Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 23(1): 120, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35144543

RESUMO

BACKGROUND: Lentinula edodes (Berk.) is the second most productive mushroom in the world. It contains compounds effective for antiviral, antitumor, antioxidant and immune regulation. Although genomes have previously been reported for this species, a high-quality chromosome-level reference for L. edodes is unavailable. This hinders detailed investigation of population genetics, breeding history of strains and genes related to environmental stress responses. RESULTS: A high-quality chromosome-level genome was constructed. We separated a monokaryon from protoplasts of the commercial L. edodes strain L808 and assembled the genome of L. edodes using PacBio long-read and Illumina short-read sequencing, along with the high-throughput chromatin conformation capture (Hi-C) technique. We assembled a 45.87 Mb genome, and 99% of the sequences were anchored onto 10 chromosomes. The contig and scaffold N50 length were 2.17 and 4.94 Mb, respectively. Over 96% of the complete Benchmarking Universal Single-Copy Orthologs (BUSCO) were identified, and 9853 protein-coding genes were predicted. We performed population genome resequencing using 34 wild strains and 65 commercial cultivars of L. edodes originating from China, Japan, the United States and Australia. Based on whole-genome variants, we showed substantial differences in the Chinese wild population, which divided into different branches according to the main areas of their geographical distribution. We also determined the breeding history of L. edodes at the molecular level, and demonstrated that the cultivated strains in China mainly originated from wild strains from China and Northeast Asia. Phenotypic analysis showed that 99 strains exhibited differences on the Cd accumulation. Three significant loci in the of L. edodes genome were identified using the genome-wide association study (GWAS) of Cd accumulation traits. Functional genes associated with Cd accumulation traits were related to DNA ligase and aminoacyl tRNA synthetase, indicating that DNA damage repair and in vivo protein translation may be responses to Cd stress. CONCLUSIONS: A high-quality chromosome-level genome and population genetic data of L. edodes provide genetic resources for functional genomic, evolutionary and artificial breeding studies for L. edodes.


Assuntos
Cogumelos Shiitake , Cádmio , Cromossomos , Genoma , Estudo de Associação Genômica Ampla , Cogumelos Shiitake/genética
2.
J Anim Sci Biotechnol ; 13(1): 8, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35034641

RESUMO

BACKGROUND: Short tandem repeats (STRs) were recently found to have significant impacts on gene expression and diseases in humans, but their roles on gene expression and complex traits in pigs remain unexplored. This study investigates the effects of STRs on gene expression in liver tissues based on the whole-genome sequences and RNA-Seq data of a discovery cohort of 260 F6 individuals and a validation population of 296 F7 individuals from a heterogeneous population generated from crosses among eight pig breeds. RESULTS: We identified 5203 and 5868 significantly expression STRs (eSTRs, FDR < 1%) in the F6 and F7 populations, respectively, most of which could be reciprocally validated (π1 = 0.92). The eSTRs explained 27.5% of the cis-heritability of gene expression traits on average. We further identified 235 and 298 fine-mapped STRs through the Bayesian fine-mapping approach in the F6 and F7 pigs, respectively, which were significantly enriched in intron, ATAC peak, compartment A and H3K4me3 regions. We identified 20 fine-mapped STRs located in 100 kb windows upstream and downstream of published complex trait-associated SNPs, which colocalized with epigenetic markers such as H3K27ac and ATAC peaks. These included eSTR of the CLPB, PGLS, PSMD6 and DHDH genes, which are linked with genome-wide association study (GWAS) SNPs for blood-related traits, leg conformation, growth-related traits, and meat quality traits, respectively. CONCLUSIONS: This study provides insights into the effects of STRs on gene expression traits. The identified eSTRs are valuable resources for prioritizing causal STRs for complex traits in pigs.

3.
Sci China Life Sci ; 65(4): 781-794, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34387836

RESUMO

Sequencing-based genome-wide association studies (GWAS) have facilitated the identification of causal associations between genetic variants and traits in diverse species. However, it is cost-prohibitive for the majority of research groups to sequence a large number of samples. Here, we carried out genotype imputation to increase the density of single nucleotide polymorphisms in a large-scale Swine F2 population using a reference panel including 117 individuals, followed by a series of GWAS analyses. The imputation accuracies reached 0.89 and 0.86 for allelic concordance and correlation, respectively. A quantitative trait nucleotide (QTN) affecting the chest vertebrate was detected directly, while the investigation of another QTN affecting the residual glucose failed due to the presence of similar haplotypes carrying wild-type and mutant allelesin the reference panel used in this study. A high imputation accuracy was confirmed by Sanger sequencing technology for the most significant loci. Two candidate genes, CPNE5 and MYH3, affecting meat-related traits were proposed. Collectively, we illustrated four scenarios in imputation-based GWAS that may be encountered by researchers, and our results will provide an extensive reference for future genotype imputation-based GWAS analyses in the future.


Assuntos
Estudo de Associação Genômica Ampla , Herança Multifatorial , Animais , Estudo de Associação Genômica Ampla/métodos , Genótipo , Mutação , Nucleotídeos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Suínos/genética
4.
Front Genet ; 12: 721600, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868200

RESUMO

Genomic selection is an approach to select elite breeding stock based on the use of dense genetic markers and that has led to the development of various models to derive a predictive equation. However, the current genomic selection software faces several issues such as low prediction accuracy, low computational efficiency, or an inability to handle large-scale sample data. We report the development of a genomic prediction model named FMixFN with four zero-mean normal distributions as the prior distributions to optimize the predictive ability and computing efficiency. The variance of the prior distributions in our model is precisely determined based on an F2 population, and genomic estimated breeding values (GEBV) can be obtained accurately and quickly in combination with an iterative conditional expectation algorithm. We demonstrated that FMixFN improves computational efficiency and predictive ability compared to other methods, such as GBLUP, SSgblup, MIX, BayesR, BayesA, and BayesB. Most importantly, FMixFN may handle large-scale sample data, and thus should be able to meet the needs of large breeding companies or combined breeding schedules. Our study developed a Bayes genomic selection model called FMixFN, which combines stable predictive ability and high computational efficiency, and is a big data-oriented genomic selection model that has potential in the future. The FMixFN method can be freely accessed at https://zenodo.org/record/5560913 (DOI: 10.5281/zenodo.5560913).

5.
Genet Sel Evol ; 53(1): 94, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34906088

RESUMO

BACKGROUND: Carcass length is very important for body size and meat production for swine, thus understanding the genetic mechanisms that underly this trait is of great significance in genetic improvement programs for pigs. Although many quantitative trait loci (QTL) have been detected in pigs, very few have been fine-mapped to the level of the causal mutations. The aim of this study was to identify potential causal single nucleotide polymorphisms (SNPs) for carcass length by integrating a genome-wide association study (GWAS) and functional assays. RESULTS: Here, we present a GWAS in a commercial Duroc × (Landrace × Yorkshire) (DLY) population that reveals a prominent association signal (P = 4.49E-07) on pig chromosome 17 for carcass length, which was further validated in two other DLY populations. Within the detected 1 Mb region, the BMP2 gene stood out as the most likely causal candidate because of its functions in bone growth and development. Whole-genome gene expression studies showed that the BMP2 gene was differentially expressed in the cartilage tissues of pigs with extreme carcass length. Then, we genotyped an additional 267 SNPs in 500 selected DLY pigs, followed by further whole-genome SNP imputation, combined with deep genome resequencing data on multiple pig breeds. Reassociation analyses using genotyped and imputed SNP data revealed that the rs320706814 SNP, located approximately 123 kb upstream of the BMP2 gene, was the strongest candidate causal mutation, with a large association with carcass length, with a ~ 4.2 cm difference in length across all three DLY populations (N = 1501; P = 3.66E-29). This SNP segregated in all parental lines of the DLY (Duroc, Large White and Landrace) and was also associated with a significant effect on body length in 299 pure Yorkshire pigs (P = 9.2E-4), which indicates that it has a major value for commercial breeding. Functional assays showed that this SNP is likely located within an enhancer and may affect the binding affinity of transcription factors, thereby regulating BMP2 gene expression. CONCLUSIONS: Taken together, these results suggest that the rs320706814 SNP on pig chromosome 17 is a putative causal mutation for carcass length in the widely used DLY pigs and has great value in breeding for body size in pigs.


