory response and the mechanism might be related to the regulation of Toll-like receptor signaling pathway, chemokine signaling pathway, and TNF signaling pathway.

18.
Environ Pollut ; 263(Pt A): 114569, 2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32311638

RESUMO

The determination of the spatiotemporal patterns and driving factors of PM2.5 is of great interest to the atmospheric and climate science community, who aim to understand and better control the atmospheric linkage indicators. However, most previous studies have been conducted on pollution-sensitive cities, and there is a lack of large-scale and long-term systematic analyses. In this study, we investigated the spatiotemporal evolution of PM2.5 and its influencing factors by using an exploratory spatiotemporal data analysis (ESTDA) technique and spatial econometric model based on remote sensing imagery inversion data of the Yangtze River Economic Belt (YREB), China, between 2000 and 2016. The results showed that 1) the annual value of PM2.5 was in the range of 23.49-37.67 µg/m3 with an inverted U-shaped change trend, and the PM2.5 distribution presented distinct spatial heterogeneity; 2) there was a strong local spatial dependence and dynamic PM2.5 growth process, and the spatial agglomeration of PM2.5 exhibited higher path-dependence and spatial locking characteristics; and 3) the endogenous interaction effect of PM2.5 was significant, where each 1% increase in the neighbouring PM2.5 levels caused the local PM2.5 to increase by at least 0.4%. Natural and anthropogenic factors directly and indirectly influenced the PM2.5 levels. Our results provide spatial decision references for coordinated trans-regional air pollution governance as well as support for further studies which can inform sustainable development strategies in the YREB.

19.
Cell Death Dis ; 11(4): 221, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32251289

RESUMO

T-cell acute lymphoblastic leukaemia (T-ALL) is an aggressive haematological malignancy that is characterized by a high frequency of induction failure and by early relapse. Many studies have revealed that metadherin (MTDH) is highly expressed in a variety of malignant solid tumours and plays an important role in the occurrence and development of tumours. However, the relationship between the expression of MTDH and T-ALL has not yet been reported, and the regulatory factors of MTDH are still unknown. Our previous studies found that mPGES-1/PGE2 was important for promoting the growth of leukaemia cells. In the present study, we found that MTDH was highly expressed in primary T-ALL cells and in the Jurkat cell line. Our results showed that mPGES-1/PGE2 regulates the expression of MTDH through the EP3/cAMP/PKA-CREB pathway in T-ALL cells. Downregulation of MTDH inhibits the growth of Jurkat cells in vitro and in vivo. Our results suggest that MTDH could be a potential target for the treatment of T-ALL.

20.
World J Gastroenterol ; 26(12): 1340-1351, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32256021

RESUMO

BACKGROUND: In esophageal squamous carcinoma, lymphadenectomy along the left recurrent laryngeal nerve (RLN) is recommended owing to its highly metastatic potential. However, this procedure is difficult due to limited working space in the left upper mediastinum, and increases postoperative complications. AIM: To present a novel method for lymphadenectomy along the left RLN during thoracoscopic esophagectomy in the semi-prone position. METHODS: The fundamental concept of this novel method is to exfoliate a bilateral pedicled nerve flap, which is a two-dimensional membrane, which includes the left RLN, lymph nodes (LNs) along the left RLN, and tracheoesophageal vessels, by suspending the esophagus to the dorsal side and pushing the trachea to the ventral side (named "bilateral exposure method"). Then, the hollow-out method is performed to transform the two-dimensional membrane to a three-dimensional structure, in which the left RLN and tracheoesophageal vessels are easily distinguished and preserved during lymphadenectomy along the left RLN. This novel method was retrospectively evaluated in 116 consecutive patients with esophageal squamous carcinoma from August 2016 to February 2018. RESULTS: There were 58 patients in each group. No significant difference was found between the two groups in terms of age, gender, postoperative pneumonia, anastomotic fistula, and postoperative hospitalization. However, the number of dissected LNs along the left RLN in this novel method was significantly higher than that in the conventional method (4.17 ± 0.359 vs 2.93 ± 0.463, P = 0.0447). Moreover, the operative time and the rate of postoperative hoarseness in the novel method were significantly lower than those in the conventional method (306.0 ± 6.774 vs 335.2 ± 7.750, P = 0.0054; 4/58 vs 12/58, P = 0.0312). CONCLUSION: This novel method for lymphadenectomy along the left RLN during thoracoscopic esophagectomy in the semi-prone position is much safer and more effective.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA