Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 419
Filtrar
1.
Sci Total Environ ; 720: 137431, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32145615

RESUMO

Aircraft engine emissions during landing and take-off cycle are commonly estimated on the basis of the International Civil Aviation Organization (ICAO) promulgated calculation model and emission parameters; however, the ICAO certified parameters are generally not applicable for an individual airport. In this study, the operation times, fuel and emission parameters of 8 aircraft models during taxi phase at Shanghai Hongqiao International Airport (SHA) are analyzed with the Aircraft Communication Addressing and Reporting System (ACARS) data, and compared with corresponding values referenced by the ICAO. The results show perceptible discrepancies between the SHA-specific and ICAO certified values. The taxi-out times at SHA are considerably overestimated (up to 35.3%) by ICAO for all the analyzed aircraft models, whereas the taxi-in durations are highly close to the ICAO referenced value with a variation within -6.3% to 9.7%. In the majority of cases, the localized fuel flows and emission indices (EIs) are overvalued by ICAO, and the extent of overestimation can be as large as 21.6% and 28.3%, respectively. Variabilities in operation times, fuel and emission parameters are also characterized depending on aircraft types. Additionally, as a novel attempt, the effect of engine aging on EIs is explored and no significant correlation has been detected, indicating that other factors may affect the EIs dominantly over engine age. The resulting SHA-specific emission parameters are significant towards a precise emission quantification and modeling of impacts on air quality and health.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32155311

RESUMO

Efficient and low-cost anode materials for the sodium-ion battery are highly desired to enable more economic energy storage. We describe here effects on an ultrathin carbon nitride film deposited on a copper metal electrode, the combination of which show an unusually high capacity to store sodium metal. The g-C 3 N 4 film is as thin as 10 nm and can be fabricated by an efficient, facile, and general chemical-vapor deposition method. A high reversible capacity of formally up to 51 Ah g -1 indicates that the Na is not only stored in the carbon nitride as such, but that carbon nitride activates also the metal for reversible Na-deposition, while forming at the same time an solid electrolyte interface layer avoiding direct contact of the metallic phase with the liquid electrolyte.

3.
Adv Mater ; : e1906238, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32173918

RESUMO

Two-dimensional (2D) palladium diselenide (PdSe2 ) has strong interlayer coupling and a puckered pentagonal structure, leading to remarkable layer-dependent electronic structures and highly anisotropic in-plane optical and electronic properties. However, the lack of high-quality, 2D PdSe2 crystals grown by bottom-up approaches limits the study of their exotic properties and practical applications. In this work, chemical vapor deposition growth of highly crystalline few-layer (≥2 layers) PdSe2 crystals on various substrates is reported. The high quality of the PdSe2 crystals is confirmed by low-frequency Raman spectroscopy, scanning transmission electron microscopy, and electrical characterization. In addition, strong in-plane optical anisotropy is demonstrated via polarized Raman spectroscopy and second-harmonic generation maps of the PdSe2 flakes. A theoretical model based on kinetic Wulff construction theory and density functional theory calculations is developed and described the observed evolution of "square-like" shaped PdSe2 crystals into rhombus due to the higher nucleation barriers for stable attachment on the (1,1) and (1,-1) edges, which results in their slower growth rates. Few-layer PdSe2 field-effect transistors reveal tunable ambipolar charge carrier conduction with an electron mobility up to ≈294 cm2 V-1 s-1 , which is comparable to that of exfoliated PdSe2 , indicating the promise of this anisotropic 2D material for electronics.

