Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 890
Filtrar
2.
J Hosp Med ; 15(11): 665-668, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33147128

RESUMO

The accuracy of pulse oximetry monitor orders for identifying infants with bronchiolitis who are being continuously monitored is unknown. In this 56-hospital repeated cross-sectional study, investigators used direct bedside observation to determine continuous pulse oximetry monitor use and then assessed if an active continuous monitoring order was present in the electronic health record. Investigators completed 3,612 observations of infants aged 8 weeks to 23 months hospitalized with bronchiolitis and on room air. Most monitored infants did not have an active monitoring order (sensitivity 49% [95% CI, 41-57]). The positive predictive value of a monitoring order was 77% (95% CI, 72-82), and the negative predictive value was 69% (95% CI, 61-77). Teams intending to measure continuous pulse oximetry use should understand the limitations of using electronic health record orders as a stand-alone measure.

3.
Exp Gerontol ; 142: 111123, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33191210

RESUMO

Aging is the primary risk factor for functional decline; thus, understanding and preventing disability among older adults has emerged as an important public health challenge of the 21st century. The science of gerontology - or geroscience - has the practical purpose of "adding life to the years." The overall goal of geroscience is to increase healthspan, which refers to extending the portion of the lifespan in which the individual experiences enjoyment, satisfaction, and wellness. An important facet of this goal is preserving mobility, defined as the ability to move independently. Despite this clear purpose, this has proven to be a challenging endeavor as mobility and function in later life are influenced by a complex interaction of factors across multiple domains. Moreover, findings over the past decade have highlighted the complexity of walking and how targeting multiple systems, including the brain and sensory organs, as well as the environment in which a person lives, can have a dramatic effect on an older person's mobility and function. For these reasons, behavioral interventions that incorporate complex walking tasks and other activities of daily living appear to be especially helpful for improving mobility function. Other pharmaceutical interventions, such as oxytocin, and complementary and alternative interventions, such as massage therapy, may enhance physical function both through direct effects on biological mechanisms related to mobility, as well as indirectly through modulation of cognitive and socioemotional processes. Thus, the purpose of the present review is to describe evolving interventional approaches to enhance mobility and maintain healthspan in the growing population of older adults in the United States and countries throughout the world. Such interventions are likely to be greatly assisted by technological advances and the widespread adoption of virtual communications during and after the COVID-19 era.

4.
Sens Actuators B Chem ; : 129196, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33230369

RESUMO

The accurate and rapid screening of serum antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the key to control the spread of 2019 coronavirus disease (COVID-19). In this study, we reported a surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-LFIA) for the simultaneous detection of anti-SARS-CoV-2 IgM/IgG with high sensitivity. Novel SERS tags labeled with dual layers of Raman dye were fabricated by coating a complete Ag shell on SiO2 core (SiO2@Ag) and exhibited excellent SERS signals, good monodispersity, and high stability. Anti-human IgM and IgG were immobilized onto the two test lines of the strip to capture the formed SiO2@Ag-spike (S) protein-anti-SARS-CoV-2 IgM/IgG immunocomplexes. The SERS signal intensities of the IgM and IgG test zones were easily recorded by a portable Raman instrument and used for the high-sensitivity analysis of target IgM and IgG. The limit of detection of SERS-LFIA was 800 times higher than that of standard Au nanoparticle-based LFIA for target IgM and IgG. The SERS-LFIA biosensor was tested on 19 positive serum samples from COVID-19 patients and 49 negative serum samples from healthy people to demonstrate the clinical feasibility of our proposed assay. The results revealed that the proposed method exhibited high accuracy and specificity for patients with SARS-CoV-2 infection.

5.
Stem Cell Res Ther ; 11(1): 465, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33143723

RESUMO

BACKGROUND: Inflammatory smooth muscle cells (iSMCs) generated from adventitial stem/progenitor cells (AdSPCs) have been recognised as a new player in cardiovascular disease, and microRNA-214-3p (miR-214-3p) has been implicated in mature vascular SMC functions and neointimal hyperplasia. Here, we attempted to elucidate the functional involvements of miR-214-3p in iSMC differentiation from AdSPCs and unravel the therapeutic potential of miR-214-3p signalling in AdSPCs for injury-induced neointimal hyperplasia. METHODS: The role of miR-214-3p in iSMC differentiation from AdSPCs was evaluated by multiple biochemistry assays. The target of miR-214-3p was identified through binding site mutation and reporter activity analysis. A murine model of injury-induced arterial remodelling and stem cell transplantation was conducted to study the therapeutic potential of miR-214-3p. RT-qPCR analysis was performed to examine the gene expression in healthy and diseased human arteries. RESULTS: miR-214-3p prevented iSMC differentiation/generation from AdSPCs by restoring sonic hedgehog-glioma-associated oncogene 1 (Shh-GLI1) signalling. Suppressor of fused (Sufu) was identified as a functional target of miR-214-3p during iSMC generation from AdSPCs. Mechanistic studies revealed that miR-214-3p over-expression or Sufu inhibition can promote nuclear accumulation of GLI1 protein in AdSPCs, and the consensus sequence (GACCACCCA) for GLI1 binding within smooth muscle alpha-actin (SMαA) and serum response factor (SRF) gene promoters is required for their respective regulation by miR-214-3p and Sufu. Additionally, Sufu upregulates multiple inflammatory gene expression (IFNγ, IL-6, MCP-1 and S100A4) in iSMCs. In vivo, transfection of miR-214-3p into the injured vessels resulted in the decreased expression level of Sufu, reduced iSMC generation and inhibited neointimal hyperplasia. Importantly, perivascular transplantation of AdSPCs increased neointimal hyperplasia, whereas transplantation of AdSPCs over-expressing miR-214-3p prevented this. Finally, decreased expression of miR-214-3p but increased expression of Sufu was observed in diseased human arteries. CONCLUSIONS: We present a previously unexplored role for miR-214-3p in iSMC differentiation and neointima iSMC hyperplasia and provide new insights into the therapeutic effects of miR-214-3p in vascular disease.

6.
Pediatr Rheumatol Online J ; 18(1): 88, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33187519

RESUMO

BACKGROUND: We sought to evaluate racial disparities in disease outcomes among children with polyarticular juvenile idiopathic arthritis (JIA) during a treat-to-target (TTT) intervention with clinical decision support (CDS). METHODS: This was a retrospective analysis of a TTT-CDS strategy integrated into clinical practice for children with polyarticular JIA at a single center from 2016 to 2019. The primary outcome was the clinical Juvenile Arthritis Disease Activity Score (cJADAS-10). We used multivariable linear regression to assess racial differences in disease outcomes at the index visit (first visit after implementation). The effect of race on disease outcomes over time was estimated using linear mixed-effects models, stratified by incident or prevalent disease. RESULTS: We included 159 children with polyarticular JIA, of which 74, 13 and 13% were white, black, and Asian/other, respectively. cJADAS-10 improved significantly over time for all race categories, while the rates of improvement did not differ by race in incident (p = 0.53) or prevalent cases (p = 0.58). cJADAS-10 over time remained higher among black children compared to white children (ß 2.5, p < 0.01 and ß 1.2, p = 0.08 for incident and prevalent cases, respectively). Provider attestation to CDS use at ≥50% of encounters was associated with a 3.9 greater reduction in cJADAS-10 among black children compared to white children (p = 0.02). CONCLUSION: Despite similar rates of improvement over time by race, disparities in JIA outcomes persisted throughout implementation of a TTT-CDS approach. More consistent CDS use may have a greater benefit among black children and needs to be explored further.

7.
Circ Res ; 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33208036

RESUMO

Rationale: The ß2-adrenoceptor (ß2-AR), a prototypical G protein-coupled receptor (GPCR), couples to both Gs and Giproteins. Stimulation of theß2-AR is beneficial to humans and animals with heart failure presumably because it activates the downstream Gi-PI3K-Akt cell survival pathway. Cardiac ß2-AR signaling can be regulated by crosstalk or heterodimerization with other GPCRs, but the physiological and pathophysiological significance of this type of regulation has not been sufficiently demonstrated. Objective: Here, we aim to investigate the potential cardioprotective effect of ß2-adrenergic stimulation with a subtype-selective agonist, (R,R')-4-methoxy-1-naphthylfenoterol (MNF), and to decipher the underlying mechanism with a particular emphasis on the role of heterodimerization of ß2-ARs with another GPCR, 5-hydroxytryptamine receptors 2B (5-HT2BRs). Methods and Results: Using pharmacological, genetic and biophysical protein-protein interaction approaches, we studied the cardioprotective effect of the ß2-agonist, MNF, and explored the underlying mechanism in both in vivo in mice and cultured rodent cardiomyocytes insulted with doxorubicin (Dox), hydrogen peroxide (H2O2) or ischemia/reperfusion. In Dox-treated mice, MNF reduced mortality and body weight loss, while improving cardiac function and cardiomyocyte viability. MNF also alleviated myocardial ischemia/reperfusion injury. In cultured rodent cardiomyocytes, MNF inhibited DNA damage and cell death caused by Dox, H2O2 or hypoxia/reoxygenation. Mechanistically, we found that MNF or another ß2-agonist zinterol markedly promoted heterodimerization of ß2-ARs with 5-HT2BRs. Upregulation of the heterodimerized 5-HT2BRs and ß2-ARs enhanced ß2-AR-stimulated Gi-Akt signaling and cardioprotection while knockdown or pharmacological inhibition of the 5-HTattenuated ß2-AR-stimulated Gi signaling and cardioprotection. Conclusions: These data demonstrate that the ß2-AR-stimulated cardioprotective Gi signaling depends on the heterodimerization of ß2-ARs and 5-HT2BRs.

8.
Echocardiography ; 2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33009676

RESUMO

BACKGROUND: Strain analysis with speckle-tracking echocardiography shows promise as a screening tool for silent myocardial dysfunction in pediatric-onset systemic lupus erythematosus (pSLE). We compared left ventricular (LV) systolic deformation (measured by strain) in children and adolescents with pSLE to controls, and assessed the relationship between strain, disease activity, and other noninvasive measures of cardiovascular health. METHODS: Twenty pSLE subjects ages 9-21 underwent comprehensive cardiovascular testing, including 2D speckle-tracking echocardiography, ambulatory blood pressure monitoring (ABPM), peripheral endothelial function testing, pulse wave velocity and analysis, and carotid ultrasound. Longitudinal apical-4 chamber (LSA4C ) and midpoint circumferential strain (CSmid ) were compared to that of 70 healthy controls using multivariable linear regression. Among pSLE subjects, Pearson correlation coefficients were calculated to evaluate relationships between global longitudinal or circumferential strain and other measures of cardiovascular health. RESULTS: Average SLE disease duration was 3.2 years (standard deviation [SD] 2.1). 2/20 pSLE subjects had persistent disease activity, and only one met criteria for hypertension by ABPM. LSA4C was significantly reduced in pSLE subjects compared to controls (mean -18.3 [SD 3.2] vs -21.8% [SD 2.2], P-value <.001). There was no significant difference in CSmid (-24.8 [SD 3.7] vs -25.7% [SD 3.4], P = .29). Among pSLE subjects, decreased nocturnal blood pressure dipping on ABPM was associated with reduced global circumferential strain (r -0.59, P = .01). CONCLUSIONS: Longitudinal myocardial deformation is impaired in pSLE patients despite clinical remission and may represent early myocardial damage. Strain analysis should be considered in addition to standard echocardiographic assessment during follow-up of patients with pSLE.

9.
Essays Biochem ; 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33034346

RESUMO

Transcription factors (TFs) are well-established key factors orchestrating gene transcription, and RNA-binding proteins (RBPs) are mainly thought to participate in post-transcriptional control of gene. In fact, these two steps are functionally coupled, offering a possibility for reciprocal communications between transcription and regulatory RNAs and RBPs. Recently, a series of exploratory studies, utilizing functional genomic strategies, have revealed that RBPs are prevalently involved in transcription control genome-wide through their interactions with chromatin. Here, we present a refined census of RBPs to grope for such an emerging role and discuss the global view of RBP-chromatin interactions and their functional diversities in transcription regulation.

10.
Artigo em Inglês | MEDLINE | ID: mdl-33026238

RESUMO

RATIONALE: Acute respiratory distress syndrome (ARDS) is characterized by pulmonary edema and poor gas exchange resulting from severe inflammatory lung injury. Neutrophilic infiltration and increased pulmonary vascular permeability are hallmarks of early ARDS and precipitate a self-perpetuating cascade of inflammatory signaling. The biochemical processes initiating these events remain unclear. Typically associated with extracellular matrix degradation, recent data suggests MMP's are regulators of pulmonary inflammation. OBJECTIVES: To demonstrate that inhalation of a broad MMP inhibitor attenuates LPS induced pulmonary inflammation. METHODS: Nebulized CGS27023AM was administered to LPS injured mice. Pulmonary CGS27023A levels were examined by mass spectroscopy. Inflammatory scoring of H&E sections, examination of vascular integrity via lung wet:dry and BAL:serum FITC-albumin ratios were performed. Cleaved caspase 3 levels were also assessed. Differential cell counts and pulse-chase labeling were utilized to determine the effects of CGS27023AM on neutrophil migration. The effects of CGS27023AM on human neutrophil migration and viability were examined using Boyden chambers and MTT assays. MEASUREMENTS AND MAIN RESULTS: Nebulization successfully delivered CGS27023AM to the lungs. Treatment decreased pulmonary inflammatory scores, edema and apoptosis in LPS treated animals. Neutrophil chemotaxis was reduced by CGS27023AM treatment, with inhalation causing significant reductions in both the total number as well as newly produced BrdU positive cells infiltrating the lung. Mechanistic studies on cells isolated from humans demonstrate that CGS treated neutrophils exhibit decreased chemotaxis. CONCLUSIONS: MMP's mediate the development of pulmonary edema and neutrophil infiltration. Inhaled MMP inhibitors are a potential new therapeutic avenue for treating of acute lung injury.

11.
Epilepsia ; 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33063870

RESUMO

OBJECTIVE: Electroencephalographic seizures (ESs) are common in encephalopathic critically ill children, but identification requires extensive resources for continuous electroencephalographic monitoring (CEEG). In a previous study, we developed a clinical prediction rule using three clinical variables (age, acute encephalopathy category, clinically evident seizure[s] prior to CEEG initiation) and two electroencephalographic (EEG) variables (EEG background category and interictal discharges within the first 30 minutes of EEG) to identify patients at high risk for ESs for whom CEEG might be essential. In the current study, we aimed to validate the ES prediction model using an independent cohort. METHODS: The prospectively acquired validation cohort consisted of 314 consecutive critically ill children treated in the Pediatric Intensive Care Unit of a quaternary care referral hospital with acute encephalopathy undergoing clinically indicated CEEG. We calculated test characteristics using the previously developed prediction model in the validation cohort. As in the generation cohort study, we selected a 0.10 cutpoint to emphasize sensitivity. RESULTS: The incidence of ESs in the validation cohort was 22%. The generation and validation cohorts were alike in most clinical and EEG characteristics. The ES prediction model was well calibrated and well discriminating in the validation cohort. The model had a sensitivity of 90%, specificity of 37%, positive predictive value of 28%, and negative predictive value of 93%. If applied, the model would limit 31% of patients from undergoing CEEG while failing to identify 10% of patients with ESs. The model had similar performance characteristics in the generation and validation cohorts. SIGNIFICANCE: A model employing five readily available clinical and EEG variables performed well when validated in a new consecutive cohort. Implementation would substantially reduce CEEG utilization, although some patients with ESs would not be identified. This model may serve a critical role in targeting limited CEEG resources to critically ill children at highest risk for ESs.

12.
Artigo em Inglês | MEDLINE | ID: mdl-33064070

RESUMO

A Gram-stain-positive, aerobic actinobacterium, designated strain CBS5P-1T, was isolated from bark of Excoecaria agallocha Linn collected from Guangxi Zhuang Autonomous Region, PR China. Cells were short rods. Colonies were light yellow, circular and had entire margins. Strain CBS5P-1T grew at 10-37 °C (optimum, 30 °C) and pH 6.0-12.0 (optimum, pH 7.0-8.0). Its nearest phylogenetic neighbour was Microbacterium amylolyticum DSM 24221T with 97.1 % 16S rRNA gene sequence similarity. The genomic DNA G+C content of strain CBS5P-1T was 71.8 mol%. Anteiso-C15  : 0, anteiso-C17 : 0, iso-C16 : 0 and C16:0 were predominant cellular fatty acids. Major menaquinones were MK-11 and MK-10. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, an unidentified glycolipid and an unidentified phospholipid. The combination of chemotaxonomic, phylogenetic and phenotypic data clearly distinguished strain CBS5P-1T from its phylogenetic neighbour. Accordingly, the name Microbacterium excoecariae sp. nov. is proposed to accommodate this new member of the genus Microbacterium. The type strain is CBS5P-1T (=KCTC 49239T=CGMCC 1.13862T).

13.
Cell Death Differ ; 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082517

RESUMO

Photoreceptor apoptosis is recognized as one key pathogenesis of retinal degeneration, the counteraction of which represents a promising approach to safeguard visual function. Recently, mesenchymal stem cell transplantation (MSCT) has demonstrated immense potential to treat ocular disorders, in which extracellular vesicles (EVs), particularly exosomes, have emerged as effective ophthalmological therapeutics. However, whether and how MSCT protects photoreceptors against apoptotic injuries remains largely unknown. Here, we discovered that intravitreal MSCT counteracted photoreceptor apoptosis and alleviated retinal morphological and functional degeneration in a mouse model of photoreceptor loss induced by N-methyl-N-nitrosourea (MNU). Interestingly, effects of MSCT were inhibited after blockade of exosomal generation by GW4869 preconditioning. Furthermore, MSC-derived exosomal transplantation (EXOT) effectively suppressed MNU-provoked photoreceptor injury. Notably, therapeutic efficacy of MSCT and EXOT on MNU-induced retinal degeneration was long-lasting as photoreceptor preservance and retinal maintenance were detected even after 1-2 months post to injection for only once. More importantly, using a natural occurring retinal degeneration model caused by a nonsense mutation of Phosphodiesterase 6b gene (Pde6bmut), we confirmed that MSCT and EXOT prevented photoreceptor loss and protected long-term retinal function. In deciphering therapeutic mechanisms regarding potential exosome-mediated communications, we identified that miR-21 critically maintained photoreceptor viability against MNU injury by targeting programmed cell death 4 (Pdcd4) and was transferred from MSC-derived exosomes in vivo for functional regulation. Moreover, miR-21 deficiency aggravated MNU-driven retinal injury and was restrained by EXOT. Further experiments revealed that miR-21 mediated therapeutic effects of EXOT on MNU-induced photoreceptor apoptosis and retinal dysfunction. These findings uncovered the efficacy and mechanism of MSCT-based photoreceptor protection, indicating exosomal miR-21 as a therapeutic for retinal degeneration.

14.
Pediatr Rheumatol Online J ; 18(1): 79, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33059694

RESUMO

BACKGROUND: We aimed to test if standardized point-of-care outcome monitoring and clinical decision support (CDS), as compared to standard care, improves disease activity and patient-reported pain in children with enthesitis-related arthritis (ERA). METHODS: This was a retrospective cohort study of outcomes of children with ERA after phased implementation of I) standardized outcome monitoring with CDS for polyarticular JIA, and II) CDS for ERA, compared to a pre-intervention group of historical controls. We used multivariable mixed-effects models for repeated measures to test whether implementation phase or other disease characteristics were associated with change over time in disease activity, as measured by the clinical juvenile arthritis disease activity score (cJADAS), and pain. RESULTS: One hundred fifty-two ERA patients (41% incident cases) were included with a median age of 14.9 years. Implementation of standardized outcome monitoring or ERA-specific CDS did not result in significant differences in cJADAS or pain over time compared to the pre-intervention cohort. Higher cJADAS at the index visit, pain and more tender entheses were significantly associated with higher cJADAS scores over time (all p < 0.01), while biologic use was associated with lower cJADAS (p = 0.02). Regardless of intervention period, incident ERA cases had a greater rate of cJADAS improvement over time compared to prevalent cases (p < 0.01), but pain persisted over time among both incident and prevalent cases. CONCLUSIONS: There was no significant effect of point-of-care outcome monitoring or CDS interventions on disease activity or pain over time in children with ERA in this single center study. Future efforts to improve disease outcomes using standardized outcome monitoring and CDS will need to consider the importance of addressing pain as a target in addition to spondyloarthritis-specific disease activity metrics.

15.
Annu Rev Physiol ; 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33085927

RESUMO

Temperature is a universal cue and regulates many essential processes ranging from enzymatic reactions to species migration. Due to the profound impact of temperature on physiology and behavior, animals and humans have evolved sophisticated mechanisms to detect temperature changes. Studies from animal models, such as mouse, Drosophila, and C. elegans, have revealed many exciting principles of thermosensation. For example, conserved molecular thermosensors, including thermosensitive channels and receptors, act as the initial detectors of temperature changes across taxa. Additionally, thermosensory neurons and circuits in different species appear to adopt similar logic to transduce and process temperature information. Here, we present the current understanding of thermosensation at the molecular and cellular levels. We also discuss the fundamental coding strategies of thermosensation at the circuit level. A thorough understanding of thermosensation not only provides key insights into sensory biology but also builds a foundation for developing better treatments for various sensory disorders. Expected final online publication date for the Annual Review of Physiology, Volume 83 is February 10, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

16.
Artigo em Inglês | MEDLINE | ID: mdl-33095894

RESUMO

To quantitatively assess heavy metal accumulation and potential ecological and human health risks as well as analyze the sources of metals in a typical soil-rice system located on the southeast coast of China, 120 topsoil samples and corresponding rice grain samples were collected across the study area. The concentrations of As, Cd, Pb, Cr, Hg, Zn, Cu, and Ni were analyzed. The results revealed that Hg, Cd, and Cu were the main pollutants in soils. Besides, according to geo-accumulation value of Hg, 18.3% of samples were at or above moderate contamination levels. Additionally, the soil was in moderate ecological risk from combined heavy metal pollution, and 49.7% and 27.0% of this risk could be attributed to Hg and Cd pollution, respectively, due to their high toxic-response factors. For the rice samples, Cd content showed the highest biological accumulation coefficient value (40.8%) in rice grains and was slightly greater than its maximum allowable value (MAV) (0.2 mg/kg) in 7.5% of samples, whereas the other metals were all lower than their corresponding MAVs. Heavy metal exposure (especially As exposure) via rice consumption causes significant carcinogenic and non-carcinogenic risks to adults, and non-carcinogenic risk to children, while the carcinogenic risk to children was at tolerable level. Greater rice consumption might be responsible for the greater health risk to adults than children. Natural sources (loaded heavily with Cr and Ni) such as lithogenic components and soil parent materials, agricultural activities (loaded heavily with Cd, Cu, and Zn), especially excessive use of pesticides and fertilizers, and industrial activities (loaded heavily with Hg, Pb, and As) including vehicle emissions, coal combustion, and those of the textile and chemical industries were identified as the main sources. Effective regulations should be enforced to guarantee the safety of farm produce and protect ecological and human health in the study area.

17.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 28(5): 1605-1610, 2020 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-33067961

RESUMO

OBJECTIVE: To investigate the effect and possible mechanism of up-regulation of p-Akt by doxycycline (DOX) on myeloma cell line H929. METHODS: Multiple myeloma cell line H929 was treated with DOX at different concentrations for different times, and cell proliferation rate was measured by CCK-8 assay. The protein expression level of p-Akt, PTEN, p-PDK1, p-mTOR, p-GSK-3ß, and p-BAD was analyzed by Western blot. The mRNA levels of mTOR, BCL-2, and NF-κB was analyzed by RT-PCR. PI3K inhibitor Wortmannin was used to antagonize the up-regulation of p-Akt, and the cell proliferation and p-Akt protein expression level were analyzed by CCK-8 assay and Western blot respectively. RESULTS: DOX could inhibit the proliferation of H929 cells and up-regulate the expression of p-Akt at the same time. The protein levels of both p-PDK1 and PTEN in H929 cells did not alter significantly during DOX treatment. The expressions of p-BAD and p-GSK-3ß were up-regulated in H929 cells after treated with DOX, but the expression of p-mTOR was not altered. The mRNA levels of mTOR, BCL-2, and NF-κB in H929 were all down-regulated in H929 cells during DOX treatment. The effect up-regulating p-Akt level by DOX was suppressed when DOX combined with PI3K inhibitor Wortmannin and Wortmannin could enhance the inhibitory effect of DOX in H929 cells. CONCLUSION: DOX can activate PI3K/Akt signaling pathway in H929 cells, and antagonizing this effect of DOX may enhance its cytotoxicity to myeloma cells.


Assuntos
Mieloma Múltiplo , Apoptose , Linhagem Celular Tumoral , Doxiciclina/farmacologia , Glicogênio Sintase Quinase 3 beta , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Regulação para Cima
18.
Crit Care ; 24(1): 583, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993753

RESUMO

BACKGROUND: Despite controversies, epinephrine remains a mainstay of cardiopulmonary resuscitation (CPR). Recent animal studies have suggested that epinephrine may decrease cerebral blood flow (CBF) and cerebral oxygenation, possibly potentiating neurological injury during CPR. We investigated the cerebrovascular effects of intravenous epinephrine in a swine model of pediatric in-hospital cardiac arrest. The primary objectives of this study were to determine if (1) epinephrine doses have a significant acute effect on CBF and cerebral tissue oxygenation during CPR and (2) if the effect of each subsequent dose of epinephrine differs significantly from that of the first. METHODS: One-month-old piglets (n = 20) underwent asphyxia for 7 min, ventricular fibrillation, and CPR for 10-20 min. Epinephrine (20 mcg/kg) was administered at 2, 6, 10, 14, and 18 min of CPR. Invasive (laser Doppler, brain tissue oxygen tension [PbtO2]) and noninvasive (diffuse correlation spectroscopy and diffuse optical spectroscopy) measurements of CBF and cerebral tissue oxygenation were simultaneously recorded. Effects of subsequent epinephrine doses were compared to the first. RESULTS: With the first epinephrine dose during CPR, CBF and cerebral tissue oxygenation increased by > 10%, as measured by each of the invasive and noninvasive measures (p < 0.001). The effects of epinephrine on CBF and cerebral tissue oxygenation decreased with subsequent doses. By the fifth dose of epinephrine, there were no demonstrable increases in CBF of cerebral tissue oxygenation. Invasive and noninvasive CBF measurements were highly correlated during asphyxia (slope effect 1.3, p < 0.001) and CPR (slope effect 0.20, p < 0.001). CONCLUSIONS: This model suggests that epinephrine increases CBF and cerebral tissue oxygenation, but that effects wane following the third dose. Noninvasive measurements of neurological health parameters hold promise for developing and directing resuscitation strategies.

20.
J Neurochem ; 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32910473

RESUMO

Restless legs syndrome is a sleep-related sensorimotor neurological disease affecting up to 10% of the population. Genetic analyses have identified Myeloid Ecotropic viral Integration Site 1 (MEIS1), a transcriptional regulator, to be associated with not only the restless legs syndrome but also self-reported symptoms of insomnia and sleep. This study is to determine if Meis1 deficiency in mice can lead to restless legs syndrome-like phenotypes, and if it is the case, what the underlying mechanisms are. We used two genetic model systems, Caenorhabditis elegans and mice. Egg retention assay and fluorescent reporters were used with C. elegans. For mice, we performed behavioral tests, serum and brain iron detection, qRT-PCR, western blot, immunohistochemistry, and in vitro brain-slice recording. Our results showed that with C. elegans, the function of dop-3, an orthologue of DRD2, was diminished after the knockdown of unc-62, an ortholog of MEIS1. Additionally, unc-62 knockdown led to enhanced transcription of the orthologue of tyrosine hydroxylase, cat-2. Meis1 knockout mice were hyperactive and had a rest-phase-specific increased probability of waking. Moreover, Meis1 knockout mice had increased serum ferritin and altered striatal dopaminergic and cholinergic systems. Specifically, Meis1 knockout mice showed an increased mRNA level but decreased protein level of tyrosine hydroxylase in the striatum. Furthermore, Meis1 knockout mice had increased striatal dopamine turnover and decreased spontaneous firing regularity of striatal cholinergic interneurons. Our data suggest that Meis1 knockout mice have restless legs syndrome-like motor restlessness and changes in serum ferritin levels. The symptoms may be related to dysfunctional dopaminergic and cholinergic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA