Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 444
Filtrar
1.
Theriogenology ; 170: 1-14, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33945957

RESUMO

Sertoli cells provide nutrients and support for germ cell differentiation and maintain a stable microenvironment for spermatogenesis. Comprehensive identification of Sertoli cellular proteins is important in understanding spermatogenesis. In this study, we performed an integrative analysis of the proteome and phosphoproteome to explore the role of Sertoli cells in spermatogenesis. A total of 2912 and 753 proteins were identified from the proteome and phosphoproteome in Sertoli cells, respectively; 438 proteins were common to the proteome and phosphoproteome. Data are available via ProteomeXchange with identifier PXD024984. In the proteome, ACTG1, ACTB, ACTA2, MYH9 were the most abundant proteins. Gene Ontology (GO) analysis indicated that most of the proteins were involved in the processes of localization, biosynthesis, gene expression, and transport. In addition, some of the proteins related to Sertoli cell functions were also enriched. In the phosphoproteome, most of the proteins were involved in gene expression and the RNA metabolic process; the pathways mainly involved the spliceosome, mitogen-activated protein kinase signaling pathway, focal adhesion, and tight junctions. The pleckstrin homology-like domain is the most highly enriched protein domain in phosphoproteins. Cyclin-dependent kinases and protein kinases C were found to be highly active kinases in the kinase-substrate network analysis. Ten proteins most closely related to network stability were found in the analysis of the network interactions of proteins identified jointly in the phosphoproteome and proteome. Through immunohistochemistry and immunofluorescence verification of vimentin, it was found that there were localization differences between phosphorylated and non-phosphorylated vimentin in testicular tissue. This study is the first in-depth proteomic and phosphoproteomic analysis of buffalo testicular Sertoli cells. The results provide insight into the role of Sertoli cells in spermatogenesis and provide clues for further study of male reproduction.

2.
ACS Nano ; 15(4): 6551-6561, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33822587

RESUMO

Bioinspired nanoconfined catalysis has developed to become an important tool for improving the performance of a wide range of chemical reactions. However, photocatalysis in a nanoconfined environment remains largely unexplored. Here, we report the application of a free-standing and flow-through carbon nitride nanotube (CNN) membrane with pore diameters of 40 nm for confined photocatalytic reactions where reactants are in contact with the catalyst for <65 ms, as calculated from the flow. Due to the well-defined tubular structure of the membrane, we are able to assess quantitatively the photocatalytic performance in each of the parallelized single carbon nitride nanotubes, which act as spatially isolated nanoreactors. In oxidation of benzylamine, the confined reaction shows an improved performance when compared to the corresponding bulk reaction, reaching a turnover frequency of (9.63 ± 1.87) × 105 s-1. Such high rates are otherwise only known for special enzymes and are clearly attributed to the confinement of the studied reactions within the one-dimensional nanochannels of the CNN membrane. Namely, a concave surface maintains the internal electric field induced by the polar surface of the carbon nitride inside the nanotube, which is essential for polarization of reagent molecules and extension of the lifetime of the photogenerated charge carriers. The enhanced flow rate upon confinement provides crucial insight on catalysis in such an environment from a physical chemistry perspective. This confinement strategy is envisioned not only to realize highly efficient reactions but also to gain a fundamental understanding of complex chemical processes.

3.
ACS Nano ; 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33929816

RESUMO

Understanding the bottom-up synthesis of atomically thin two-dimensional (2D) crystals and heterostructures is important for the development of new processing strategies to assemble 2D heterostructures with desired functional properties. Here, we utilize in situ laser-heating within a transmission electron microscope (TEM) to understand the stages of crystallization and coalescence of amorphous precursors deposited by pulsed laser deposition (PLD) as they are guided by 2D crystalline substrates into van der Waals (vdW) epitaxial heterostructures. Amorphous clusters of tungsten selenide were deposited by PLD at room temperature onto graphene or MoSe2 monolayer crystals that were suspended on TEM grids. The precursors were then stepwise evolved into 2D heterostructures with pulsed laser heating treatments within the TEM. The lattice-matching provided by the MoSe2 substrate is shown to guide the formation of large-domain, heteroepitaxial vdW WSe2/MoSe2 bilayers both during the crystallization process via direct templating and after crystallization by assisting the coalescence of nanosized domains through nonclassical particle attachment processes including domain rotation and grain boundary migration. The favorable energetics for domain rotation induced by lattice matching with the substrate were understood from first-principles calculations. These in situ TEM studies of pulsed laser-driven nonequilibrium crystallization phenomena represent a transformational tool for the rapid exploration of synthesis and processing pathways that may occur on extremely different length and time scales and lend insight into the growth of 2D crystals by PLD and laser crystallization.

4.
Transl Psychiatry ; 11(1): 222, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859158

RESUMO

Running exercise was shown to have a positive effect on depressive-like symptoms in many studies, but the underlying mechanism of running exercise in the treatment of depression has not been determined. Parvalbumin-positive interneurons (PV+ interneurons), a main subtype of GABA neurons, were shown to be decreased in the brain during the depression. PGC-1α, a molecule that is strongly related to running exercise, was shown to regulate PV+ interneurons. In the present study, we found that running exercise increased the expression of PGC-1α in the hippocampus of depressed mice. Adult male mice with PGC-1α gene silencing in the hippocampus ran on a treadmill for 4 weeks. Then, depression-like behavior was evaluated by the behavioral tests, and the PV+ interneurons in the hippocampus were investigated. We found that running exercise could not improve depressive-like symptoms or increase the gene expression of PV because of the lack of PGC-1α in the hippocampus. Moreover, a lack of PGC-1α in the hippocampus decreased the number and activity of PV+ interneurons in the CA3 subfield of the hippocampus, and running exercise could not reverse the pathological changes because of the lack of PGC-1α. The present study demonstrated that running exercise regulates PV+ interneurons through PGC-1α in the hippocampus of mice to reverse depressive-like behaviors. These data indicated that hippocampal PGC-1α-mediated positive effects on parvalbumin interneurons are required for the antidepressant actions of running exercise. Our results will help elucidate the antidepressant mechanism of running exercise and identify new targets for antidepressant treatment.

5.
Curr Med Sci ; 41(2): 368-374, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33877555

RESUMO

Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Several studies have indicated that rectal cancer is significantly different from colon cancer in terms of treatment, prognosis, and metastasis. Recently, the differential mRNA expression of colon cancer and rectal cancer has received a great deal of attention. The current study aimed to identify significant differences between colon cancer and rectal cancer based on RNA sequencing (RNA-seq) data via support vector machines (SVM). Here, 393 CRC samples from the The Cancer Genome Atlas (TCGA) database were investigated, including 298 patients with colon cancer and 95 with rectal cancer. Following the random forest (RF) analysis of the mRNA expression data, 96 genes such as HOXB13, PRAC, and BCLAF1 were identified and utilized to build the SVM classification model with the Leave-One-Out Cross-validation (LOOCV) algorithm. In the training (n=196) and the validation cohorts (n=197), the accuracy (82.1 % and 82.2 %, respectively) and the AUC (0.87 and 0.91, respectively) indicated that the established optimal SVM classification model distinguished colon cancer from rectal cancer reasonably. However, additional experiments are required to validate the predicted gene expression levels and functions.

6.
Artigo em Inglês | MEDLINE | ID: mdl-33877904

RESUMO

Objective: This study aimed to investigate the correlations between the different phenotypes of the uridine diphosphate glucuronyl transferase (UGT) 1A1 gene and the treatment of advanced colorectal cancer with the FOLFIRI regimen. Materials and Methods: A total of 240 advanced colorectal cancer patients with stage IV colon cancer or recurrence after radical surgery between January 2014 and December 2018 were included in a retrospective study. All participants were treated with the FOLFIRI regimen until the disease progressed or an intolerable level of toxicity occurred. Results: In this study, three phenotypes of the UGT1A1 gene promoter were found: the homozygous wild type (TA6/6 type, 78.3%), the heterozygous mutant type (TA6/7 type, 19.6%), and the homozygous mutant type (TA7/7 type, 2.1%). Compared with TA6/7 and TA6/6, the risk of nonresponse to FOLFIRI chemotherapy increased by 16%, but the difference was not significant. The risk of death increased by 24%, and there was no significant difference. There was a risk of hematologic and nonhematologic adverse reactions occurring in TA6/7 and TA6/6, and the total risk of adverse reactions increased by 9.3773 times among patients with more than two metastatic organs. Compared with patients with TA6/6, the risk of toxic side-effects increased by 42.8066 times (p = 0.0259) for patients with TA6/7. Among patients who received FOLFIRI chemotherapy for more than four cycles, the proportion with TA6/7 was greater than that with TA6/6. Compared with those with TA6/6, patients with TA6/7 showed a higher risk of hematologic toxicity (22.3246 times, p = 0.0035). Conclusion: The TA6/7 in patients with advanced colorectal cancer had more than two metastatic organs, and received FOLFIRI chemotherapy for more than four cycles compared with TA6/6 patients. Furthermore, the risk of hematologic and nonhematologic adverse reactions significantly increased, and the risk of digestive-tract and hematologic toxicity was more significant.

7.
DNA Cell Biol ; 40(4): 629-637, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33646053

RESUMO

Our study aimed at validating the effect of WISP1 on osteoarthritis (OA) and the pathway involved in the WISP1-induced protection against OA. The expression of WISP1 was measured by immunohistochemical analyses. We found that WISP1 expression was shown to be upregulated within human OA cartilage compared with controls. WISP1 expression was related to knee OA severity. rhWISP1 inhibited OA chondrocyte senescence and apoptosis in vitro, which was reversed by the αvß3 antibody and PI3K/Akt inhibitor LY294002. WISP1 overexpression induced by knee injection of LiCI could also prevent the senescence and apoptosis of rat chondrocytes. Safranin-O staining and Mankin score revealed that WISP1 overexpression can protect rat chondrocytes from degeneration. Nearly opposite results were obtained in the treatment of ICG-001 and siRNA-WISP1 in vivo. These data strongly suggest that WISP1 can protect against the senescence and apoptosis of chondrocytes via modulating the αvß3 receptor and PI3K/Akt signaling pathway within OA. Therefore, the development of specific activators of WISP1 may present the value of an underlying OA treatment.


Assuntos
Proteínas de Sinalização Intercelular CCN/metabolismo , Condrócitos/metabolismo , Osteoartrite do Joelho/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Adulto , Envelhecimento/fisiologia , Animais , Apoptose/fisiologia , Proteínas de Sinalização Intercelular CCN/fisiologia , Cartilagem Articular/metabolismo , Feminino , Humanos , Integrina alfaVbeta3/metabolismo , Interleucina-1beta/metabolismo , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Osteoartrite/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
8.
Res Vet Sci ; 136: 247-258, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33721712

RESUMO

Previously, it was found that several proteins of Haemonchus contortus were involved in the stimulation of the host immune system. However, the information about the selection of superlative antigens with immunogenic efficacies on host DCs is lacking. In the current study, the stimulatory effects of five recombinant proteins (elongation factor-1α, arginine kinase, ES-15, ES-24, and ADP-ribosylation factor 1) of H. contortus on the maturation of goat monocyte-derived dendritic cells (md-DCs) were reported. Recombinant proteins were purified separately in E. coli expression and incubated with isolated goat peripheral blood mononuclear cells (PBMC). Immunofluorescence assay (IFA) results confirmed the binding of these molecules to the md-DC's surface as compared to control groups. In the flow cytometry analysis, recombinant proteins induced md-DC stimulation via the up-regulation of the expression of the costimulatory molecule (CD80) and MHC-II. Quantitative RT-PCR data showed a significant increase in the expression of specific genes of the WNT and toll-like receptor (TLR) signaling pathways. The result of ELISA indicated the higher levels of cytokine (IL-10, IL-12, IFN-γ, and TNF-α) secretion in the md-DC compared to the negative (pET-32a His-Tag) and blank (PBS) control groups. The data gives valuable support in the selection of potential antigens for future studies on the immunomodulation of the host against the infection of H. contortus.

9.
Environ Sci Technol ; 55(6): 3988-3995, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33666416

RESUMO

Direct sulfidation using a high concentration of H2S (HC-H2S) has shown potential for heavy metals removal in various acidic effluents. However, the lack of a smooth method for producing HC-H2S is a critical challenge. Herein, a novel short-process hydrolysis method was developed for the on-site production of HC-H2S. Near-perfect 100% efficiency and selectivity were obtained via CS2 hydrolysis over the ZrO2-based catalyst. Meanwhile, no apparent residual sulfur/sulfate poisoning was detected, which guaranteed long-term operation. The coexistence of CO2 in the products had a negligible effect on the complete hydrolysis of CS2. H2S production followed a sequential hydrolysis pathway, with the reactions for CS2 adsorption and dissociation being the rate-determining steps. The energy balance indicated that HC-H2S production was a mildly exothermic reaction, and the heat energy could be maintained at self-balance with approximately 80% heat recovery. The batch sulfidation efficiencies for As(III), Hg(II), Pb(II), and Cd(II) removal were over 99.9%, following the solubilities (Ksp) of the corresponding metal sulfides. CO2 in the mixed gas produced by CS2 hydrolysis did not affect heavy metals sulfidation due to the presence of abundant H+. Finally, a pilot-scale experiment successfully demonstrated the practical effects. Therefore, this novel on-site HC-H2S production method adequately achieved heavy metals removal requirements in acidic effluents.


Assuntos
Mercúrio , Metais Pesados , Adsorção , Catálise , Enxofre
10.
Appl Opt ; 60(7): 1843-1850, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33690272

RESUMO

Cone-beam computed tomography is a noninvasive detection system that can obtain the three-dimensional structure of objects in a way that does not damage the object. It is widely applied in precision instruments, medical detection, and other fields. However, in the actual process, if a geometric artifact appears in the results, it will affect the quality of reconstructed images, including detail loss and decreased spatial resolution, which leads to inaccurate distinction of defects in detection. We propose a method for correcting a geometric artifact by means of data-driven projection and neural networks. The network designed is a deep neural network with six convolutional layers and six deconvolutional layers that can correct a geometric artifact by training a large number of labeled data and unlabeled data. Compared with other networks that require prior information for reconstructed images, the proposed method uses a projection data-driven approach that can avoid the requirement for prior information. The simulation data have been tested under varying degrees of noise, and satisfactory geometric artifact correction results have been obtained. Meanwhile, we use the actual data of line pairs and ball grid array solder joints to conduct experiments. The results obtained by our method are compared with two other phantom-based method and the U-net method, respectively. The results of similarity and spatial resolution show that the proposed method can achieve the comparable results as the two types of methods. At the same time, we apply a projection data-driven approach to avoid the requirement for prior information, which is more conducive to the correction of the geometric artifact in practical situations where prior information is lacking.

11.
ACS Nano ; 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33651582

RESUMO

Tailoring the grain boundaries (GBs) and twist angles between two-dimensional (2D) crystals are two crucial synthetic challenges to deterministically enable envisioned applications such as moiré excitons, emerging magnetism, or single-photon emission. Here, we reveal how twisted 2D bilayers can be synthesized from the collision and coalescence of two growing monolayer MoS2 crystals during chemical vapor deposition. The twisted bilayer (TB) moiré angles are found to preserve the misorientation angle (θ) of the colliding crystals. The shapes of the TB regions are rationalized by a kink propagation model that predicts the GB formed by the coalescing crystals. Optical spectroscopy measurements reveal a θ-dependent long-range strain in crystals with stitched grain boundaries and a sharp (θ > 20°) threshold for the appearance of TBs, which relieves this strain. Reactive molecular dynamics simulations explain this strain from the continued growth of the crystals during coalescence due to the insertion of atoms at unsaturated defects along the GB, a process that self-terminates when the defects become saturated. The simulations also reproduce atomic-resolution electron microscopy observations of faceting along the GB, which is shown to arise from the growth-induced long-range strain. These facets align with the axes of the colliding crystals to provide favorable nucleation sites for second-layer growth of a TB with twist angles that preserve the misorientation angle θ. This interplay between strain generation and aligned nucleation provides a synthetic pathway for the growth of TBs with deterministic angles.

12.
Acta Pharmacol Sin ; 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654219

RESUMO

Sulfur mustard (SM) is a highly toxic chemical warfare agent that causes acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS). There are no effective therapeutic treatments or antidotes available currently to counteract its toxic effects. Our previous study shows that bone marrow-derived mesenchymal stromal cells (BMSCs) could exert therapeutic effects against SM-induced lung injury. In this study, we explored the therapeutic potential of BMSC-derived exosomes (BMSC-Exs) against ALI and the underlying mechanisms. ALI was induced in mice by injection of SM (30 mg/kg, sc) at their medial and dorsal surfaces. BMSC-Exs (20 µg/kg in 200 µL PBS, iv) were injected for a 5-day period after SM exposure. We showed that BMSC-Exs administration caused a protective effect against pulmonary edema. Using a lung epithelial cell barrier model, BMSC-Exs (10, 20, 40 µg) dose-dependently inhibited SM-induced cell apoptosis and promoted the recovery of epithelial barrier function by facilitating the expression and relocalization of junction proteins (E-cadherin, claudin-1, occludin, and ZO-1). We further demonstrated that BMSC-Exs protected against apoptosis and promoted the restoration of barrier function against SM through upregulating G protein-coupled receptor family C group 5 type A (GPRC5A), a retinoic acid target gene predominately expressed in the epithelial cells of the lung. Knockdown of GPRC5A reduced the antiapoptotic and barrier regeneration abilities of BMSC-Exs and diminished their therapeutic effects in vitro and in vivo. BMSC-Exs-caused upregulation of GPRC5A promoted the expression of Bcl-2 and junction proteins via regulating the YAP pathway. In summary, BMSC-Exs treatment exerts protective effects against SM-induced ALI by promoting alveolar epithelial barrier repair and may be an alternative approach to stem cell-based therapy.

13.
Aging (Albany NY) ; 13(7): 9522-9541, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33539323

RESUMO

Chronic cerebral hypoperfusion (CCH) may lead to the cognitive dysfunction, but the underlying mechanisms are unclear. EGB761, extracted from Ginkgo biloba and as a phytomedicine widely used in the world, has been showed to have various neuroprotective roles and mechanisms, and therapeutic effects in Alzheimer's disease and other cognitive dysfunctions. However, improvements in cognitive function after CCH, following treatment with EGB761, have not been ascertained yet. In this study, we used the behavior test, electrophysiology, neurobiochemistry, and immunohistochemistry to investigate the EGB761's effect on CCH-induced cognitive dysfunction and identify its underlying mechanisms. The results showed that EGB761 ameliorates spatial cognitive dysfunction occurring after CCH. It may also improve impairment of the long-term potentiation, field excitable potential, synaptic transmission, and the transmission synchronization of neural circuit signals between the entorhinal cortex and hippocampal CA1. EGB761 may also reverse the inhibition of neural activity and the degeneration of dendritic spines and synaptic structure after CCH; it also prevents the downregulation of synaptic proteins molecules and pathways related to the formation and stability of dendritic spines structures. EGB761 may inhibit axon demyelination and ameliorate the inhibition of the mTOR signaling pathway after CCH to improve protein synthesis. In conclusion, EGB761 treatment after CCH may improve spatial cognitive function by ameliorating synaptic plasticity impairment, synapse degeneration, and axon demyelination by rectifying the inhibition of the mTOR signaling pathway.

14.
Transl Psychiatry ; 11(1): 83, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526783

RESUMO

Running exercise has been shown to alleviate depressive symptoms, but the mechanism of its antidepressant effect is still unclear. Astrocytes are the predominant cell type in the brain and perform key functions vital to central nervous system (CNS) physiology. Mounting evidence suggests that changes in astrocyte number in the hippocampus are closely associated with depression. However, the effects of running exercise on astrocytes in the hippocampus of depression have not been investigated. Here, adult male rats were subjected to chronic unpredictable stress (CUS) for 5 weeks followed by treadmill running for 6 weeks. The sucrose preference test (SPT) was used to assess anhedonia of rats. Then, immunohistochemistry and modern stereological methods were used to precisely quantify the total number of glial fibrillary acidic protein (GFAP)+ astrocytes in each hippocampal subregion, and immunofluorescence was used to quantify the density of bromodeoxyuridine (BrdU)+ and GFAP+ cells in each hippocampal subregion. We found that running exercise alleviated CUS-induced deficit in sucrose preference and hippocampal volume decline, and that CUS intervention significantly reduced the number of GFAP+ cells and the density of BrdU+/GFAP+ cells in the hippocampal CA1 region and dentate gyrus (DG), while 6 weeks of running exercise reversed these decreases. These results further confirmed that running exercise alleviates depressive symptoms and protects hippocampal astrocytes in depressed rats. These findings suggested that the positive effects of running exercise on astrocytes and the generation of new astrocytes in the hippocampus might be important structural bases for the antidepressant effects of running exercise.

15.
Microsc Res Tech ; 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33586306

RESUMO

A device for collecting atmospheric particulates matter for on-line electron microscopy was designed and manufactured by using 3D modeling and printing technology. The device was used to collect atmospheric particulates matter in Xining city of Qinghai province for seven consecutive days and used to collect atmospheric particulates matter in Jinan city of Shandong province for 30 consecutive days. And the samples were analyzed by electron microscopy. Through it can obtain ultra structure and size distribution information of atmospheric particulates matter. The experimental results reflected the distribution of atmospheric particulate matter in real time. The on-line acquisition device for electron microscopy is practical, fast, and convenient, which greatly shortens the sampling period and can be carried to any place outdoors for real-time sampling. The morphological structure and particle size distribution of atmospheric particles in sampling area was observed by electron microscope. The device has reference value to the study of PM2.5 and PM10 in atmosphere and air pollution. This acquisition device is convenient for the detection of sample by electron microscopy. It can further expand and simplify the sampling technology of large-scale instruments and equipment. This new method of real-time monitoring of air pollution is worth popularizing and applying.

16.
Cancer Biol Med ; 18(1): 184-198, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33628593

RESUMO

Objective: Patient-derived xenograft (PDX) models have shown great promise in preclinical and translational applications, but their consistency with primary tumors in phenotypic, genetic, and pharmacodynamic heterogeneity has not been well-studied. This study aimed to establish a PDX repository for non-small cell lung cancer (NSCLC) and to further elucidate whether it could preserve the heterogeneity within and between tumors in patients. Methods: A total of 75 surgically resected NSCLC specimens were implanted into immunodeficient NOD/SCID mice. Based on the successful establishment of the NSCLC PDX model, we compared the expressions of vimentin, Ki67, EGFR, and PD-L1 proteins between cancer tissues and PDX models using hematoxylin and eosin staining and immunohistochemical staining. In addition, we detected whole gene expression profiling between primary tumors and PDX generations. We also performed whole exome sequencing (WES) analysis in 17 first generation xenografts to further assess whether PDXs retained the patient heterogeneities. Finally, paclitaxel, cisplatin, doxorubicin, atezolizumab, afatininb, and AZD4547 were used to evaluate the responses of PDX models to the standard-of-care agents. Results: A large collection of serially transplantable PDX models for NSCLC were successfully developed. The histology and pathological immunohistochemistry of PDX xenografts were consistent with the patients' tumor samples. WES and RNA-seq further confirmed that PDX accurately replicated the molecular heterogeneities of primary tumors. Similar to clinical patients, PDX models responded differentially to the standard-of-care treatment, including chemo-, targeted- and immuno-therapeutics. Conclusions: Our established PDX models of NSCLC faithfully reproduced the molecular, histopathological, and therapeutic characteristics, as well as the corresponding tumor heterogeneities, which provides a clinically relevant platform for drug screening, biomarker discovery, and translational research.

17.
Kaohsiung J Med Sci ; 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33559348

RESUMO

Multidrug resistance (MDR) of chemotherapy is one of the significant concerns in cancer therapy. Here in our study, cisplatin (DDP) and oleanolic acid (OA) were co-loaded in mesoporous silica nanoparticles (Nsi) to construct DDP/OA-Nsi and solve the DDP-resistance in lung cancer therapy. The cytotoxicity and apoptosis assays demonstrated that in DDP-resistant A549/DDP cells, the cytotoxicity of DDP/OA-Nsi was significantly higher than that of free DDP or DDP single delivery system (DDP-Nsi). The intracellular drug accumulation study revealed that the intracellular DDP concentration in the DDP/OA-Nsi group was also higher than that in free DDP and DDP-Nsi groups. In the A549/DDP xenograft tumor model, DDP/OA-Nsi showed the best anticancer effect. In summary, DDP/OA-Nsi was a promising drug delivery system to solve MDR in lung cancer therapy.

18.
Eur J Nutr ; 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33555375

RESUMO

PURPOSE: Probiotics have been reported to be beneficial for inflammatory bowel disease (IBD), but the types, number of strains, dosage, and intervention time of probiotics used remain controversial. Furthermore, the changes of gut microbiota in IBD's patients are also intriguing. Thus, this meta-analysis was to explore the clinical effects and gut microbiota changes of using probiotics, prebiotics and synbiotics in IBD. METHODS: The search was performed in PubMed, Web of Science and the Cochrane library from inception to April 2020. Qualified randomized controlled trials were included. IBD's remission rate, disease activity index and recurrence rate were extracted and analyzed. Changes in the gut microbiota of patients with IBD are comprehensively described. RESULTS: Thirty-eight articles were included. Probiotics, prebiotics and synbiotics can induce/maintain IBD's remission and reduce ulcerative colitis (UC) disease activity index (RR = 1.13, 95% CI 1.02, 1.26, P < 0.05; SMD = 1.00, 95% CI 0.27, 1.73, P < 0.05). In subgroup analyses of IBD remission rate and UC disease activity index, we obtained some statistically significant results in some subgroup (P < 0.05). To some extent, probiotic supplements can increase the number of beneficial bacteria (especially Bifidobacteria) in the intestinal tract of patients with IBD. CONCLUSIONS: Our results support the treatment of IBD (especially UC) with pro/pre/synbiotics, and synbiotics are more effective. Probiotic supplements that are based on Lactobacillus and Bifidobacterium or more than one strain are more likely to be beneficial for IBD remission. The dose of 1010-1012 CFU/day may be a reference range for using probiotics to relieve IBD.

19.
Sci Total Environ ; 763: 144616, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33385844

RESUMO

The quantitative evaluations of nutrients delivered by submarine groundwater discharge (SGD) have been widely conducted worldwide, but sources of nutrients in the discharged submarine groundwater remain unclear. Identifying these sources of nutrients is essential to the protection and management of marine ecological environments. This study aims to evaluate the magnitudes of SGD and the associated nitrate in the Guangdong-Hongkong-Macao Greater Bay Area (GHM Greater Bay Area), China, and identify the sources of SGD-driven nitrate in this region using radioactive radium (Ra) isotopes (223Ra, 224Ra, and 228Ra) and stable nitrogen (N) and oxygen (O) isotope composition of nitrate (δ15N-NO3- and δ18O-NO3-). The results of the Ra mixing model show that the estimated SGD and the associated nitrate fluxes into the Greater Bay Area are (9.15 ± 1.26) × 108 m3/d and (3.77 ± 0.52) × 107 mol/d, respectively, both of which are comparable to the contributions from the Pearl River. Combing NO3- dual isotopic signatures of sampled coastal groundwater and five kinds of potential nitrate sources, we found that ammonium (NH4+) fertilizer and natural soil N are the two main sources of nitrate in discharged submarine groundwater and rivers. No anthropogenic inputs from manure or sewage waste were identified. This study provides significant insights into the establishment of effective management strategies for controlling SGD-nutrients into the bay and protecting the marine ecological environment.

20.
Nano Lett ; 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33405934

RESUMO

We report here details of steady-state and time-resolved spectroscopy of excitonic dynamics for Janus transition metal dichalcogenide monolayers, including MoSSe and WSSe, which were synthesized by low-energy implantation of Se into transition metal disulfides. Absorbance and photoluminescence spectroscopic measurements determined the room-temperature exciton resonances for MoSSe and WSSe monolayers. Transient absorption measurements revealed that the excitons in Janus structures form faster than those in pristine transition metal dichalcogenides by about 30% due to their enhanced electron-phonon interaction by the built-in dipole moment. By combining steady-state photoluminescence quantum yield and time-resolved transient absorption measurements, we find that the exciton radiative recombination lifetime in Janus structures is significantly longer than in their pristine samples, supporting the predicted spatial separation of the electron and hole wave functions due to the built-in dipole moment. These results provide fundamental insight in the optical properties of Janus transition metal dichalcogenides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...