Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.026
Filtrar
1.
Chemosphere ; 278: 130439, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33836401

RESUMO

The metal-binding characteristics of water-soluble organic matter (WSOM) emitted from biomass burning (BB, i.e., rice straw (RS) and corn straw (CS)) with Cu(II) under various pH conditions (i.e., 3, 4.5, and 6) were comprehensively investigated. Two-dimensional correlation spectroscopy (2D-COS) and excitation-emission matrix (EEM) -PARAFAC analysis were applied to investigate the binding affinity and mechanism of BB WSOM. The results showed that pH was a sensitive factor affecting binding affinities of WSOM, and BB WSOMs were more susceptible to bind with Cu(II) at pH 6.0 than pH 4.5, followed by pH 3.0. Therefore, the Cu(II)-binding behaviors of BB WSOMs at pH 6.0 were then investigated in this study. The 2D-absorption-COS revealed that the preferential binding with Cu(II) was in the order short and long wavelengths (237-239 nm and 307-309 nm) > moderate wavelength (267-269 nm). The 2D-synchronous fluorescence-COS results suggested that protein-like substances generally exhibited a higher susceptibility and preferential interaction with Cu(II) than fulvic-like substances. EEM-PARAFAC analysis demonstrated that protein-like (C1) substances had a greater complexation ability than fulvic-like (C2) and humic-like (C3) substances for both BB WSOM. This indicated that protein-like substances within WSOM played dominant roles in the interaction with Cu(II). As a comparison, RS WSOM generally showed stronger complexation capacity than CS WSOM although they exhibited similar chemical properties and compositions. This suggested the occurrence of heterogeneous active metal-binding sites even within similar chromophores for different WSOM. The results enhanced our understanding of binding behaviors of BB WSOM with Cu(II) in relevant atmospheric environments.

2.
EMBO Rep ; : e50684, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33852194

RESUMO

SUMOylation plays a crucial role in regulating diverse cellular processes including ribosome biogenesis. Proteomic analyses and experimental evidence showed that a number of nucleolar proteins involved in ribosome biogenesis are modified by SUMO. However, how these proteins are SUMOylated in cells is less understood. Here, we report that USP36, a nucleolar deubiquitinating enzyme (DUB), promotes nucleolar SUMOylation. Overexpression of USP36 enhances nucleolar SUMOylation, whereas its knockdown or genetic deletion reduces the levels of SUMOylation. USP36 interacts with SUMO2 and Ubc9 and directly mediates SUMOylation in cells and in vitro. We show that USP36 promotes the SUMOylation of the small nucleolar ribonucleoprotein (snoRNP) components Nop58 and Nhp2 in cells and in vitro and their binding to snoRNAs. It also promotes the SUMOylation of snoRNP components Nop56 and DKC1. Functionally, we show that knockdown of USP36 markedly impairs rRNA processing and translation. Thus, USP36 promotes snoRNP group SUMOylation and is critical for ribosome biogenesis and protein translation.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 255: 119669, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33812239

RESUMO

Seven isatin-thiosemicarbazone analogues bearing different substituents (R) attached at C-5 of the indoline ring, TSC-ISA-R (R = -H, -CH3, -OCH3, -OCF3, -F, -Cl and -NO2), were synthesized and evaluated as inhibitors of mushroom tyrosinase (TYR). The inhibitory behaviour and performance of TSC-ISA-R were investigated spectroscopically in relation to the substituent modifications through examining their inhibition against the diphenolase activity of TYR using L-DOPA as a substrate. The IC50 values of TSC-ISA-R were determined to be in the range of 81-209 µM. The kinetic analysis showed that TSC-ISA-R were reversible and mixed type inhibitors. Three potential non-covalent interactions rather than complexation including the binding of TSC-ISA-R with free TYR, TYR-L-DOPA complex, and with substrate L-DOPA were found to be involved in the inhibition. The substituent modifications affected these interactions by varying the characters of the resulting TSC-ISA-R in different degrees. The thiosemicarbazido moiety of each TSC-ISA-R contributed predominantly to the inhibition, and the isatin moiety seemed to play a regulatory role in the binding of TSC-ISA-R to the target molecules. The results of theoretical calculations using density functional theory method indicated a different effect of -R on the electron distribution in HOMO of TSC-ISA-R. The LUMO-HOMO energy gap of TSC-ISA-R almost accords with the trend of their experimental inhibition potency.

4.
Bioorg Chem ; 110: 104809, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33752145

RESUMO

Seven undescribed withanolides (1-7) and six artificial withanolides (8-13), along with 20 known compounds (14-33) were isolated from the aerial parts of Tubocapsicum anomalum. Their structures were confirmed by comprehensive spectroscopic analyses. The absolute configuration of compound 1 was defined by single-crystal X-ray crystallography. All isolates were evaluated for their antiproliferative effects against five human tumor cell lines (Hep3B, MDA-MB-231, SW480, HCT116 and A549), among which compound 24 (tubocapsanolide A) exhibited the highest activities against the MDA-MB-231 cells with an IC50 value of 1.89 ± 1.03 µM. Further studies showed that 24 exhibited significant damage to mitochondria in MDA-MB-231 cells, including excess reactive oxygen species, decreased mitochondrial membrane potential, and apoptosis initiation. In addition, compound 24 also inhibited cell migration. These findings show that tubocapsanolide A may be a promising molecule for triple-negative breast cancer treatment and merit further evaluation.

5.
Front Cell Infect Microbiol ; 11: 643092, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33768014

RESUMO

Rheumatic heart disease refers to the long-term damage of heart valves and results from an autoimmune response to group A Streptococcus infection. This study aimed to analyze the microbiota composition of patients with rheumatic heart disease and explore potential function of microbiota in this disease. First, we revealed significant alterations of microbiota in feces, subgingival plaques, and saliva of the patients compared to control subjects using 16S rRNA gene sequencing. Significantly different microbial diversity was observed in all three types of samples between the patients and control subjects. In the gut, the patients possessed higher levels of genera including Bifidobacterium and Eubacterium, and lower levels of genera including Lachnospira, Bacteroides, and Faecalibacterium. Coprococcus was identified as a super-generalist in fecal samples of the patients. Significant alterations were also observed in microbiota of subgingival plaques and saliva of the patients compared to control subjects. Second, we analyzed microbiota in mitral valves of the patients and identified microbes that could potentially transmit from the gut or oral cavity to heart valves, including Streptococcus. Third, we further analyzed the data using random forest model and demonstrated that microbiota in the gut, subgingival plaque or saliva could distinguish the patients from control subjects. Finally, we identified gut/oral microbes that significantly correlated with clinical indices of rheumatic heart disease. In conclusion, patients with rheumatic heart disease manifested important alterations in microbiota that might distinguish the patients from control subjects and correlated with severity of this disease.

6.
J Mol Evol ; 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33760965

RESUMO

Key enzymes play a vital role in plant growth and development. However, the evolutionary relationships between genes encoding key enzymes in the metabolic pathway of Tartary buckwheat flavonoids are poorly understood. Based on the published Tartary buckwheat genome sequence and related Tartary buckwheat transcriptome data, 48 key enzyme-encoding genes involved in flavonoid metabolism were screened from the Tartary buckwheat genome in this study; the chromosome localization, gene structure and promoter elements of these enzyme-encoding gene were also investigated. Gene structure analysis revealed relatively conserved 5' exon sequences among the 48 genes, indicating that the structural diversity of key enzyme-encoding genes is low in Tartary buckwheat. Through promoter analysis, these key enzyme-encoding genes were found to contain a large number of light-response elements and hormone-response elements. In addition, some genes could bind MYB transcription factors, participating in the regulation of flavonoid biosynthesis. The transcription level of the 48 key enzyme-encoding gene varied greatly among tissues. In this study, we identified 48 key enzyme-encoding genes involved in flavonoid metabolic pathways, and elucidated the structure, evolution and tissue-specific expression patterns of these genes. These results lay a foundation for further understanding the functional characteristics and evolutionary relationships of key enzyme-encoding genes involved in the flavonoid metabolic pathway in Tartary buckwheat.

7.
Clin Nucl Med ; 46(5): 369-374, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33661201

RESUMO

PURPOSE: 18F-FDG PET myocardial metabolic imaging is used to estimate myocardial viability. However, poor image quality can affect the accurate quantification of viable myocardium. We assessed the feasibility of a rescue protocol that reinjected low-dose 18F-FDG with simultaneous 1 to 2 U of insulin injection and oral administration of 10 g of glucose to improve the image quality of 18F-FDG PET myocardial metabolic imaging. PATIENTS AND METHODS: Fifty-one consecutive patients with poor quality to uninterpretable 18F-FDG PET/CT myocardial metabolic images received the rescue protocol immediately after the initial image acquisition. The postrescue image acquisition was performed 1 hour later. The rescue image quality was compared with the initial image. The qualitative visual estimation of the images was graded as follows: grade 0, homogeneous, minimal uptake; grade 1, predominantly minimal or mild uptake; grade 2, moderate uptake; and grade 3, good uptake. The myocardium-to-blood pool activity ratio (M/B) was measured to assess the image quality quantitatively. RESULTS: The grades of 0 to 3 were observed in 24 (47%), 27 (53%), 0 (0%), and 0 (0%) patients, respectively, for the initial imaging, and in 0 (0%), 3 (5.9%), 4 (7.8%), and 44 (86.3%) patients for the rescue imaging (P < 0.001). The rescue M/B was significantly higher than the initial M/B (3.4 ± 1.4 vs 1.6 ± 0.6, respectively; P < 0.001). CONCLUSIONS: The rescue protocol successfully and rapidly improved the quality of myocardial 18F-FDG metabolic imaging.

8.
J Am Chem Soc ; 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33651597

RESUMO

Cu(I)-based catalysts have proven to play an important role in the formation of specific hydrocarbon products from electrochemical carbon dioxide reduction reaction (CO2RR). However, it is difficult to understand the effect of intrinsic cuprophilic interactions inside the Cu(I) catalysts on the electrocatalytic mechanism and performance. Herein, two stable copper(I)-based coordination polymer (NNU-32 and NNU-33(S)) catalysts are synthesized and integrated into a CO2 flow cell electrolyzer, which exhibited very high selectivity for electrocatalytic CO2-to-CH4 conversion due to clearly inherent intramolecular cuprophilic interactions. Substitution of hydroxyl radicals for sulfate radicals during the electrocatalytic process results in an in situ dynamic crystal structure transition from NNU-33(S) to NNU-33(H), which further strengthens the cuprophilic interactions inside the catalyst structure. Consequently, NNU-33(H) with enhanced cuprophilic interactions shows an outstanding product (CH4) selectivity of 82% at -0.9 V (vs reversible hydrogen electrode, j = 391 mA cm-2), which represents the best crystalline catalyst for electrocatalytic CO2-to-CH4 conversion to date. Moreover, the detailed DFT calculations also prove that the cuprophilic interactions can effectively facilitate the electroreduction of CO2 to CH4 by decreasing the Gibbs free energy change of potential determining step (*H2COOH → *OCH2). Significantly, this work first explored the effect of intrinsic cuprophilic interactions of Cu(I)-based catalysts on the electrocatalytic performance of CO2RR and provides an important case study for designing more stable and efficient crystalline catalysts to reduce CO2 to high-value carbon products.

9.
J Nucl Cardiol ; 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33751472

RESUMO

BACKGROUND: A low appropriate therapy rate indicates that a minority of patients will benefit from their implantable cardioverter defibrillator (ICD). Quantitative measurements from 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) may predict ventricular arrhythmia (VA) occurrence after ICD placement. METHODS: We performed a prospective observational study and recruited patients who required ICD placement. Pre-procedure image scans were performed. Patients were followed up for VA occurrence. Associations between image results and VA were analyzed. RESULTS: In 51 patients (33 males, 53.9 ± 17.2 years) analyzed, 17 (33.3%) developed VA. Compared with patients without VA, patients with VA had significantly larger values in scar area (17.7 ± 12.4% vs. 7.0 ± 7.9%), phase standard deviation (51.4° ± 14.0° vs. 34.0° ± 15.0°), bandwidth (172.9° ± 39.8° vs. 128.7° ± 49.9°), sum thickening score (STS, 29.5 ± 11.1 vs. 17.8 ± 13.2), and sum motion score (42.9 ± 11.5 vs. 33.0 ± 19.0). Cox regression analysis and receiver operating characteristic curve analysis showed that scar size, dyssynchrony, and STS were associated with VA occurrence (HR, 4.956, 95% CI 1.70-14.46). CONCLUSION: Larger left ventricular scar burden, increased dyssynchrony, and higher STS quantified by 18F-FDG PET may indicate a higher VA incidence after ICD placement.

10.
Sci Total Environ ; 771: 145396, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33736138

RESUMO

The precisely coupling of metal nanoparticles with support domain are crucial to enhance the catalytic activity and stability of supported metal nanoparticle catalysts (MNPs). Here we selectively anchor Pd nanoparticles to the sp2 domain in graphene-based aerogel constructed with base-washed graphene oxide (BGO) by removing oxidative debris (OD). The effects of OD on the size and chemical composition of Pd nanoparticles in aerogels are initially unveiled. The removal of OD nanoparticles prompt selective coupling of Pd nanoparticles to the exposed sp2-hybridized domain on BGO nanosheets, and then prevent it from agglomeration. As a result, the Pd nanoparticle size of self-assembled Pd/BGA is 4.67 times smaller than that of traditional Pd/graphene oxide aerogel (Pd/GA). The optimal catalytic activity of Pd/BGA for the model catalytic reduction of 4-nitrophenol is 15 times higher than that of Pd/GA. Pd/BGA could maintain its superior catalytic activity and achieves 98.72% conversion in the fifth cycle. The superior catalytic performance could be ascribed to the small Pd nanoparticles and high percentage of Pd(0) in Pd/BGA, and the enhanced electronic conductivity of Pd/BGA. These integrated merits of Pd/BGA as heterogeneous catalysts are attributed to selectively anchor Pd nanoparticles on sp2-hybridized domain of graphene-based aerogel, and strongly coupled interaction of MNPs with support. The structure-regulated BGO nanosheets could serve as versatile building blocks for fabricating MNPs/graphene aerogels with superior performance for catalytic transformation of water pollutants.

11.
Curr Med Sci ; 41(1): 87-93, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33582911

RESUMO

Insulin resistance is an essential characteristic of type 2 diabetes mellitus (T2DM), which can be induced by glucotoxicity and adipose chronic inflammation. Mesenchymal stem cells (MSCs) and their exosomes were reported to ameliorate T2DM and its complications by their immunoregulatory and healing abilities. Exosomes derived from MSCs contain abundant molecules to mediate crosstalk between cells and mimic biological function of MSCs. But the role of exosomes derived from human umbilical cord mesenchymal stem cells (hUC-MSCs) in insulin resistance of human adipocytes is unclear. In this study, exosomes were harvested from the conditioned medium of hUC-MSCs and added to insulin-resistant adipocytes. Insulin-stimulated glucose uptake was measured by glucose oxidase/peroxidase assay. The signal pathway involved in exosome-treated adipocytes was detected by RT-PCR and Western blotting. The biological characteristics and function were compared between hUC-MSCs and human adipose-derived mesenchymal stem cells (hAMSCs). The results showed that hAMSCs had better adipogenic ability than hUC-MSCs. After induction of mature adipocytes by adipogenesis of hAMSC, the model of insulin-resistant adipocytes was successfully established by TNF-α and high glucose intervention. After exosome treatment, the insulin-stimulated glucose uptake was significantly increased. In addition, the effect of exosomes could be stabilized for at least 48 h. Furthermore, the level of leptin was significantly decreased, and the mRNA expression of sirtuin-1 and insulin receptor substrate-1 was significantly upregulated after exosome treatment. In conclusion, exosomes significantly improve insulin sensitivity in insulin-resistant human adipocytes, and the mechanism involves the regulation of adipokines.

12.
Cell Mol Neurobiol ; 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33595806

RESUMO

The Shank family proteins are enriched at the postsynaptic density (PSD) of excitatory glutamatergic synapses. They serve as synaptic scaffolding proteins and appear to play a critical role in the formation, maintenance and functioning of synapse. Increasing evidence from genetic association and animal model studies indicates a connection of SHANK genes defects with the development of neuropsychiatric disorders. In this review, we first update the current understanding of the SHANK family genes and their encoded protein products. We then denote the literature relating their alterations to the risk of neuropsychiatric diseases. We further review evidence from animal models that provided molecular insights into the biological as well as pathogenic roles of Shank proteins in synapses, and the potential relationship to the development of abnormal neurobehavioral phenotypes.

13.
Ann Palliat Med ; 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33548989

RESUMO

Tumor relapse and pulmonary metastasis, especially unresectable lesions, are the major cause of poor prognosis of patients with osteosarcoma. Anlotinib, a novel small-molecule tyrosine kinase inhibitor (TKI), has been proved to have desirable anti-tumor effects via blocking VEGFR2 and PDGFRß phosphorylation in several tumors, including non-small cell lung cancer and soft tissue sarcoma. In this study, we presented a case of giant delayed pulmonary metastasis of osteosarcoma which was effectively treated by anlotinib. CT scan of this patient showed a giant neoplasm with the size of 1,366 cm3 in the left lung, clinically diagnosed as pulmonary metastasis of osteosarcoma. Due to refusing to chemotherapy and not eligible for surgery of the giant neoplasm, anlotinib was recommended. As a result, the tumor volume decreased more than 82% during 24-week anlotinib administration, from 1,366 to 247 cm3 . Unfortunately, disease progression was observed at 27-week. Although argon-helium cryoablation (AHC) was performed followed by apatinib administration, the patient was dead in 16 weeks after disease progression. The progression-free survival (PFS) and overall survival since anlotinib administration of this patient was 27 weeks and 43 weeks, respectively. The toxicity included hypertension, fatigue and hand-foot skin syndrome in grade1-2, which were controllable and well tolerated. Meanwhile, immunohistochemical staining showed that the expression of VEGFR2 and PDGFRß was decreased significantly and the whole exon sequencing revealed that c-MYC was duplicated, which was potentially associated with anlotinib resistance. Anlotinib had promising anti-tumor efficiency in the treatment of delayed pulmonary metastatic osteosarcoma. However, the potential mechanism of anlotinib resistance and the subsequent therapy after resistance were still challengeable and needed further investigation.

14.
Artigo em Inglês | MEDLINE | ID: mdl-33554601

RESUMO

A physical impregnation method is presented in this study, providing a facile approach to encapsulating functional guest molecules (GMs) into robust crystalline supramolecular organic frameworks incorporating cucurbit[10]uril (Q[10]-SOF). As Q[10]-SOF has high evaporated pyridine affinity under normal atmospheric pressure, pyridine molecules in this method were successfully encapsulated into the nanospace formed by GMs and Q[10]-SOF while retaining their crystal framework, morphology, and high stability. GMs@Q[10]-SOF solid materials were found to respond to pyridine, being suitable to be used as solid sensors. Notably, Q[10]-SOF loading with pyrene exhibited a unique response to pyridine along with dramatic fluorescence quenching; loading with dansyl chloride exhibited a unique response to pyridine along with significant fluorescence enhancement, having a quick response within 60 s. Our findings represent a critical advancement in the design of pyridine detection and adsorption for commercial gas identification and sensing.

15.
Nat Commun ; 12(1): 735, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531490

RESUMO

Nitrogen (N) and carbon (C) are essential elements for plant growth and crop yield. Thus, improved N and C utilisation contributes to agricultural productivity and reduces the need for fertilisation. In the present study, we find that overexpression of a single rice gene, Oryza sativa plasma membrane (PM) H+-ATPase 1 (OSA1), facilitates ammonium absorption and assimilation in roots and enhanced light-induced stomatal opening with higher photosynthesis rate in leaves. As a result, OSA1 overexpression in rice plants causes a 33% increase in grain yield and a 46% increase in N use efficiency overall. As PM H+-ATPase is highly conserved in plants, these findings indicate that the manipulation of PM H+-ATPase could cooperatively improve N and C utilisation, potentially providing a vital tool for food security and sustainable agriculture.


Assuntos
Membrana Celular/metabolismo , Oryza/enzimologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Compostos de Amônio/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/fisiologia , Fotossíntese/genética , Fotossíntese/fisiologia , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia
17.
Technol Cancer Res Treat ; 20: 1533033821989817, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33550923

RESUMO

BACKGROUND: Prostate cancer is a common malignant tumor with a high incidence. MicroRNAs (miRNAs) have been shown to be important post-transcriptional regulators during tumorigenesis. This study aimed to explore the effect of miR-144 on PCa proliferation and apoptosis. MATERIAL AND METHODS: The expression of miR-144 and EZH2 were examined in clinical PCa tissues. PCa cell line LNCAP and DU-145 was employed and transfected with miR-144 mimics or inhibitors. The correlation between miR-144 and EZH2 was verified by luciferase reporter assay. Cell viability, apoptosis and migratory capacity were detected by CCK-8, flow cytometry assay and wound healing assay. The protein level of EZH2, E-Cadherin, N-Cadherin and vimentin were analyzed by western blotting. RESULTS: miR-144 was found to be negatively correlated to the expression of EZH2 in PCa tissues. Further studies identified EZH2 as a direct target of miR-144. Moreover, overexpression of miR-144 downregulated expression of EZH2, reduced cell viability and promoted cell apoptosis, while knockdown of miR-144 led to an inverse result. miR-144 also suppressed epithelial-mesenchymal transition level of PCa cells. CONCLUSION: Our study indicated that miR-144 negatively regulate the expression of EZH2 in clinical specimens and in vitro. miR-144 can inhibit cell proliferation and induce cell apoptosis in PCa cells. Therefore, miR-144 has the potential to be used as a biomarker for predicting the progression of PCa.

18.
Nat Commun ; 12(1): 51, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397955

RESUMO

Identifying novel drug targets to overcome resistance to tyrosine kinase inhibitors (TKIs) and eradicating leukemia stem/progenitor cells are required for the treatment of chronic myelogenous leukemia (CML). Here, we show that ubiquitin-specific peptidase 47 (USP47) is a potential target to overcome TKI resistance. Functional analysis shows that USP47 knockdown represses proliferation of CML cells sensitive or resistant to imatinib in vitro and in vivo. The knockout of Usp47 significantly inhibits BCR-ABL and BCR-ABLT315I-induced CML in mice with the reduction of Lin-Sca1+c-Kit+ CML stem/progenitor cells. Mechanistic studies show that stabilizing Y-box binding protein 1 contributes to USP47-mediated DNA damage repair in CML cells. Inhibiting USP47 by P22077 exerts cytotoxicity to CML cells with or without TKI resistance in vitro and in vivo. Moreover, P22077 eliminates leukemia stem/progenitor cells in CML mice. Together, targeting USP47 is a promising strategy to overcome TKI resistance and eradicate leukemia stem/progenitor cells in CML.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Inibidores de Proteínas Quinases/farmacologia , Ubiquitina Tiolesterase/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Fusão bcr-abl , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Camundongos Knockout , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiofenos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína 1 de Ligação a Y-Box/metabolismo , Proteínas ras/metabolismo
19.
Cell Mol Life Sci ; 78(7): 3403-3422, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33464385

RESUMO

Long noncoding RNAs (lncRNAs), a type of transcriptional product more than 200 nucleotides in length, have emerged as crucial regulators in human cancers. Accumulating data have recently indicated relationships between lncRNAs and esophageal carcinoma (EC). Of note, lncRNAs act as decoys/sponges, scaffolds, guides, and signals to regulate the expression of oncogenes or tumor suppressors at epigenetic, post-transcriptional, and protein levels, through which they exert their unique EC-driving or EC-suppressive functions. Moreover, the features of EC-related lncRNAs have been gradually exploited for developing novel diagnostic and therapeutic strategies in clinical scenarios. LncRNAs have the potential to be used as diagnostic and prognostic indicators individually or in combination with other clinical variables. Beyond these, although the time is not yet ripe, therapeutically targeting EC-related lncRNAs via gene editing, antisense oligonucleotides, RNA interference, and small molecules is likely one of the most promising therapeutic strategies for the next generation of cancer treatment. Herein, we focus on summarizing EC-driving/suppressive lncRNAs, as well as discussing their different features regarding expression profiles, modes of action, and oncological effects. Moreover, we further discuss current challenges and future developing possibilities of capitalizing on lncRNAs for EC early diagnosis and treatment.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 250: 119381, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33422874

RESUMO

Herein we present a simple fluorescence quenching method to selectively recognise and determine L-tryptophan (L-Trp) out of other 19 natural amino acids. Methylpillar[5]arene (MeP5), which is employed as a macrocyclic fluorescent probe, exhibits fluorescence activity in the solution of poor solvents because of aggregation-induced emission (AIE) effect. Fluorescence quenching of MeP5 in the solution of EtOH/CH2Cl2 (98/2, v/v) was observed upon the addition of L-Trp whereas other 19 natural amino acids did not bring about obvious change in fluorescence intensity. 1H NMR titration, fluorescence spectroscopy, mass spectrometry and theoretical analysis revealed that L-Trp can be encapsulated into the cavity of MeP5 to form a stable 1:1 host-guest inclusion complex which accounts for the quenching characteristics. The proposed procedure in this investigation offers an attractive and promising method for the selective detection of L-Trp in a mixture of natural amino acids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...