Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Curr Med Sci ; 40(1): 18-27, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32166661


Alzheimer's disease (AD) shows cognitive impairments in clinic, which is multifactorial with different etiopathogenic mechanisms such as Aß deposition, neuroinflammation and neuronal dystrophy involved. Therefore, multi-targets drugs with neuroprotective, anti-amyloidogenic and anti-inflammatory properties will be effective in AD treatment. Epigallocatechin-3-gallate (EGCG) possesses a broad spectrum of pharmacological activities in the prevention and treatment of multiple neurodegenerative diseases. In the present study, we showed that oral administration of EGCG (50 mg/kg) for 4 months significantly attenuated the cognitive deficits in APP/PS1 transgenic mice, which served as AD model. Moreover, EGCG induced an improvement in dendritic integrity and expression levels of synaptic proteins in the brain of APP/PS1 mice. And EGCG exerted obvious anti-inflammatory effects, which was manifested by alleviating microglia activation, decreasing pro-inflammatory cytokine (IL-1ß) and increasing anti-inflammatory cytokines (IL-10, IL-13). Furthermore, ß-amyloid (Aß) plaques were markedly reduced in the hippocampus of 6-month old APP/PS1 mice after EGCG treatment. In conclusion, these findings indicate that EGCG improves AD-like cognitive impairments through neuroprotective, anti-amyloidogenic and anti-inflammatory effects, thus is a promising therapeutic candidate for AD.

Nanoscale Res Lett ; 13(1): 412, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30584649


The energy band alignment of ZnO/ß-Ga2O3 ([Formula: see text]) heterojunction was characterized by X-ray photoelectron spectroscopy (XPS). The ZnO films were grown by using atomic layer deposition at various temperatures. A type-I band alignment was identified for all the ZnO/ß-Ga2O3 heterojunctions. The conduction (valence) band offset varied from 1.26 (0.20) eV to 1.47 (0.01) eV with the growth temperature increasing from 150 to 250 °C. The increased conduction band offset with temperature is mainly contributed by Zn interstitials in ZnO film. In the meanwhile, the acceptor-type complex defect Vzn + OH could account for the reduced valence band offset. These findings will facilitate the design and physical analysis of ZnO/ß-Ga2O3 relevant electronic devices.