4.
Microb Pathog ; 143: 104162, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32194180

RESUMO

Dendritic cells (DCs) are key linkages between innate immunity and acquired immunity. The antigens that promote the functions of DCs might be the effective candidates of novel vaccine. In this research, the ability of ubiquitin-conjugating enzyme (UCE), a recognized common antigens among chicken Eimeria species, to stimulate DCs of chickens were evaluated. We cloned UCE gene from Eimeria maxima (EmUCE), and its protein expression was confirmed by SDS-PAGE and western-blot. Immunofluorescence assay confirmed the binding of rEmUCE on the surface of chicken splenic-derived DCs (ChSP-DCs). Flow cytometric analysis showed that rEmUCE-treated ChSP-DCs increased MHCII, CD1.1, CD11c, CD80, and CD86 phenotypes. qRT-PCR indicated that transcript levels of maturation markers CCL5, CCR7, and CD83 in ChSP-DCs were upregulated in response to rEmUCE. Following rEmUCE treatment, chSP-DCs activated TLR signaling and inhibited Wnt signaling. Moreover, rEmUCE promoted DC-mediated T-cell proliferation in DC/T-cell co-incubation. Interestingly, CD3+/CD4+ T-cells were significantly enhanced when rEmUCE-treated chSP-DCs were co-incubated with T-cells. Cytokine secretion pattern of rEmUCE-stimulated ChSP-DCs revealed that the production of IL-12 and IFN-γ was increased whereas IL-10 and TGF-ß were unchanged. Likewise, the co-incubation of ChSP-DCs with T-cells indicated increased production of IFN-γ but not IL-4. Collectively, rEmUCE could polarize DCs to immunogenic phenotype and shift the immune cells towards Th1 response. Our observations provide valuable insight for future research aimed at vaccine development against avian coccidiosis.

5.
ACS Nano ; 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32150384

RESUMO

Atomically thin two-dimensional (2D) materials face significant energy barriers for synthesis and processing into functional metastable phases such as Janus structures. Here, the controllable implantation of hyperthermal species from pulsed laser deposition (PLD) plasmas is introduced as a top-down method to compositionally engineer 2D monolayers. The kinetic energies of Se clusters impinging on suspended monolayer WS2 crystals were controlled in the <10 eV/atom range with in situ plasma diagnostics to determine the thresholds for selective top layer replacement of sulfur by selenium for the formation of high quality WSSe Janus monolayers at low (300 °C) temperatures and bottom layer replacement for complete conversion to WSe2. Atomic-resolution electron microscopy and spectroscopy in tilted geometry confirm the WSSe Janus monolayer. Molecular dynamics simulations reveal that Se clusters implant to form disordered metastable alloy regions, which then recrystallize to form highly ordered structures, demonstrating low-energy implantation by PLD for the synthesis of 2D Janus layers and alloys of variable composition.

6.
Oral Dis ; 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144839

RESUMO

OBJECTIVES: We aimed to investigate whether skeletal-specific H-type blood vessels exist in alveolar bone and how they function in alveolar bone remodeling. MATERIALS AND METHODS: H-type vessels with high expression of CD31 and Endomucin (CD31hi Emcnhi ) were immunostained in alveolar bone. Abundance and age-related changes in CD31hi Emcnhi endothelial cells (H-ECs) were detected by flow cytometry. Osteoprogenitors association with H-type vessels and bone mass were detected in tooth extraction model of alveolar bone remodeling by immunohistofluorescence and micro-CT, respectively. Transcription and expression of H-EC feature genes during in vitro Notch inhibition were measured by RT-qPCR and immunocytofluorescence. RESULTS: We verified that H-type vessels existed in alveolar bone, the abundance of which was highest at infancy age, then decreased but maintained a constant level during aging. In tooth extraction model, H-ECs significantly increased with concomitant perivascular accumulation of Runx2+ osteoprogenitors and gradually augmentation of bone mass. Notch inhibition of in vitro cultured H-ECs resulted in decreased expression levels of Emcn and hes1, but not Pecam1 or Kdr genes, with decreased expression levels of H-EC numbers, accordingly. CONCLUSIONS: The present study suggests that H-type vessels promote osteogenesis during alveolar bone remodeling. Notch signaling pathway regulates expression of Emcn and possibly determines fate and functions of alveolar H-ECs.

7.
Thorac Cancer ; 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32212370

RESUMO

In recent years, studies have found that E2F1, a downstream effector of caveolin-1 (Cav-1), participates in tumor cell metabolic reprogramming. E2F1 modulates mitochondrial fusion and mitophagy. Bioinformatic analysis has identified the E2F1-MFN2 axis as a regulator of mitophagy. Our data establish a new novel paradigm for regulation of the tumor cell metabolic reprogramming pathway by Cav-1 that is operationally linked and mutually dependent on the transcriptional activation of E2F1 and induces mitophagy with BNIP3 in cancer-associated fibroblasts (CAFs).

8.
ACS Nano ; 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32023412

RESUMO

We report atomically precise pentagonal PdSe2 nanoribbons (PNRs) fabricated on a pristine PdSe2 substrate with a hybrid method of top-down and bottom-up processes. The PNRs form a uniform array of dimer structure with a width of 2.4 nm and length of more than 200 nm. In situ four-probe scanning tunneling microscopy (STM) reveals metallic behavior of PNRs with ballistic transport for at least 20 nm in length. Density functional theory calculations produce a semiconducting density of states of isolated PNRs and find that the band gap narrows and disappears quickly once considering coupling between PNR stacking layers or interaction with the PdSe2 substrate. The coupling of PNRs is further corroborated by Raman spectroscopy and field-effect transistor measurements. The facile method of fabricating atomically precise PNRs offers an air-stable functional material for dimensional control.

9.
Parasite Immunol ; : e12703, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32043596

RESUMO

Excretory/secretory proteins of Haemonchus contortus (HcESPs) intermingle comprehensively with host immune cells and modulate host immune responses. In this study, H contortus ES antigen named as elongation factor 1 alpha (HcEF-1α) was cloned and expressed. The influences of recombinant HcEF-1α on multiple functions of goat peripheral blood mononuclear cells (PBMCs) were observed in vitro. Immunoblot analysis revealed that rHcEF-1α was recognized by the serum of goat infected with H contortus. Immunofluorescence analysis indicated that rHcEF-1α was bound on surface of PBMCs. Moreover, the productions of IL-4, TGF-ß1, IFN-γ and IL-17 of cells were significantly modulated by the incubation with rHcEF-1α. The production of interleukin IL-10 was decreased. Cell migration, cell proliferation and cell apoptosis were significantly increased; however, nitric oxide production (NO) was significantly decreased. The MHC II molecule expression of cells incubated with rHcEF-1α was increased significantly, whereas MHC-I was not changed as compared to the control groups (PBS control and pET32a). These findings indicated that rHcEF-1α protein might play essential roles in functional regulations of HcESPs on goat PBMC and mediate the immune responses of the host during host-parasite relationship.

10.
Int J Nanomedicine ; 15: 661-674, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32099358

RESUMO

Background: New approaches are urgently needed to fight influenza viral infection. Previous research has shown that zirconia nanoparticles can be used as anticancer materials, but their antiviral activity has not been reported. Here, we investigated the antiviral effect of zirconia (ZrO2) nanoparticles (NPs) against a highly pathogenic avian influenza virus. Materials and Methods: In this study, the antiviral effects of ZrO2 on H5N1 virus were assessed in vivo, and the molecular mechanism responsible for this protection was investigated. Results: Mice treated with 200 nm positively-charged NPs at a dose of 100 mg/kg showed higher survival rates and smaller reductions in weight. 200 nm ZrO2 activated mature dendritic cells and initially promoted the expression of cytokines associated with the antiviral response and innate immunity. In the lungs of H5N1-infected mice, ZrO2 treatment led to less pathological lung injury, significant reduction in influenza A virus replication, and overexpression of pro-inflammatory cytokines. Conclusion: This antiviral study using zirconia NPs shows protection of mice against highly pathogenic avian influenza virus and suggests strong application potential for this method, introducing a new tool against a wide range of microbial infections.

12.
Artigo em Inglês | MEDLINE | ID: mdl-31948076

RESUMO

Pollutant analysis and pollution source tracing are critical issues in air quality management, in which correlation analysis is important for pollutant relation modeling. A dynamic correlation analysis method was proposed to meet the real-time requirement in atmospheric management. Firstly, the spatio-temporal analysis framework was designed, in which the process of data monitoring, correlation calculation, and result presentation were defined. Secondly, the core correlation calculation method was improved with an adaptive data truncation and grey relational analysis. Thirdly, based on the general framework and correlation calculation, the whole algorithm was proposed for various analysis tasks in time and space, providing the data basis for ranking and decision on pollutant effects. Finally, experiments were conducted with the practical data monitored in an industrial park of Hebei Province, China. The different pollutants in multiple monitoring stations were analyzed crosswise. The dynamic features of the results were obtained to present the variational correlation degrees from the proposed and contrast methods. The results proved that the proposed dynamic correlation analysis could quickly acquire atmospheric pollution information. Moreover, it can help to deduce the influence relation of pollutants in multiple locations.

13.
ChemSusChem ; 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31943838

RESUMO

The activity and selectivity of simple photocatalysts for CO2 reduction remain limited by the insufficient photophysics of the catalysts, as well as the low solubility and slow mass transport of gas molecules in/through aqueous solution. In this study, these limitations are overcome by constructing a triphasic photocatalytic system, in which polymeric carbon nitride (CN) is immobilized onto a hydrophobic substrate, and the photocatalytic reduction reaction occurs at a gas-liquid-solid (CO2 -water-catalyst) triple interface. CN anchored onto the surface of a hydrophobic substrate exhibits an approximately 7.2-fold enhancement in total CO2 conversion, with a rate of 415.50 µmol m-2 h-1 under simulated solar light irradiation. This value corresponds to an overall photosynthetic efficiency for full water-CO2 conversion of 0.33 %, which is very close to biological systems. A remarkable enhancement of direct C2 hydrocarbon production and a high CO2 conversion selectivity of 97.7 % are observed. Going from water oxidation to phosphate oxidation, the quantum yield is increased to 1.28 %.

14.
Lasers Med Sci ; 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919682

RESUMO

To evaluate the clinical efficacy and safety of diode laser enucleation of the prostate (DiLEP) versus bipolar plasma kinetic enucleation of the prostate (PKEP) in the management of benign prostatic hyperplasia (BPH). A systematic literature search was undertaken using PubMed, Embase, Web of Science, Cochrane Library, and CKNI databases to identify eligible studies published before April 2019. The quality of evidence and methodology was assessed. Primary outcomes were clinical and demographic characteristics and postoperative efficacy including maximum flow rate (Qmax), postvoid residual (PVR), quality of life (QoL), and International Prostate Symptom Score (IPSS); secondary outcomes were intraoperative variables and major complications. Meta-analyses of extracted data were performed with the RevMan version 5.2. The overall effects were determined by the Z-test, and a p value less than 0.05 was considered with significant difference. A fixed- or random-effect model was chosen to fit the pooled heterogeneity (determined by Chi-squared test and I2). As qualified trials were few, subgroup analyses were not performed. Four randomized controlled trials (RCTs) involving 451 patients were enrolled in our meta-analysis. In the included trials, all the diode (wavelength at 980 nm and 1470 nm) lasers applied output at continuous wave mode; the energy settings ranged from 120 to 160 W for enucleation and 30 to 60 W for coagulation. DiLEP provided less perioperative hemoglobin decrease (MD = - 3.22; 95% CI (- 5.15, - 1.29); p = 0.001; I2 = 65%), less postoperative catheterization time (MD = - 17.82; 95% CI (- 32.74, - 2.90); p = 0.02; I2 = 96%), less postoperative irrigation time (MD = - 7.15; 95% CI (- 13.67, - 0.62); p = 0.03; I2 = 98%), and lower incidence of urinary irritative symptoms (OR = 0.31; 95% CI (0.14, 0.67); p = 0.003; I2 = 0%) compared with PKEP. During the 1, 3, 6, and 12-month postoperative follow-up, no statistically significant difference was found in Qmax, IPSS, QoL, and PVR between the procedures. As regards other perioperative and postoperative parameters and major complications, we found no significant difference. Both DiLEP and PKEP are safe and efficient methods for the treatment of BPH. However, DiLEP showed less perioperative hemoglobin decrease, less postoperative catheterization time, less postoperative irrigation time, and lower rates of postoperative irritative symptoms compared with the PKEP group.

15.
J Exp Bot ; 71(6): 1928-1942, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-31907544

RESUMO

There is growing evidence to suggest that epigenetic tags, especially DNA methylation, are critical regulators of fruit ripening. To examine whether this is the case in sweet pepper (Capsicum annuum) we conducted experiments at the transcriptional, epigenetic, and physiological levels. McrBC PCR, bisulfite sequencing, and real-time PCR demonstrated that DNA hypomethylation occurred in the upstream region of the transcription start site of some genes related to pepper ripening at the turning stage, which may be attributed to up-regulation of CaDML2-like and down-regulation of CaMET1-like1, CaMET1-like2, CaCMT2-like, and CaCMT4-like. Silencing of CaMET1-like1 by virus-induced gene silencing led to DNA hypomethylation, increased content of soluble solids, and accumulation of carotenoids in the fruit, which was accompanied by changes in expression of genes involved in capsanthin/capsorubin biosynthesis, cell wall degradation, and phytohormone metabolism and signaling. Endogenous ABA increased during fruit ripening, whereas endogenous IAA showed an opposite trend. No ethylene signal was detected during ripening. DNA hypomethylation repressed the expression of auxin and gibberellin biosynthesis genes as well as cytokinin degradation genes, but induced the expression of ABA biosynthesis genes. In mature-green pericarp, exogenous ABA induced expression of CaDML2-like but repressed that of CaCMT4-like. IAA treatment promoted the transcription of CaMET1-like1 and CaCMT3-like. Ethephon significantly up-regulated the expression of CaDML2-like. Treatment with GA3 and 6-BA showed indistinct effects on DNA methylation at the transcriptional level. On the basis of the results, a model is proposed that suggests a high likelihood of a role for DNA methylation in the regulation of ripening in the non-climacteric pepper fruit.

16.
Cell Death Dis ; 11(1): 6, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31919341

RESUMO

Aflatoxin B1 (AFB1) is a potent hepatocarcinogen in humans and exposure to AFB1 is known to cause both acute and chronic hepatocellular injury. As the liver is known to be the main target organ of aflatoxin, it is important to identify the key molecules that participate in AFB1-induced hepatotoxicity and to investigate their underlying mechanisms. In this study, the critical role of caveolin-1 in AFB1-induced hepatic cell apoptosis was examined. We found a decrease in cell viability and an increase in oxidation and apoptosis in human hepatocyte L02 cells after AFB1 exposure. In addition, the intracellular expression of caveolin-1 was increased in response to AFB1 treatment. Downregulation of caveolin-1 significantly alleviated AFB1-induced apoptosis and decreased cell viability, whereas overexpression of caveolin-1 reversed these effects. Further functional analysis showed that caveolin-1 participates in AFB1-induced oxidative stress through its interaction with Nrf2, leading to the downregulation of cellular antioxidant enzymes and the promotion of oxidative stress-induced apoptosis. In addition, caveolin-1 was found to regulate AFB1-induced autophagy. This finding was supported by the effect that caveolin-1 deficiency promoted autophagy after AFB1 treatment, leading to the inhibition of apoptosis, whereas overexpression of caveolin-1 inhibited autophagy and accelerated apoptosis. Interestingly, further investigation showed that caveolin-1 participates in AFB1-induced autophagy by regulating the EGFR/PI3K-AKT/mTOR signaling pathway. Taken together, our data reveal that caveolin-1 plays a crucial role in AFB1-induced hepatic cell apoptosis via the regulation of oxidation and autophagy, which provides a potential target for the development of novel treatments to combat AFB1 hepatotoxicity.

17.
Artigo em Inglês | MEDLINE | ID: mdl-31951704

RESUMO

Controlled O2/Ar plasma exposure and subsequent low temperature inert atmosphere annealing of chemical vapor deposition (CVD) grown PdSe2 flakes etch PdSe2 layer-by-layer in an atomic layer etching-like (ALE) process. X-ray photoelectron spectroscopy (XPS) shows that exposure to a remote inductively coupled plasma (ICP) oxygen plasma oxidizes the top layer of the PdSe2 to form PdO2 and SeO2. After an in situ annealing, XPS shows no trace of PdO2 or SeO2, suggesting the byproducts are volatile at low temperature. Atomic force microscopy of PdSe2 exposed to various O2 + Ar plasmas (O2 = 25-100%) demonstrates a clear trend between the oxygen concentration and the number of layers etched per cycle. PdSe2 field effect transistors (FETs) were characterized at various stages of two ALE-like cycles, and the electrical properties are correlated to the oxidation and byproduct desorption and layer reduction.