Assuntos
Tamanho Corporal/genética , Proteína Morfogenética Óssea 2/genética , Locos de Características Quantitativas , Suínos , Animais , Regulação da Expressão Gênica , Estudos de Associação Genética/veterinária , Genótipo , Mutação , Fenótipo , Suínos/genética
6.
Front Genet ; 12: 748070, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745221

RESUMO

Understanding the genetic factors behind meat quality traits is of great significance to animal breeding and production. We previously conducted a genome-wide association study (GWAS) for meat quality traits in a White Duroc × Erhualian F2 pig population using Illumina porcine 60K SNP data. Here, we further investigate the functional candidate genes and their network modules associated with meat quality traits by integrating transcriptomics and GWAS information. Quantitative trait transcript (QTT) analysis, gene expression QTL (eQTL) mapping, and weighted gene co-expression network analysis (WGCNA) were performed using the digital gene expression (DGE) data from 493 F2 pig's muscle and liver samples. Among the quantified 20,108 liver and 23,728 muscle transcripts, 535 liver and 1,014 muscle QTTs corresponding to 416 and 721 genes, respectively, were found to be significantly (p < 5 × 10-4) correlated with 22 meat quality traits measured on longissiums dorsi muscle (LM) or semimembranosus muscle (SM). Transcripts associated with muscle glycolytic potential (GP) and pH values were enriched for genes involved in metabolic process. There were 42 QTTs (for 32 genes) shared by liver and muscle tissues, of which 10 QTTs represent GP- and/or pH-related genes, such as JUNB, ATF3, and PPP1R3B. Furthermore, a genome-wide eQTL mapping revealed a total of 3,054 eQTLs for all annotated transcripts in muscle (p < 2.08 × 10-5), including 1,283 cis-eQTLs and 1771 trans-eQTLs. In addition, WGCNA identified five modules relevant to glycogen metabolism pathway and highlighted the connections between variations in meat quality traits and genes involved in energy process. Integrative analysis of GWAS loci, eQTL, and QTT demonstrated GALNT15/GALNTL2 and HTATIP2 as strong candidate genes for drip loss and pH drop from postmortem 45 min to 24 h, respectively. Our findings provide valuable insights into the genetic basis of meat quality traits and greatly expand the number of candidate genes that may be valuable for future functional analysis and genetic improvement of meat quality.

7.
Front Microbiol ; 12: 724451, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603250

RESUMO

Ganoderma tsugae is an endemic medicinal mushroom in Northeast China, providing important source of pharmaceutical product. Comparing with other Ganoderma species, wild G. tsugae can utilize coniferous wood. However, functional genes related to medicinal component synthesis and the genetic mechanism of conifer substrate utilization is still obscure. Here, we assembled a high-quality G. tsugae genome with 18 contigs and 98.5% BUSCO genes and performed the comparative genomics with other Ganoderma species. G. tsugae diverged from their common ancestor of G. lingzhi and G. sinense about 21 million years ago. Genes in G. tsugae-specific and G. tsugae-expanded gene families, such as salh, phea, cyp53a1, and cyp102a, and positively selected genes, such as glpk and amie, were functionally enriched in plant-pathogen interaction, benzoate degradation, and fanconi anemia pathway. Those functional genes might contribute to conifer substrate utilization of G. tsugae. Meanwhile, gene families in the terpene synthesis were identified and genome-wide SNP variants were detected in population. Finally, the study provided valuable genomic resources and offered useful hints for the functional gene mapping and investigation of key gene contributing to conifer cultivation substrate utilization and medicinal component biosynthesis.

9.
Zool Res ; 42(5): 548-561, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34327887

RESUMO

The genetic adaptations of various organisms to heterogeneous environments in the northwestern Pacific remain poorly understood. Heterogeneous genomic divergence among populations may reflect environmental selection. Advancing our understanding of the mechanisms by which organisms adapt to different temperatures in response to climate change and predicting the adaptive potential and ecological consequences of anthropogenic global warming are critical. We sequenced the whole genomes of Japanese whiting ( Sillago japonica) specimens collected from different latitudinal locations along the coastal waters of China and Japan to detect possible thermal adaptations. Using population genomics, a total of 5.48 million single nucleotide polymorphisms (SNPs) from five populations revealed a complete genetic break between the Chinese and Japanese groups, which was attributed to both geographic distance and local adaptation. The shared natural selection genes between two isolated populations (i.e., Zhoushan and Ise Bay/Tokyo Bay) indicated possible parallel evolution at the genetic level induced by temperature. These genes also indicated that the process of temperature selection on isolated populations is repeatable. Moreover, we observed natural candidate genes related to membrane fluidity, possibly underlying adaptation to cold environmental stress. These findings advance our understanding of the genetic mechanisms underlying the rapid adaptations of fish species. Species distribution projection models suggested that the Chinese and Japanese groups may have different responses to future climate change, with the former expanding and the latter contracting. The findings of this study enhance our understanding of genetic differentiation and adaptation to changing environments.


Assuntos
Adaptação Fisiológica/genética , Peixes/genética , Peixes/fisiologia , Distribuição Animal , Animais , Evolução Biológica , China , Mudança Climática , Ecossistema , Japão , Oceano Pacífico , Polimorfismo de Nucleotídeo Único , Temperatura , Sequenciamento Completo do Genoma
10.
Zool Res ; 42(4): 492-501, 2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34235898

RESUMO

Fish morphological phenotypes are important resources in artificial breeding, functional gene mapping, and population-based studies in aquaculture and ecology. Traditional morphological measurement of phenotypes is rather expensive in terms of time and labor. More importantly, manual measurement is highly dependent on operational experience, which can lead to subjective phenotyping results. Here, we developed 3DPhenoFish software to extract fish morphological phenotypes from three-dimensional (3D) point cloud data. Algorithms for background elimination, coordinate normalization, image segmentation, key point recognition, and phenotype extraction were developed and integrated into an intuitive user interface. Furthermore, 18 key points and traditional 2D morphological traits, along with 3D phenotypes, including area and volume, can be automatically obtained in a visualized manner. Intuitive fine-tuning of key points and customized definitions of phenotypes are also allowed in the software. Using 3DPhenoFish, we performed high-throughput phenotyping for four endemic Schizothoracinae species, including Schizopygopsis younghusbandi, Oxygymnocypris stewartii, Ptychobarbus dipogon, and Schizothorax oconnori. Results indicated that the morphological phenotypes from 3DPhenoFish exhibited high linear correlation (>0.94) with manual measurements and offered informative traits to discriminate samples of different species and even for different populations of the same species. In summary, we developed an efficient, accurate, and customizable tool, 3DPhenoFish, to extract morphological phenotypes from point cloud data, which should help overcome traditional challenges in manual measurements. 3DPhenoFish can be used for research on morphological phenotypes in fish, including functional gene mapping, artificial selection, and conservation studies. 3DPhenoFish is an open-source software and can be downloaded for free at https://github.com/lyh24k/3DPhenoFish/tree/master.


Assuntos
Peixes/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/veterinária , Software , Animais , Peixes/classificação , Imageamento Tridimensional/métodos , Reprodutibilidade dos Testes , Especificidade da Espécie
11.
Zool Res ; 42(4): 502-513, 2021 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-34254744

RESUMO

Persistent uplift means the Qinghai-Tibet Plateau (QTP) is an ideal natural laboratory to investigate genome evolution and adaptation within highland environments. However, how paleogeographic and paleoclimatic events influence the genome and population of endemic fish species remains unclear. Glyptosternon maculatum is an ancient endemic fish found on the QTP and the only critically endangered species in the Sisoridae family. Here, we found that major transposons in the G. maculatum genome showed episodic bursts, consistent with contemporaneous geological and climatic events during the QTP formation. Notably, histone genes showed significant expansion in the G. maculatum genome, which may be mediated by long interspersed nuclear elements (LINE) repetitive element duplications. Population analysis showed that ancestral G. maculatum populations experienced two significant depressions 2.6 million years ago (Mya) and 10 000 years ago, exhibiting excellent synchronization with Quaternary glaciation and the Younger Dryas, respectively. Thus, we propose that paleogeography and paleoclimate were dominating driving forces for population dynamics in endemic fish on the QTP. Tectonic movements and temperature fluctuation likely destroyed the habitat and disrupted the drainage connectivity among populations. These factors may have caused severe bottlenecks and limited migration among ancestral G. maculatum populations, resulting in the low genetic diversity and endangered status of the species today.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Ecossistema , Peixes/genética , Genoma , Animais , Clima , Tibet
12.
Anim Biotechnol ; : 1-12, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34010090

RESUMO

Genetic analysis of porcine growth and fatness traits is beneficial to the swine industry and provides a reference to understand human obesity. Here, we obtained 29 growth and fatness traits for 473 individuals from a White Duroc × Erhualian F3 intercross population. Basic statistical analyses showed that: (1) Positive correlations between different-stage body weights were detected, the shorter the time interval the stronger the correlation. (2) Strong correlations existed in the paired fatness traits. (3) With the growth of age, the correlation between fatness and body weight was increasing. All pigs were genotyped by Illumina 50 K SNP chips and their whole-genome genotypes were imputed referred to 109 re-sequencing data. We performed common and imputation-based GWASs for these traits. Two genome-wide significant loci on swine chromosome (SSC) 4 and 7 were repeatedly detected. The strongest association (P = 3.24 × 10-19) was detected at 31.96 Mb on SSC7 for leaf fat weight. On this locus, seven major haplotypes were identified, of which two were novel and had an increasing-fatness effect. In the imputation-based GWAS, three new loci were identified. Our findings provide further insights into and enhance our understanding of genetic mechanism of porcine growth and fat deposition.

13.
Genet Sel Evol ; 53(1): 39, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33892623

RESUMO

BACKGROUND: Short tandem repeats (STRs) are genetic markers with a greater mutation rate than single nucleotide polymorphisms (SNPs) and are widely used in genetic studies and forensics. However, most studies in pigs have focused only on SNPs or on a limited number of STRs. RESULTS: This study screened 394 deep-sequenced genomes from 22 domesticated pig breeds/populations worldwide, wild boars from both Europe and Asia, and numerous outgroup Suidaes, and identified a set of 878,967 polymorphic STRs (pSTRs), which represents the largest repository of pSTRs in pigs to date. We found multiple lines of evidence that pSTRs in coding regions were affected by purifying selection. The enrichment of trinucleotide pSTRs in coding sequences (CDS), 5'UTR and H3K4me3 regions suggests that trinucleotide STRs serve as important components in the exons and promoters of the corresponding genes. We demonstrated that, compared to SNPs, pSTRs provide comparable or even greater accuracy in determining the breed identity of individuals. We identified pSTRs that showed significant population differentiation between domestic pigs and wild boars in Asia and Europe. We also observed that some pSTRs were significantly associated with environmental variables, such as average annual temperature or altitude of the originating sites of Chinese indigenous breeds, among which we identified loss-of-function and/or expanded STRs overlapping with genes such as AHR, LAS1L and PDK1. Finally, our results revealed that several pSTRs show stronger signals in domestic pig-wild boar differentiation or association with the analysed environmental variables than the flanking SNPs within a 100-kb window. CONCLUSIONS: This study provides a genome-wide high-density map of pSTRs in diverse pig populations based on genome sequencing data, enabling a more comprehensive characterization of their roles in evolutionary and environmental adaptation.


Assuntos
Adaptação Fisiológica , Ecossistema , Evolução Molecular , Repetições de Microssatélites , Suínos/genética , Animais , Polimorfismo de Nucleotídeo Único
14.
Mol Ecol Resour ; 21(6): 2022-2033, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33730415

RESUMO

The burbot (Lota lota) is the only member of the order Gadiformes adapted solely to freshwater. This species has the widest longitudinal range among freshwater fish worldwide. Burbot serves as a good model for studies on adaptive genome evolution from marine to freshwater environments. However, a high-quality reference genome of burbot has not yet been released. Here, the first chromosome-level genome of burbot was constructed using PacBio long sequencing and Hi-C technology. A total of 95.24 Gb polished PacBio sequences were generated, and the preliminary genome assembly was 575.83 Mb in size with a contig N50 size of 2.15 Mb. The assembled sequences were anchored to 22 pseudochromosomes by using Hi-C data. The final assembled genome after Hi-C correction was 575.92 Mb, with a contig N50 of 2.01 Mb and a scaffold N50 of 22.10 Mb. A total of 22,067 protein-coding genes were predicted, 94.82% of which were functionally annotated. Phylogenetic analyses indicated that burbot diverged with the Atlantic cod approximately 43.8 million years ago. In addition, 377 putative genes that appear to be under positive selection in burbot were identified. These positively selected genes might be involved in the adaptation to the freshwater environment. These genome data provide an invaluable resource for the ecological and evolutionary study of the order Gadiformes.


Assuntos
Adaptação Biológica/genética , Gadiformes , Genoma , Animais , Cromossomos , Água Doce , Gadiformes/genética , Filogenia
16.
Sci China Life Sci ; 64(10): 1732-1746, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33527326

RESUMO

Subcutaneous fat (SCF) and intramuscular fat (IMF) deposition is relevant to health in humans, as well as meat production and quality in pigs. In this study, we generated RNA sequence data for 122 SCF, 120 IMF, and 87 longissimus dorsi muscle (LDM) samples using 155 F6 pigs from a specially designed heterogeneous population generated by intercrossing four highly selected European commercial breeds and four indigenous Chinese pig breeds. The phenotypes including waist back fat thickness and intramuscular fat content were also measured in the 155 F6 pigs. We found that the genes in SCF and IMF differed largely in both expression levels and network connectivity, and highlighted network modules that exhibited strongest gain of connectivity in SCF and IMF, containing genes that were associated with the immune process and DNA double-strand repair, respectively. We identified 215 SCF genes related to kinase inhibitor activity, mitochondrial fission, and angiogenesis, and 90 IMF genes related to lipolysis and fat cell differentiation, displayed a tissue-specific association with back fat thickness and IMF content, respectively. We found that cis-expression QTL for trait-associated genes in the two adipose tissues tended to have tissue-dependent predictability for the two adipose traits. Alternative splicing of genes was also found to be associated with SCF or IMF deposition, but the association was much less extensive than that based on expression levels. This study provides a better understanding of SCF and IMF gene transcription and network organization and identified critical genes and network modules that displayed tissue-specific associations with subcutaneous and intramuscular fat deposition. These features are helpful for designing breeding programs to genetically improve the two adipose traits in a balanced way.


Assuntos
Tecido Adiposo/metabolismo , Redes Reguladoras de Genes , Processamento Alternativo , Animais , Músculo Esquelético/metabolismo , Especificidade de Órgãos , Fenótipo , Carne de Porco/análise , Locos de Características Quantitativas , Gordura Subcutânea/metabolismo , Suínos , Transcriptoma
17.
Microb Biotechnol ; 14(4): 1316-1330, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33305898

RESUMO

Failed puberty is one of the main reasons for eliminating gilts from production herds. This is often caused by disorders of sex hormones. An increasing number of studies have suggested that the gut microbiota may regulate sex hormones and vice versa. Whether the gut microbiota is involved in the failure of oestrus in gilts remains unknown. We used 16S rRNA gene sequencing, network-based microbiota analysis and prediction of functional capacity from 16S rRNA gene sequences to explore the shifts in the gut microbiota throughout a heat cycle in 22 eight-month-old gilts. We found that a module of co-occurrence networks composed of Sphaerochaeta and Treponema, co-occurred with oestrus during a heat cycle. The mcode score of this module reflecting the stability and importance in the network achieved the highest value at the oestrus stage. We then identified bacterial biosignatures associated with the failure to show puberty in 163 gilts. Prevotella, Treponema, Faecalibacterium, Oribacterium, Succinivibrio and Anaerovibrio were enriched in gilts showing normal heat cycles, while Lachnospiraceae, Ruminococcus, Coprococcus and Oscillospira had higher abundance in gilts failing to show puberty. Prediction of functional capacity of the gut microbiome identified a lesser abundance of the pathway 'retinol metabolism' in gilts that failed to undergo puberty. This pathway was also significantly associated with those bacterial taxa involved in failed puberty identified in this study (P < 0.05). This result suggests that the changed gut bacteria might result in a disorder of retinol metabolism, and this may be an explanation for the failure to enter oestrus.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Biomarcadores , Fezes , Feminino , Temperatura Alta , RNA Ribossômico 16S/genética , Suínos
18.
Aging (Albany NY) ; 12(24): 25412-25431, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33231562

RESUMO

DNA methylome pattern is significantly different among tissues, ages, breeds, and genders. We assessed 20 methylome and transcriptome data in longissimus dorsi (LD) or testicles from Bamaxiang (BMX) and Large White pigs (LW) by deep sequencing technology. We identified ~55.7M CpGs and 5.30M, 0.20M, 1.20M, and 0.16M differential CpGs (P<0.01) between tissues, ages, breeds, and genders, respectively. Interestingly, 7.54% of differentially methylated regions (DMRs) are co-localized with promoters, which potentially regulate gene expression. RNA-seq analysis revealed that 23.42% CpGs are significantly correlated with gene expression (mean |r|=0.58, P<0.01), most of which are enriched in tissue-specific functions. Specially, we also found that the methylation levels in promoters of 655 genes were strongly associated with their expression levels (mean |r|=0.66, P<0.01). In addition, differentially methylated CpGs (DMCpGs) between breeds in HOXC gene cluster imply important regulatory roles in myocytes hypertrophy and intermuscular fat (IMF) deposition. Dramatically, higher similarity of methylation pattern was observed within pedigree than across pedigrees, which indicates the existence of heritable methylation regions. In summary, a part of CpGs in promoter can change its methylation pattern and play a marked regulatory function in different physiological or natural environments.


Assuntos
Metilação de DNA/fisiologia , Músculo Esquelético , Suínos/genética , Testículo , Animais , Ilhas de CpG/genética , Feminino , Perfilação da Expressão Gênica , Masculino , Regiões Promotoras Genéticas/genética
19.
Gigascience ; 9(11)2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33231676

RESUMO

BACKGROUND: Intense stresses caused by high-altitude environments may result in noticeable genetic adaptions in native species. Studies of genetic adaptations to high elevations have been largely limited to terrestrial animals. How fish adapt to high-elevation environments is largely unknown. Triplophysa bleekeri, an endemic fish inhabiting high-altitude regions, is an excellent model to investigate the genetic mechanisms of adaptation to the local environment. Here, we assembled a chromosomal genome sequence of T. bleekeri, with a size of ∼628 Mb (contig and scaffold N50 of 3.1 and 22.9 Mb, respectively). We investigated the origin and environmental adaptation of T. bleekeri based on 21,198 protein-coding genes in the genome. RESULTS: Compared with fish species living at low altitudes, gene families associated with lipid metabolism and immune response were significantly expanded in the T. bleekeri genome. Genes involved in DNA repair exhibit positive selection for T. bleekeri, Triplophysa siluroides, and Triplophysa tibetana, indicating that adaptive convergence in Triplophysa species occurred at the positively selected genes. We also analyzed whole-genome variants among samples from 3 populations. The results showed that populations separated by geological and artificial barriers exhibited obvious differences in genetic structures, indicating that gene flow is restricted between populations. CONCLUSIONS: These results will help us expand our understanding of environmental adaptation and genetic diversity of T. bleekeri and provide valuable genetic resources for future studies on the evolution and conservation of high-altitude fish species such as T. bleekeri.


Assuntos
Cipriniformes , Adaptação Fisiológica/genética , Altitude , Animais , Cipriniformes/genética , Genoma , Humanos , Filogenia
20.
iScience ; 23(9): 101497, 2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32905880

RESUMO

Whole-genome duplications (WGDs) of Schizothoracinae are believed to have played a significant role in speciation and environmental adaptation on the Qinghai-Tibet Plateau (QTP). Here, we present a genome for Schizothorax o'connori, a QTP endemic fish and showed the species as a young tetraploid with a recent WGD later than ∼1.23 mya. We exhibited that massive insertions between duplicated genomes caused by transposon bursts could induce mutagenesis in adjacent sequences and alter the expression of neighboring genes, representing an early re-diploidization process in a polyploid genome after WGD. Meanwhile, we found that many genes involved in DNA repair and folate transport/metabolism experienced natural selection and might contribute to the environmental adaptation of this species. Therefore, the S. o'connori genome could serve as a young tetraploid model for investigations of early re-diploidization in polyploid genomes and offers an invaluable genetic resource for environmental adaptation studies of the endemic fish of the QTP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...