RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Yi Qi Chu Tan Formula (YQCTF), a prescription consisting of eight traditional Chinese medicine for treating lung cancer, has been clinically proven to be effective in improving the life quality and prolonging the survival time of non-small cell lung cancer (NSCLC) patients. AIM OF THE STUDY: This study aimed to evaluate the therapeutic efficacy of YQCTF on NSCLC mice model and further explore its therapeutic targets by using network pharmacology, proteomics and pharmacodynamic methodologies. MATERIALS AND METHODS: The network pharmacology analysis was firstly conducted to screen out the potential active ingredients and therapeutic targets of YQCTF against NSCLC. Three kinds of extracts, i.e. the water extract (WE), water extraction-alcohol precipitation (WEAP) and alcohol extract (AE) of YQCTF were prepared, which chemical compositions were subsequently analyzed by using ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UPLC-MS/MS), and which anti-neoplastic efficacy was examined on NSCLC mice model. Mice tumor tissues were collected for proteomics analysis, and the immunomodulatory effects of YQCTF extracts on the tumor microenvironment (TME) were further validated by using flow cytometry, immunofluorescence, ELISA and Western blot. RESULTS: Network pharmacology identified 60 conjunct genes and ample cancer-related signaling pathways as potential therapeutic targets of YQCTF. Protein-protein interaction (PPI), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that YQCTF might negatively regulate cancer-related inflammation. UPLC-MS/MS analysis showed that the main components of YQCTF include at least ginsenosides, solasodine, solamargine, solasonine, peimisine, peiminine, peimine and sipeimine-3ß-D-glucosihde. All kinds of YQCTF extracts significantly inhibited the growth of lung cancer allograft and regulated the ratio of immune cells in tumor tissues, i.e. upregulated the fractions of T cells, promoted the maturation of dendritic cells (DCs), increased the M1/M2 ratio of tumor-related macrophages, but reduced the number of Tregs and immunosuppressive neutrophils. Proteomics identified neutrophils to be the most prominently enriched target linked to NETs formation in mice tumor tissue, which is verified by the downregulation of neutrophil recruiting factors involving IL-6, HIF-1α and IL-8, as well as the decreases of NETs-related biomarkers including H3cit, MPO, CD18, MMP9 and ICAM-1 in immunofluorescence, ELISA and Western blot analysis. CONCLUSION: YQCTF inhibited the progress of mice NSCLC allograft, suppressed the pro-tumorigenic tumor-associated neutrophils and improved the tumor immune microenvironment (TIME).
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Animais , Camundongos , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neutrófilos , Cromatografia Líquida , Farmacologia em Rede , Proteômica , Espectrometria de Massas em Tandem , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Simulação de Acoplamento Molecular , Microambiente TumoralRESUMO
ABSTRACT: The overdiagnosis of prostate cancer (PCa) caused by nonspecific elevation serum prostate-specific antigen (PSA) and the overtreatment of indolent PCa have become a global problem that needs to be solved urgently. We aimed to construct a prediction model and provide a risk stratification system to reduce unnecessary biopsies. In this retrospective study, clinical data of 1807 patients from three Chinese hospitals were used. The final model was built using stepwise logistic regression analysis. The apparent performance of the model was assessed by receiver operating characteristic curves, calibration plots, and decision curve analysis. Finally, a risk stratification system of clinically significant prostate cancer (csPCa) was created, and diagnosis-free survival analyses were performed. Following multivariable screening and evaluation of the diagnostic performances, a final diagnostic model comprised of the PSA density and Prostate Imaging-Reporting and Data System (PI-RADS) score was established. Model validation in the development cohort and two external cohorts showed excellent discrimination and calibration. Finally, we created a risk stratification system using risk thresholds of 0.05 and 0.60 as the cut-off values. The follow-up results indicated that the diagnosis-free survival rate for csPCa at 12 months and 24 months postoperatively was 99.7% and 99.4%, respectively, for patients with a risk threshold below 0.05 after the initial negative prostate biopsy, which was significantly better than patients with higher risk. Our diagnostic model and risk stratification system can achieve a personalized risk calculation of csPCa. It provides a standardized tool for Chinese patients and physicians when considering the necessity of prostate biopsy.
RESUMO
Due to the diversity of industrial lignin sources and the complexity of its structure, its application as a high-value material is limited. Lignin nanoparticles (LNPs) have emerged as a hotspot for research due to their advantages of high specific surface area and high dispersion and the solvent transfer method is commonly used for the preparation of LNPs. In this paper, LNPs were prepared by solvent transfer method using DES based on sulfamic acid and urea (S/U DES) as solvent and water as anti-solvent. To explore the internal mechanism of the self-assembly of nanoparticles, a theoretical model of the solvent system and model lignin compound was constructed with the assistance of quantum chemistry and molecular dynamics theories. Through classical molecular dynamics (MD) simulations, the interaction energy, radius of gyration (ROG), solvent accessible surface area (SASS), radial and spatial distribution function (RDFs/SDFs), hydrogen bonding, and the morphology changes were analyzed to reveal the internal mechanism of self-assembly of model lignin compounds in S/U DES. This study is useful in revealing the mechanism of interaction between lignin and DES, as well as providing a benchmark for the green and efficient preparation of lignin nanoparticles.
RESUMO
The phytochemical investigation on the rhizomes of Dryopteris crassirhizoma (Dryopteridaceae) resulted in the discovery of one novel compound, drycrassirhizomamide A (1), and one new natural product, drycrassirhizomamide B (2), as well as four known isolates, (S)-(-)-N-benzoylphenylalaninol (3), blumenol A (4), 8-C-glucosylnoreugenin (5), and dryopteroside (6). Their chemical structures were identified by NMR and mass spectroscopy. Compounds 1-2 were determined to be 1,19-diethyl 10-oxo-2,9,11,18-tetraazanonadecanedioate and C,C'-diethyl N,N'-1,6-hexanediylbis[carbamate]. The anti-inflammatory activities of these compounds were evaluated with LPS-stimulated RAW264.7 macrophage and BV2 microglia. The results showed that compounds 1-3 and 6 have inhibitory effects of NO production with IC50 values of 13.41, 30.36, 25.51, and 11.35 µM in LPS-stimulated RAW264.7 cells. Also, compounds 1 and 4-6 have abilities to inhibit NO production with the IC50 values of 40.11, 30.94, 15.76, and 16.79 µM in BV2 cells, which demonstrated that they may possess the potential anti-inflammatory activity.
RESUMO
Beta-elemene, a class of sesquiterpene derived from the Chinese medicinal herb Curcuma wenyujin, is widely used in clinical medicine due to its broad-spectrum antitumor activity. However, the unsustainable plant extraction prompted the search for environmentally friendly strategies for ß-elemene production. In this study, we designed a Yarrowia lipolytica cell factory that can continuously produce germacrene A, which is further converted into ß-elemene with 100% yield through a Cope rearrangement reaction by shifting the temperature to 250°C. First, the productivity of four plant-derived germacrene A synthases was evaluated. After that, the metabolic flux of the precursor to germacrene A was maximized by optimizing the endogenous mevalonate pathway, inhibiting the competing squalene pathway, and expressing germacrene A synthase gene in multiple copies. Finally, the most promising strain achieved the highest ß-elemene titer reported to date with 5.08 g/L. This sustainable and green method has the potential for industrial ß-elemene production.
RESUMO
Data from 200 children with high-risk acute myeloid leukaemia who underwent their first haploidentical haematopoietic stem cell transplantation (haplo-HSCT) between 2015 and 2021 at our institution were analysed. The 4-year overall survival (OS), event-free survival (EFS) and cumulative incidence of relapse (CIR) were 71.9%, 62.3% and 32.4% respectively. The 100-day cumulative incidences of grade II-IV and III-IV acute graft-versus-host disease (aGVHD) were 41.1% and 9.5% respectively. The 4-year cumulative incidence of chronic GVHD (cGVHD) was 56.1%, and that of moderate-to-severe cGVHD was 27.3%. Minimal residual disease (MRD)-positive (MRD+) status pre-HSCT was significantly associated with lower survival and a higher risk of relapse. The 4-year OS, EFS and CIR differed significantly between patients with MRD+ pre-HSCT (n = 97; 63.4%, 51.4% and 41.0% respectively) and those with MRD-negative (MRD-) pre-HSCT (n = 103; 80.5%, 73.3% and 23.8% respectively). Multivariate analysis also revealed that acute megakaryoblastic leukaemia without Down syndrome (non-DS-AMKL) was associated with extremely poor outcomes (hazard ratios and 95% CIs for OS, EFS and CIR: 3.110 (1.430-6.763), 3.145 (1.628-6.074) and 3.250 (1.529-6.910) respectively; p-values were 0.004, 0.001 and 0.002 respectively). Thus, haplo-HSCT can be a therapy option for these patients, and MRD status pre-HSCT significantly affects the outcomes. As patients with non-DS-AMKL have extremely poor outcomes, even with haplo-HSCT, a combination of novel therapies is urgently needed.
RESUMO
We present a multilevel synergically controlling wavefront correction method that can apply in a slab laser system. To fully utilize the response frequency and the stroke of actuators of the single deformable mirror (DM), we design a set of multilevel wavefront correction devices to reduce the root-mean square of wavefront aberration before the DM. As the wavefront of slab geometry solid-state lasers mainly consists of fourth and longitudinally distributed aberration, such as 5th, 9th, and 14th orders of Legendre polynomials. We design a precompensating level of the aberration with a slow-drift mirror, fast-steer mirror, one-dimensional adjustable slab-aberration compensator, and beam-shaping system to reduce these orders of wavefront aberration with low spatial resolution and large stroke. As the controlling bandwidth of different devices is diverse, the coupling oscillation between the precompensating level and adaptive optics (AO) level occurs, then we develop the multilevel synergically control to address the coupling. With the precompensating level, the experimental result shows the residual wavefront aberration of the slab laser is compensated well by the AO level effectively within the compensating capability. We clean up a 9.8 kW slab laser system with the beam quality ß of far-field focus spots improved from 17.71 to 2.24 times the diffraction limit.
RESUMO
Laying hens were exposed to feeds spiked with a series of perfluoroalkyl carboxylates (PFCAs) ranging from perfluorobutanoic acid (C4) to perfluorooctadecanoic acid (C18) to investigate their bioaccumulation, tissue distribution, and maternal transfer. We found that PFCAs with longer carbon chains (>8) were more efficiently absorbed in the gastrointestinal tract than those with shorter chains (≤8), and that the rate of depuration varied inversely with the carbon chain length in a U-shaped pattern. Moreover, bioaccumulation potential increased with increasing carbon-chain length, except for C4. Distinct affinities were observed for specific carbon-chain PFCAs across various tissues, evident from their differential accumulation during both uptake and depuration phases. Specifically, C9 showed a higher affinity for serum and liver, C12 was more prevalent in yolk, C14 was notably abundant in the brain, and C18 was predominant in other tissues. Furthermore, the egg-maternal ratio (EMR) increased with increasing carbon-chain length from C7 to C11 and reached a plateau phase for C12 to C18. Our study also confirmed the key role of phospholipids in the tissue distribution and maternal transfer of long-chain PFCAs. This study sheds light on the interaction between PFCAs and biological tissues and reveals the toxicokinetic factors that influence the bioaccumulation of PFCAs. Further research is needed to identify the specific proteins or components that mediate the tissue-specific affinity for different carbon-chain lengths of PFCAs.
RESUMO
The Apetala2 (AP2) gene family of transcription factors (TFs) play important functions in plant development, hormonal response, and abiotic stress. To reveal the biological functions and the expression profiles of AP2 genes in Hypericum perforatum, genome-wide identification of HpAP2 family members was conducted. Methods: We identified 21 AP2 TFs in H. perforatum using bioinformatic methods; their physical and chemical properties, gene structures, conserved motifs, evolutionary relationships, cis-acting elements, and expression patterns were investigated. Results: We found that based on the structural characteristics and evolutionary relationships, the HpAP2 gene family can be divided into three subclasses: euANT, baselANT, and euAP2. A canonical HpAP2 TF shared a conserved protein structure, while a unique motif 6 was found in HpAP2_1, HpAP2_4, and HpAP2_5 from the euANT subgroup, indicating potential biological and regulatory functions of these genes. Furthermore, a total of 59 cis-acting elements were identified, most of which were associated with growth, development, and resistance to stress in plants. Transcriptomics data showed that 57.14% of the genes in the AP2 family were differentially expressed in four organs. For example, HpAP2_18 was specifically expressed in roots and stems, whereas HpAP2_17 and HpAP2_11 were specifically expressed in leaves and flowers, respectively. HpAP2_5, HpAP2_11, and HpAP2_18 showed tissue-specific expression patterns and responded positively to hormones and abiotic stresses. Conclusion: These results demonstrated that the HpAP2 family genes are involved in diverse developmental processes and generate responses to abiotic stress conditions in H. perforatum. This article, for the first time, reports the identification and expression profiles of the AP2 family genes in H. perforatum, laying the foundation for future functional studies with these genes.
Assuntos
Antineoplásicos , Hypericum , Hypericum/genética , Evolução Biológica , Biologia Computacional , FloresRESUMO
As a transcriptional factor, the Forkhead box (FOX) gene family is closely connected with apoptosis, proliferation, and other cellular processes. FOXD2, as one descendant of the FOX gene family, has been mentioned in many articles to show a high expression in several cancers. However, whether FOXD2 has a connection with gastric adenocarcinoma remains an unanswered question. Expression of FOXD2 and IQGAP3 in gastric adenocarcinoma was evaluated by bioinformatics analysis, which was further detected by real-time quantitative PCR (qRT-PCR) and western blot. The downstream target genes of FOXD2 were also mined by bioinformatics analysis. Pathway enrichment analysis was then performed on the target genes. Chromatin immunoprecipitation assay (ChIP) and dual-luciferase reporter assay were conducted to validate the regulatory relationship between FOXD2 and its downstream target gene IQGAP3. Methyl thiazolyl tetrazolium assay (MTT), combined with cell colony formation assay, was employed to assess the effect of FOXD2 and IQGAP3 on the proliferation of gastric adenocarcinoma cells. Intracytoplasmic Ca2+ concentration was measured by Fluo-3 fluorescence staining. FOXD2 showed a high expression in gastric adenocarcinoma tissues and cells, and FOXD2 silencing considerably attenuated gastric adenocarcinoma cell proliferation. IQGAP3, a downstream target gene of FOXD2, had a positive connection with the expression of FOXD2. The binding relationship between FOXD2 and the promoter region of IQGAP3 was further verified by ChIP and dual-luciferase reporter assays. The results of cell function experiments indicated that FOXD2 could promote gastric adenocarcinoma cell proliferation by transcriptionally activating IQGAP3 to induce an increase in intracellular Ca2+ level. This study confirmed that FOXD2 increased intracellular Ca2+ level through transcriptional activation of IQGAP3, which in turn propelled the proliferation of gastric adenocarcinoma cells, revealing the considerable significance of FOXD2 in the development of gastric adenocarcinoma.
RESUMO
The influence of the P-M-P bite angle in diphosphine ligands on selectivity has been observed in various catalytic reactions. A better understanding of the ligand bite angle concept is important for the rational design of efficient catalytic systems. In the present work, the mechanism of cobalt-catalyzed C-H functionalization of aldehydes with enynes and how the diphosphine ligands alter regioselectivity were investigated by density functional theory (DFT) calculations. The catalytic cycle is initiated by the oxidative cyclization of enynes rather than the oxidative addition of aldehydes. Regioselectivity arises from competing σ-bond metathesis and migratory insertion steps, in which the steric effects of diphosphine ligands are the dominant factors influencing the activation barriers. The calculations indicate that σ-bond metathesis is more challenging and its feasibility is highly dependent on the ligand bite angle. The improved mechanistic understanding will enable further design of transition-metal-catalyzed selective cyclization reactions.
RESUMO
Acute kidney injury (AKI) is a complication that can be induced by different factors. Allicin is a class of organic sulfur compounds with anticancer and antibacterial effects, and has not been reported in sepsis-induced AKI (S-AKI). S-AKI was induced in c57BL/6 mice by cecal ligation puncture. In response to the treatment of allicin, the survival rate of mice with S-AKI was increased. Reduced levels of serum creatinine, blood urea nitrogen, UALB, KIM-1 and NGAL indicated an improvement in renal function of S-AKI mice. Allicin inhibited the inflammation and cell apoptosis, which evidenced by decreased levels of inflammatory cytokines and apoptosis-related proteins. Oxidative stress was evaluated by the levels of oxidative stress biomarkers, and suppressed by allicin. In addition, allicin-alleviated mitochondrial dysfunction was characterized by decreased JC-1 green monomer. These effects of allicin were also evidenced in HK2 cells primed with lipopolysaccharide (LPS). Both in vivo and in vitro experiments showed that the nuclear translocation of Nrf2 and the expression of HO-1 increased after allicin treatment, which was confirmed by ML385 and CDDO-Me. In summary, this study revealed the alleviating effect of allicin on S-AKI and demonstrated the promotive effect of allicin on nuclear translocation of Nrf2 for the first time. It was inferred that allicin inhibited the progression of S-AKI through Nrf2/HO-1 signaling pathway. This study makes contributions to the understanding of the roles of allicin in S-AKI.
RESUMO
RATIONALE: Generally, there is no lipoprotein in aqueous humor, and chyle usually exists transiently in the body. Therefore, persistent chylous aqueous humor is rare. PATIENT CONCERNS: We report a case of a 39-year-old man with persistent milky white appearance over the right eye. DIAGNOSES: The patient had a history of poorly controlled diabetes for the past 2 years and central retinal vein occlusion of the same eye for the past 2 weeks. The patient's right eye had a uniform milky appearance in the anterior chamber, transparent cornea, and no keratic precipitate in the posterior cornea. Color Doppler ultrasound of the affected eye showed no obvious inflammation in the vitreous cavity. Laboratory tests revealed severe chylemia. The patient was finally diagnosed as chylous aqueous humor. INTERVENTIONS AND OUTCOMES: After conventional hypolipidemia and hypoglycemia treatment and locally glucocorticoid treatment. The milky white changes in the anterior chamber improved considerably and finally disappeared. LESSONS: Although the impact of hyperlipidemia on the cardiovascular system and digestive system is well known, its impact on the eyes is often overlooked. We report a rare case of unilateral chylous aqueous humor caused by hyperlipidemia. Through the analysis of this special case, we recommend that ophthalmologists should pay attention to the impact of blood lipid change on eyes.
Assuntos
Hiperlipidemias , Oclusão da Veia Retiniana , Masculino , Humanos , Adulto , Hiperlipidemias/complicações , Humor Aquoso , Câmara Anterior , CórneaRESUMO
The plant species Gelsemium elegans Benth. (GEB) promotes pig and sheep growth; however, little is known about its effects in chickens. In this study, a GEB extract (GEBE) was prepared, and its effects on the growth, slaughter, antioxidant performance, meat quality, serum biochemical indices, intestinal morphology, and microflora of yellow-feathered chickens were evaluated. In total, 600 chickens aged 15 days were randomly divided into four groups with five replicates each and fed a basal diet containing 0% (control), 0.25% (0.25 GEBE), 0.75% (0.75 GEBE), or 1.25% (1.25 GEBE) GEBE until 49 days of age. Chickens were then killed, and their meat, organs, and serum and cecal contents were collected. GEBE reduced the feed conversion ratio, particularly in the 0.75 and 1.25 GEBE groups. Furthermore, the GEBE diet improved meat tenderness and reduced the meat expressible moisture content and liver malondialdehyde content, indicating high meat quality. Whereas the 0.25 GEBE diet increased the level of Lactobacillus acidophilus in the cecum, the 0.75 GEBE diet decreased the Escherichia coli level therein. These findings demonstrate that GEBE may improve the meat quality and cecal microbiota of yellow-feathered chickens, providing a basis for identifying candidate alternatives to conventional antibiotics as growth promoting feed additives.
RESUMO
In mammals, right open reading frame kinase 3 (RIOK3) is related with cancer development and immune regulation. To explore the role of teleost RIOK3 in the antiviral innate immunity, the homolog of RIOK3 (bcRIOK3) from black carp (Mylopharyngodon piceus) has been cloned and characterized in this study. Sequence analysis revealed that bcRIOK3 is conserved in vertebrates. The transcription of bcRIOK3 varied in host cells in response to the stimulation of spring viremia of carp virus (SVCV), poly (I:C), and LPS. Immunoblotting (IB) and immunofluorescence (IF) assays identified bcRIOK3 as a cytoplasmic protein with a molecular weight of â¼60 kDa. It was interesting that bcRIOK3 knockdown led to the decreased basal mRNA levels of IFNa, IFNb and Viperin; however, triggered obviously higher mRNA levels of the above genes after viral infection and enhanced host resistance to SVCV. Like its mammalian counterpart, bcRIOK3 overexpression in EPC cells showed a significant inhibitory effect on black carp MDA5 (bcMDA5)-mediated transcription of interferon promoters and antiviral activity. Co-immunoprecipitation and immunofluorescent assays identified the association between bcRIOK3 and bcMDA5. Further analysis revealed that bcRIOK3 enhanced the K48-linked ubiquitination and proteasome-dependent degradation of bcMDA5, and it weakened the oligomerization of bcMDA5 under poly (I:C) stimulation. In summary, our data conclude that RIOK3 dampens MDA5-mediated IFN signaling by promoting its degradation in black carp, which provide new insights into the regulation of IFN signaling in teleost.
RESUMO
IKKε plays an important role in the activation of IRF3/IRF7 and the production of interferon (IFN), however, its regulation remains obscure in human. E3 ligase TRIM25 has been reported to manipulate the K63-linked ubiquitination of RIG-I, leading to the activation of RIG-I/IFN signaling. To elucidate the role of TRIM25 in teleost, a TRIM25 homolog (bcTRIM25) was cloned and characterized from black carp (Mylopharyngodon piceus). bcTRIM25 contains 653 amino acids, possessing conservative RING, B-box and SPRY domain, which is highly expressed in muscle, spleen and skin. bcTRIM25 knock-down enhanced the antiviral ability of host cells. bcTRIM25 over-expression alone in EPC cells attenuated bcIFNa promoter transcription in the reporter assays and impeded PKR and MX1 expression in qRT-PCR. Interestingly, co-IP assays indicated that bcTRIM25 interacted with bcIKKε and the induced bcIFNa promoter transcription by bcIKKε was notably hindered by bcTRIM25. Furthermore, bcIKKε-induced expression of interferon stimulated genes (ISGs) and antiviral activity were dampened by bcTRIM25. Further exploration showed that bcTRIM25 visibly enhanced the ubiquitination of bcIKKε but significantly attenuated the phosphorylation of bcIKKε. Thus, our data demonstrate for the first time in vertebrate that TRIM25 negatively regulates IKKε through enhancing its ubiquitination, which sheds a light on the regulation of IKKε/IFN signaling.
RESUMO
INTRODUCTION: Dajianzhong decoction (DJZD), a classic famous prescription, has a long history of medicinal application. Modern studies have demonstrated its clinical utility in the treatment of postoperative ileus (POI). But none of the current quality evaluation methods for this compound is associated with efficacy. OBJECTIVES: This study aimed to identify the quality markers (Q-Markers) connected to the treatment of POI in DJZD. METHODOLOGY: Ultra-performance liquid chromatography quadrupole Exactive Orbitrap mass spectrometry (UPLC-Q-Exactive Orbitrap-MS) was used to identify the main constituents in DJZD. Based on the qualitative results obtained by fingerprinting, chemical pattern recognition (CPR) was used to analyse the key components affecting the quality and finally to establish the network of the active ingredients in DJZD with POI. RESULTS: A total of 64 chemical components were detected. After fingerprint analysis, 13 common peaks were identified. The fingerprint similarity of 15 batches of samples ranged from 0.860 to 1.000. CPR analysis was able to categorically classify 15 batches of DJZD into two groups. And gingerenone A, methyl-6-gingerdiol, 6-gingerol, and hydroxy-ß-sanshool contributed to their grouping. Twelve common components interact with the therapeutic targets for treating POI. In addition, the mechanism of this prescription for treating POI may be related to the jurisdiction of the neurological system, the immunological system, and the inflammatory response. CONCLUSIONS: This integrated approach can accurately assess and forecast the quality of DJZD, presume the Q-Markers of DJZD for POI, and lay the foundation for studying the theoretical underpinnings and exploring the mechanism of DJZD in the treatment of POI.
RESUMO
Ischemic retinal diseases (IRDs) are a series of common blinding diseases that depend on accurate fundus fluorescein angiography (FFA) image interpretation for diagnosis and treatment. An artificial intelligence system (Ai-Doctor) was developed to interpret FFA images. Ai-Doctor performed well in image phase identification (area under the curve [AUC], 0.991-0.999, range), diabetic retinopathy (DR) and branch retinal vein occlusion (BRVO) diagnosis (AUC, 0.979-0.992), and non-perfusion area segmentation (Dice similarity coefficient [DSC], 89.7%-90.1%) and quantification. The segmentation model was expanded to unencountered IRDs (central RVO and retinal vasculitis), with DSCs of 89.2% and 83.6%, respectively. A clinically applicable ischemia index (CAII) was proposed to evaluate ischemic degree; patients with CAII values exceeding 0.17 in BRVO and 0.08 in DR may be associated with increased possibility for laser therapy. Ai-Doctor is expected to achieve accurate FFA image interpretation for IRDs, potentially reducing the reliance on retinal specialists.
RESUMO
BACKGROUND: Alignment is indispensable for the foot and ankle function, especially in the hindfoot alignment. In the preoperative planning of patients with varus or valgus deformity, the precise measurement of the hindfoot alignment is important. A new method of photographing and measuring hindfoot alignment based on X-ray was proposed in this study, and it was applied in the assessment of flatfoot. METHODS: This study included 28 patients (40 feet) with flatfeet and 20 volunteers (40 feet) from January to December 2018. The hindfoot alignment shooting stand independently designed by our department was used to take hindfoot alignment X-rays at 10 degree, 15 degree, 20 degree, 25 degree, and 30 degree. We measured the modified tibio-hindfoot angle (THA) at the standard hindfoot aligment position (shooting at 20 degree) and evaluated consistency with the van Dijk method and the modified van Dijk method. In addition, we observed the visibility of the tibiotalar joint space from all imaging data at five projection angles and evaluated the consistency of the modified THA method at different projection angles. The angle of hindfoot valgus of flatfoot patients was measured using the modified THA method. RESULTS: The mean THA in the standard hindfoot aligment view in normal people was significantly different among the three evaluation methods (P < .001). The results from the modified THA method were significantly larger than those from the Van Dijk method (P < .001) and modified Van Dijk method (P < .001). There was no significant difference between the results of the modified THA method and the weightbearing CT (P = .605), and the intra- and intergroup consistency were the highest in the modified THA group. The tibiotalar space in the normal group was visible in all cases at 10 degree, 15 degree, and 20 degree; visible in some cases at 25 degree; and not visible in all cases at 30 degree. In the flatfoot group, the tibiotalar space was visible in all cases at 10 degree, visible in some cases at 15 degree and 20 degree, and not visible in all cases at 25 degree and 30 degree. In the normal group, the modified THA was 4.84 ± 1.81 degree at 10 degree, 4.96 ± 1.77 degree at 15 degree, and 4.94 ± 2.04 degree at 20 degree. No significant differences were found among the three groups (P = .616). In the flatfoot group, the modified THA of 18 feet, which was visible at 10 degree, 15 degree and 20 degree, was 13.58 ± 3.57 degree at 10 degree, 13.62 ± 3.83 degree at 15 degree and 13.38 ± 4.06 degree at 20 degree. There were no significant differences among the three groups (P = .425). CONCLUSIONS: The modified THA evaluation method is simple to use and has high inter- and intragroup consistency. It can be used to evaluate hindfoot alignment. For patients with flatfeet, the 10 degree position view and modified THA measurement can be used to evaluate hindfoot valgus.