18.
Environ Pollut ; 260: 113986, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31995779

RESUMO

Heavy metal contamination in the Bohai Sea (China) has been the focus of many studies, but most of them only focused on local pollution levels and thus lacked high spatial resolution for the whole sea. In this study, heavy metals (i.e., As, Cr, Cu, Cd, Pb, Zn, and Fe) in surface sediments were analyzed to assess the spatio-temporal pollution conditions of the Bohai Sea, an important coastal environment consisting of Bohai Bay, Laizhou Bay, and Liaodong Bay. The results indicated that the heavy metal concentration in the sediments was in the range of 6.43-32.18 mg/kg for As, 14.90-58.07 mg/kg for Cr, 3.90-27.19 mg/kg for Cu, 0.04-0.27 mg/kg for Cd, 11.09-30.95 mg/kg for Pb, 18.76-65.58 mg/kg for Zn, and 0.78%-2.55% for Fe. The distribution of heavy metals revealed that the concentrations were relatively low in Laizhou Bay, very high in the northwest coastal region of the Bohai Sea, and decreased from near-shore to off-shore areas. Moreover, both the enrichment factor and geo-accumulation index demonstrated that there was no contamination to be found for Cr, Cu, Zn in the region and a slight to moderate pollution of As, Cd, and Pb. Cd and As presented considerable potential ecological risk as a result of their high toxicity. The potential ecological risk index (RI) suggested that a third of the areas (northwest coastal area of the Bohai Sea) has moderate ecological risk. The risk area was generally decreased as offshore distance increased, which suggested that the contamination and risk of heavy metals are influenced by anthropogenic activities.

19.
J Comp Physiol B ; 190(1): 87-100, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31732779

RESUMO

Animals in the temperate zones face seasonal variations in environments and hence their immune responses change seasonally. In the current study, seasonal changes in hematological parameters and cytokines in striped hamsters (Cricetulus barabensis) were examined to test the winter immunoenhancement hypothesis, which states that immune function tends to increase in fall and winter compared with other seasons. Male and female hamsters were captured from the wild in the fall and winter of 2014 and in the spring and summer of 2015. Maximum body mass in both sexes and relative fatness in female hamsters occurred in the summer, indicating that body condition was the best during this season. All hematological parameters were not different between male and female hamsters, and were also not affected by the interaction of season and sex except neutrophil granulocytes (GRAN). Red blood cells (RBC) and haematocrit (PCV) were higher in the fall and winter, and hemoglobin concentration (HGB) was the highest in winter in hamsters compared with the spring and summer, implying that their oxygen-carrying capacity and oxygen affinity of the blood increased during these seasons. Compared with other seasons, the number of white blood cells (WBC) was higher in winter than in summer, intermediate granulocytes (MID), the percent of MID (MID%), GRAN and the percent of GRAN (GRAN%) were the highest in winter, which all supported the winter immunoenhancement hypothesis. However, the count of lymphocytes (LYMF) was the highest in spring, being inconsistent with this hypothesis. IL-2 levels, but not TNF-α, were influenced by seasons, sex and their interaction in hamsters. Regardless of sex, IL-4 titres were higher in spring and summer than in fall and winter in hamsters. INF-γ titres in male hamsters did not differ between the spring and summer, while its titres in female hamsters was lower in spring in contrast with winter and summer. Higher IL-2 and IL-4 levels during the breeding seasons might be crucial in controlling the increased possibilities of infections in these seasons. In summary, season and sex had disparate effects on different hematological profiles and the levels of cytokines in hamsters.

20.
ACS Appl Mater Interfaces ; 12(3): 3670-3680, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31872995

RESUMO

Na3V2(PO4)2O2F (NVPOF) is attracting great interest due to its large capacity and high working voltage. However, poor electronic conductivity limits the electrochemical performance of NVPOF. Herein, we fabricate N/P-dual-doped carbon-coated NVPOF microspheres (labeled as NVPOF@P/N/C) via a hydrothermal process followed by heat treatment. This microsphere-structured NVPOF@P/N/C composite has a relatively high tap density of 1.22 g/cm3. TEM and XPS results reveal that the dual-doped carbon layer is tightly coated on the NVPOF surface due to the bridging effect of P and has a good protective effect on NVPOF. Density functional theory (DFT) calculations confirm that a N/P-dual-doped carbon layer is advantageous to achieve higher electronic conductivity and lower migration activation energy than those of the undoped and single N- or P-doped carbon layer. As a cathode material for a sodium-ion battery (SIB), NVPOF@P/N/C exhibits high capacity (128 mAh/g at 0.5 C and 122 mAh/g at 2 C) and ultralong cycle performance (only 0.037% capacity fading rate per cycle in 500 cycles at 2 C). We believe that the NVPOF@P/N/C composite is appealing for high-performance SIBs with large energy density.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA