Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 117(1): 93, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954062

RESUMO

A Gram-negative, rod-shaped, non-motile, aerobic bacterium, designated as strain TK19101T, was isolated from the intermediate seawater of yellow vent in the shallow-sea hydrothermal system located near Kueishantao Island. The strain was found to grow at 10-40 °C (optimum, 35 °C), at pH 6.0-8.0 (optimum, 7.0), and in 0-5% (w/v) NaCl (optimum, 1%). Strain TK19101T was catalase-positive and oxidase-positive. The predominant fatty acids (> 10%) in strain TK19101T cells were C16:0, summed feature 8 (C18:1 ω6c and/or C18:1 ω7c), and C18:0. The predominant isoprenoid quinone of strain TK19101T was ubiquinone-10. The polar lipids of strain TK19101T comprised phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phospholipid, and unknown polar lipid. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain TK19101T belonged to the genus Mesobacterium. Strain TK19101T exhibited highest 16S rRNA gene sequence similarity value to Mesobacterium pallidum MCCC M24557T (97.48%). The estimated average nucleotide identity and digital DNA-DNA hybridization values between strain TK19101T and the closest related species Mesobacterium pallidum MCCC M24557T were 74.88% and 20.30%, respectively. The DNA G + C content was 63.49 mol%. On the basis of the analysis of 16S rRNA gene sequences, genotypic and phylogenetic data, strain TK19101T has a unique phylogenetic status and represents a novel species of genus Mesobacterium, for which the name Mesobacterium hydrothermale sp. nov. is proposed. The type strain is TK19101T (= MCCC 1K08936T = KCTC 8354T).


Assuntos
Composição de Bases , DNA Bacteriano , Ácidos Graxos , Fontes Hidrotermais , Filogenia , RNA Ribossômico 16S , Água do Mar , RNA Ribossômico 16S/genética , Fontes Hidrotermais/microbiologia , DNA Bacteriano/genética , Ácidos Graxos/análise , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Ilhas , Fosfolipídeos/análise , Análise de Sequência de DNA , China
2.
Angew Chem Int Ed Engl ; : e202408758, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899532

RESUMO

Electrochemical nitrate reduction reaction (NitRR) uses nitrate from wastewater, offering a hopeful solution for environmental issues and ammonia production. Yet, varying nitrate levels in real wastewater greatly affect NitRR, slowing down its multi-step process. Herein, a multi-strategy approach was explored through the design of ordered mesoporous intermetallic AuCu3 nanocorals with ultrathin Au skin (meso-i-AuCu3@ultra-Au) as an efficient and concentration-versatile catalyst for NitRR. The highly penetrated structure, coupled with the compressive stress exerted on the skin layer, not only facilitates rapid electron/mass transfer, but also effectively modulates the surface electronic structure, addressing the concentration-dependent challenges encountered in practical NitRR process. As expected, the novel catalyst demonstrates outstanding NitRR activities and Faradaic efficiencies exceeding 95% across a real and widespread concentration range (10-2000 mM). Notably, its performance at each concentration matched or exceeded that of the best-known catalyst designed for that concentration. Multiple operando spectroscopies unveiled the catalyst concurrently optimized the adsorption behavior of different intermediates (adsorbed *NOx and *H) while expediting the hydrogenation steps, leading to an efficient overall reduction process. Moreover, the catalyst also displays promising potential for use in ammonia production at industrial-relevant current densities and in conceptual zinc-nitrate batteries, serving trifunctional nitrate conversion, ammonia synthesis and power supply.

3.
Nanoscale ; 16(26): 12577-12585, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38856916

RESUMO

As a new soft electronic product, a flexible precontact sensor provides spatial position sensing ability. However, the properties of traditional polymer materials change in industrial environments with extreme temperatures, which can cause the sensor function to decline or even fail. In this study, we propose a flexible fiber sensor based on the capacitor principle, which achieves a stable spatial positioning function and is not affected by a wide range of temperature changes. The fiber element of the sensor is obtained through the deposition of a flexible Al2O3 ceramic coating onto the surface of a carbon nanotube fiber (CNTF) via atomic layer deposition (ALD) technology. Coatings of different thicknesses (100 nm, 200 nm, and 300 nm) show different colors. The temperature resistance and flame retardancy of Al2O3 keep the morphology of the composite fiber unaffected by flame or high temperatures. Even at extreme temperatures (-78 °C to 500 °C), the sensor's sensing ability exhibits excellent stability. In addition, the spatial perception of the fibers remained viable after repeated bending (10 000 times). We demonstrate the potential of the sensor to acquire position information during high-temperature industrial pipe docking.

4.
ACS Appl Mater Interfaces ; 16(20): 26797-26807, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38722638

RESUMO

Soft robotics has been a rapidly growing field in recent decades due to its advantages of softness, deformability, and adaptability to various environments. However, the separation of perception and actuation in soft robot research hinders its progress toward compactness and flexibility. To address this limitation, we propose the use of a dielectric elastomer actuator (DEA), which exhibits both an actuation capability and perception stability. Specifically, we developed a DEA array to localize the 3D spatial position of objects. Subsequently, we integrate the actuation and sensing properties of DEA into soft robots to achieve self-perception. We have developed a system that integrates actuation and sensing and have proposed two modes to achieve this integration. Furthermore, we demonstrated the feasibility of this system for soft robots. When the robots detect an obstacle or an approaching object, they can swiftly respond by avoiding or escaping the obstacle. By eliminating the need for separate perception and motion considerations, self-perceptional soft robots can achieve an enhanced response performance and enable applications in a more compact and flexible field.

5.
J Cancer Res Clin Oncol ; 150(5): 267, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38769118

RESUMO

BACKGROUND: Ewing's sarcoma (ES) is an aggressive cancer of bone and soft tissue, most of which tend to occur in the bone. Extraosseous Ewing's sarcoma (EES) of the cervix is extremely rare. CASE PRESENTATION: In the present work, we reported a 39-year-old cervical EES patient with a 2.5*2.1*1.8 cm tumor mass. According to previous literatures, our case is the smallest tumor found in primary cervical ES ever. The patient initially came to our hospital due to vaginal bleeding, and then the gynecological examination found a neoplasm between the cervical canal and partially in the external cervical orifice. The diagnosis of EES was confirmed below: Hematoxylin & Eosin staining (H&E) revealed small round blue malignant cells in biopsy specimens. Immunohistochemistry (IHC) showed the positive staining for CD99, NKX2.2, and FLI1. Disruption of EWSR1 gene was found by fluorescence in situ hybridization (FISH), and the EWSR1-FLI1 gene fusion was determined by next-generation sequencing (NGS). The patient received laparoscopic wide hysterectomy, bilateral adnexectomy, pelvic lymphadenectomy, and postoperative adjuvant chemotherapy and remained disease free with regular follow-up for 1 year. CONCLUSIONS: Through a systematic review of previously reported cervical ES and this case, we highlighted the importance of FISH and NGS for the accuracy of ESS diagnosis, which could assist on the optimal treatment strategy. However, due to the rarity of the disease, there is no standard treatment schemes. Investigation on molecular pathological diagnosis and standardization of treatment regimens for cervical ES are critical to patients' prognosis.


Assuntos
Sarcoma de Ewing , Neoplasias do Colo do Útero , Humanos , Feminino , Sarcoma de Ewing/patologia , Sarcoma de Ewing/genética , Sarcoma de Ewing/diagnóstico , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/cirurgia , Adulto , Proteínas de Fusão Oncogênica/genética , Proteína Homeobox Nkx-2.2 , Proteína EWS de Ligação a RNA/genética , Hibridização in Situ Fluorescente , Fatores de Transcrição/genética , Proteína Proto-Oncogênica c-fli-1/genética , Proteínas Nucleares , Proteínas de Homeodomínio
6.
Angew Chem Int Ed Engl ; 63(28): e202405798, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38659324

RESUMO

RuO2 has been considered as the most likely acidic oxygen evolution reaction (OER) catalyst to replace IrO2, but its performance, especially long-term stability under harsh acidic conditions, is still unacceptable. Here, we propose a grain boundary (GB) engineering strategy by fabricating the ultrathin porous RuO2 nanosheet with abundant of grain boundaries (GB-RuO2) as an efficient acid OER catalyst. The involvement of GB induces significant tensile stress and creates an unsaturated coordination environment, effectively optimizing the adsorption of intermediates and stabilizing active site structure during OER process. Notably, the GB-RuO2 not only exhibits a low overpotential (η10=187 mV) with an ultra-low Tafel slope (34.5 mV dec-1), but also steadily operates for over 550 h in 0.1 M HClO4. Quasi in situ/operando methods confirm that the improved stability is attributed to GB preventing Ru dissolution and greatly inhibiting the lattice oxygen oxidation mechanism (LOM). A proton exchange membrane water electrolysis (PEMWE) using the GB-RuO2 catalyst operates a low voltage of 1.669 V at 2 A cm-2 and operates stably for 100 h at 100 mA cm-2.

7.
Int J Biol Macromol ; 265(Pt 2): 130845, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503376

RESUMO

Endometrial fibrosis leads to the destruction of endometrial function and affects reproductive performance. However, mechanisms underlying the development of endometrial fibrosis in sheep remain unclear. We use transcriptomic, proteomic, and metabolomic studies to reveal the formation mechanisms of endometrial fibrosis. The results showed that the fibrotic endometrial tissue phenotype presented fewer glands, accompanied by collagen deposition. Transcriptomic results indicated alterations in genes associated with the synthesis and degradation of extracellular matrix components, which alter metabolite homeostasis, especially in glycerophospholipid metabolism. Moreover, differentially expressed metabolites may play regulatory roles in key metabolic processes during fibrogenesis, including protein digestion and absorption, and amino acid synthesis. Affected by the aberrant genes, protein levels related to the extracellular matrix components were altered. In addition, based on Kyoto Encyclopedia of Genes and Genomes analysis of differentially expressed genes, metabolites and proteins, amino acid biosynthesis, glutathione, glycerophospholipid, arginine and proline metabolism, and cell adhesion are closely associated with fibrogenesis. Finally, we analyzed the dynamic changes in serum differential metabolites at different time points during fibrosis. Taken together, fibrosis development is related to metabolic obstacles in extracellular matrix synthesis and degradation triggered by disturbed gene and protein levels.


Assuntos
Multiômica , Proteômica , Animais , Ovinos , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Fibrose , Transcriptoma , Glicerofosfolipídeos/metabolismo , Aminoácidos/metabolismo
9.
Food Chem ; 439: 138150, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38100879

RESUMO

This study was carried out to improve the stability of anthocyanins (ACNs) by developing MA-SC-KGM nanoparticles using a self-assembly method that involved the combination of sodium caseinate (SC) and konjac glucomannan (KGM) with mulberry anthocyanin extract (MA). Atomic force microscopy (AFM) analysis showed SC encapsulated MA successfully. Multispectral techniques demonstrated the presence of hydrogen bonds and hydrophobic interactions in the nanoparticles. MA-SC-KGM ternary mixture improved storage stability, color stability and anthocyanin retention better compared to the MA-SC binary mixture. Notably, MA-SC-KGM nanoparticles significantly inhibited the thermal degradation of ACNs, improved pH stability, and showed stability and a slow-release effect in gastrointestinal digestion experiments. In addition, MA-SC-KGM nanoparticles were effective in scavenging DPPH· and ABTS+ free radicals, with enhanced stability and antioxidant capacity even during the heating process. This study successfully developed a novel MA-SC-KGM protein-polysaccharide composite material that effectively stabilized natural ACNs, expanding the application of ACNs in various industries.


Assuntos
Morus , Nanopartículas , Antocianinas , Caseínas , Disponibilidade Biológica , Mananas/química
10.
Nanotechnology ; 35(15)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38157559

RESUMO

Antibiotic-resistant bacteria and associated infectious diseases pose a grave threat to human health. The antibacterial activity of metal nanoparticles has been extensively utilized in several biomedical applications, showing that they can effectively inhibit the growth of various bacteria. In this research, copper-doped polydopamine nanoparticles (Cu@PDA NPs) were synthesized through an economical process employing deionized water and ethanol as a solvent. By harnessing the high photothermal conversion efficiency of polydopamine nanoparticles (PDA NPs) and the inherent antibacterial attributes of copper ions, we engineered nanoparticles with enhanced antibacterial characteristics. Cu@PDA NPs exhibited a rougher surface and a higher zeta potential in comparison to PDA NPs, and both demonstrated remarkable photothermal conversion efficiency. Comprehensive antibacterial evaluations substantiated the superior efficacy of Cu@PDA NPs attributable to their copper content. These readily prepared nano-antibacterial materials exhibit substantial potential in infection prevention and treatment, owing to their synergistic combination of photothermal and spectral antibacterial features.


Assuntos
Indóis , Nanopartículas Metálicas , Nanopartículas , Humanos , Cobre , Polímeros/farmacologia , Antibacterianos/farmacologia
11.
Food Funct ; 14(22): 10014-10030, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37840453

RESUMO

This study investigated the potential benefits of black chokeberry polyphenol (BCP) supplementation on lipopolysaccharide (LPS)-stimulated inflammatory response in RAW264.7 cells and obesity-induced colonic inflammation in a high fat diet (HFD)-fed rat model. Our findings demonstrated that BCP treatment effectively reduced the production of nitric oxide (NO) and pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6, and MCP-1) in LPS-induced RAW264.7 cells and concurrently mitigated oxidative stress by modulating the levels of malondialdehyde (MDA), catalase (CAT), and glutathione peroxidase (GSH-Px) in a dose-dependent manner. Furthermore, BCP supplementation significantly ameliorated HFD-induced obesity, improved glucose tolerance, and reduced systemic inflammation in HFD-fed rats. Notably, BCP treatment suppressed the mRNA expression of pro-inflammatory cytokines and alleviated intestinal barrier dysfunction by regulating the mRNA and protein expression of key tight junction proteins (ZO-1, occludin, and claudin-1), thereby inhibiting colonic inflammation caused by the TLR4/NF-κB signaling pathway. Additionally, BCP treatment altered the composition and function of the gut microbiota, leading to an increase in the total content of short-chain fatty acids (SCFAs), particularly acetic acid, propionic acid, isobutyric acid, and butyric acid. Collectively, our results highlighted the potential of BCP supplementation as a promising prebiotic strategy for treating obesity-induced colonic inflammation.


Assuntos
Microbioma Gastrointestinal , Photinia , Ratos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Dieta Hiperlipídica/efeitos adversos , Photinia/metabolismo , Receptor 4 Toll-Like/genética , Lipopolissacarídeos/farmacologia , Polifenóis/farmacologia , Obesidade/metabolismo , Inflamação/metabolismo , Transdução de Sinais , Citocinas/metabolismo , RNA Mensageiro
12.
J Colloid Interface Sci ; 652(Pt B): 1347-1355, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666189

RESUMO

Noble metal free electrocatalysts for hydrogen evolution reaction (HER) in acid play an important role in proton exchange membrane-based electrolysis. Here, we develop an in situ surface self-reconstruction strategy to construct excellent acidic HER catalysts. Firstly, free-standing zinc nickel tungstate nanosheets inlaid with nickel tungsten alloy nanoparticles were synthesized on carbon cloth as pre-catalyst via metal-organic framework derived method. Amorphous nickel tungsten oxide (Ni-W-O) layer is in situ formed on surface of nanosheet as actual HER active site with the dissolution of NiW alloy nanoparticles and the leaching of cations. While the morphology of the free-standing structure remains the same, keeping the maximized exposure of active sites and serving as the electron transportation framework. As a result, benefiting from disordered arrangement of atoms and the synergistic effect between Ni and W atoms, the amorphous Ni-W-O layer exhibits an excellent acidic HER activity with only an overpotential of 46 mV to drive a current density of 10 mA cm-2 and a quite good Tafel slope of 36.4 mV dec-1 as well as an excellent durability. This work enlightens the exploration of surface evolution of catalysts during HER in acidic solution and employs it as a strategy for designing acidic HER catalysts.

13.
Crit Rev Food Sci Nutr ; : 1-13, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37526321

RESUMO

Heavy metals are harmful environmental pollutants that have attracted widespread attention, attributed to their health hazards to humans and animals. Due to the non-degradable property of heavy metals, organisms are inevitably exposed to heavy metals such as arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg). Several studies revealed that heavy metals can cause reproductive damage by the excessive production of reactive oxygen species (ROS), which exacerbates oxidative stress, inflammation, and endocrine disruption. Natural antioxidants, mainly polyphenols, carotenoids, and vitamins, have been shown to mitigate heavy metal-induced reproductive toxicity potentially. In this review, accumulated evidences on the influences of four non-essential heavy metals As, Cd, Pb, and Hg on both males and females reproductive system were established. The purpose of this review is to explore the potential mechanisms of the effects of heavy metals on reproductive function and point out the potential biomarkers of natural antioxidants interventions toward heavy metal-induced reproductive toxicity. Notably, increasing evidence proven that the regulations of hypothalamic-pituitary-gonadal axis, Nrf2, MAPK, or NF-κB pathways are the important mechanisms for the amelioration of heavy metal induced reproductive toxicity by natural antioxidants. It also provided a promising guidance for prevention and management of heavy metal-induced reproductive toxicity.

14.
Adv Sci (Weinh) ; 10(24): e2302152, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37358311

RESUMO

Zn-N-C possesses the intrinsic inertia for Fenton-like reaction and can retain robust durability in harsh circumstance, but it is often neglected in oxygen reduction reaction (ORR) because of its poor catalytic activity. Zn is of fully filled 3d10 4s2 configuration and is prone to evaporation, making it difficult to regulate the electronic and geometric structure of Zn center. Here, guided by theoretical calculations, five-fold coordinated single-atom Zn sites with four in-plane N ligands is constructed and one axial O ligand (Zn-N4 -O) by ionic liquid-assisted molten salt template method. Additional axial O not only triggers a geometry transformation from the planar structure of Zn-N4 to the non-planar structure of Zn-N4 -O, but also induces the electron transfer from Zn center to neighboring atoms and lower the d-band center of Zn atom, which weakens the adsorption strength of *OH and decreases the energy barrier of rate determining step of ORR. Consequently, the Zn-N4 -O sites exhibit improved ORR activity and excellent methanol tolerance with long-term durability. The Zn-air battery assembled by Zn-N4 -O presents a maximum power density of 182 mW cm-2 and can operate continuously for over 160 h. This work provides new insights into the design of Zn-based single atom catalysts through axial coordination engineering.

15.
Food Chem ; 410: 135299, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36608546

RESUMO

The sweetness of blueberry fruit increases over time, as acids are converted to sugars, and full flavor development is formed by harvest. We comprehensively analyzed the changes and correlation in physiological and biochemical characteristics of blueberries at different maturity stages, including texture, quality, taste and energy change. Our analysis revealed that total anthocyanin content increased and firmness decreased as fruit ripened. Percent moisture, titratable acid (TA), chlorophyll and carotenoid content also decreased, while total soluble solids (TSS), pH, TSS/TA ratio, vitamin C, soluble proteins, and ethylene production all increased. Antioxidant enzyme activity gradually increased during ripening but energy-related metabolites decreased. The flavor attributes of sweetness, bitterness, and sourness were readily perceived using an electronic tongue and a total of 76 volatile compounds were detected by GC-MS. In summary, the maturation of blueberries was correlated with increases of anthocyanins, nutrients, antioxidant activity, taste and aroma, but negatively correlated with energy metabolism.


Assuntos
Mirtilos Azuis (Planta) , Mirtilos Azuis (Planta)/química , Antocianinas/análise , Frutas/química , Paladar , Ácido Ascórbico/análise , Antioxidantes/análise , Ácidos/análise
16.
Imeta ; 2(1): e69, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38868334

RESUMO

High-fat diet (HFD) has been recognized as a primary factor in the risk of chronic disease. Obesity, diabetes, gastrointestinal diseases, neurodegenerative diseases, and cardiovascular diseases have long been known as chronic diseases with high worldwide incidence. In this review, the influences of gut microbiota and their corresponding bacterial metabolites on the mechanisms of HFD-induced chronic diseases are systematically summarized. Gut microbiota imbalance is also known to increase susceptibility to diseases. Several studies have proven that HFD has a negative impact on gut microbiota, also exacerbating the course of many chronic diseases through increased populations of Erysipelotrichaceae, facultative anaerobic bacteria, and opportunistic pathogens. Since bile acids, lipopolysaccharide, short-chain fatty acids, and trimethylamine N-oxide have long been known as common features of bacterial metabolites, we will explore the possibility of synergistic mechanisms among those metabolites and gut microbiota in the context of HFD-induced chronic diseases. Recent literature concerning the mechanistic actions of HFD-mediated gut microbiota have been collected from PubMed, Google Scholar, and Scopus. The aim of this review is to provide new insights into those mechanisms and to point out the potential biomarkers of HFD-mediated gut microbiota.

17.
Materials (Basel) ; 15(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36079268

RESUMO

To determine a reasonable control strategy for deep buried soft rock roadways, a study on deformation and failure characteristics was carried out. The Weibull distribution damage variable was introduced to construct a damage-softening model considering the lateral deformation of the rock mass, and the functional relationship between the model parameters F0 and m and the confining pressure were discussed. The nonlinear fitting method was used to correct the model parameters. Using the model, the failure characteristics of deep buried soft rock roadways were analyzed. A comprehensive and step-by-step joint support control strategy was proposed based on the numerical simulation results. The research results showed that the damage-softening model curve established could genuinely reflect the whole process of mudstone failure. The apparent stress concentration phenomenon occurred in the surrounding rock. The surrounding rock deformation showed that roadway floors had larger plastic failure areas than sides and vaults. The plastic failure depth could reach 2.45 m. After a comprehensive and step-by-step joint support control strategy was adopted, the deformation rate of the roadway at the section was less than 0.1 mm/d. The optimized support scheme can effectively improve the stability of the roadway.

18.
Front Nutr ; 9: 913729, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990329

RESUMO

Black chokeberry (Aronia melanocarpa L.) is rich in polyphenols with various physiological and pharmacological activities. However, the relationship between the modulation effect of black chokeberry polyphenols on obesity and the alteration of lipid metabolism is not clearly understood. This study aimed to investigate the beneficial effects of the black chokeberry polyphenols (BCPs) treatment on the structure of gut microbiota, lipid metabolism, and associated mechanisms in high-fat diet (HFD)-induced obese rats. Here, we found that a high-fat diet promoted body weight gain and lipid accumulation in rats, while oral BCPs supplementation reduced body weight, liver, and white adipose tissue weight and alleviated dyslipidemia and hepatic steatosis in HFD-induced obese rats. In addition, BCPs supplementation prevented gut microbiota dysbiosis by increasing the relative abundance of Bacteroides, Prevotella, Romboutsia, and Akkermansia and decreasing the relative abundance of Desulfovibrio and Clostridium. Furthermore, 64 lipids were identified as potential lipid biomarkers through lipidomics analysis after BCPs supplementation, especially PE (16:0/22:6), PE (18:0/22:6), PC (20:3/19:0), LysoPE (24:0), LysoPE (24:1), and LysoPC (20:0). Moreover, our studies provided new evidence that composition of gut microbiota was closely related to the alteration of lipid profiles after BCPs supplementation. Additionally, BCPs treatment could ameliorate the disorder of lipid metabolism by regulating the mRNA and protein expression of genes related to the glycerophospholipid metabolism signaling pathway in HFD-induced obese rats. The mRNA and protein expression of PPARα, CPT1α, EPT1, and LCAT were significantly altered after BCPs treatment. In conclusion, the results of this study indicated that BCPs treatment alleviated HFD-induced obesity by modulating the composition and function of gut microbiota and improving the lipid metabolism disorder via the glycerophospholipid metabolism signaling pathway.

19.
Biomark Res ; 10(1): 60, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35971159

RESUMO

INTRODUCTION: Esophageal squamous cell carcinoma (ESCC) represents a major malignancy with poor clinical outcomes. Long noncoding RNAs (lncRNAs) are known to regulate the development and progression of multiple cancers. However, how lncRNAs are involved in ESCC is currently undefined. METHODS: LIPH-4 levels in ESCC tissue specimens and cells were assessed by qRT-PCR. The biological function of LIPH-4 was examined in cell and animal studies, applying CCK-8, EdU, colony formation and flow cytometry assays as well as xenograft model experiments. The underlying mechanisms of action of LIPH-4 were explored through bioinformatics, luciferase reporter assay, RNA-immunoprecipitation assay and immunoblot. RESULTS: We identified a novel lncRNA, LIPH-4, which showed elevated amounts in ESCC tissues and positive correlations with increased tumor size and poor prognosis in ESCC patients. Functional studies showed that LIPH-4 promoted the growth, mediated cell cycle progression and inhibited apoptosis in ESCC cells in vitro, and promoted tumor growth in mice. In terms of mechanism, LIPH-4 could bind to miR-216b and act as a competing endogenous RNA (ceRNA) to induce the expression of miR-216's target gene IGF2BP2. LIPH-4 played an oncogenic role in ESCC through the miR-216b/IGF2BP2 axis. CONCLUSIONS: This study suggested that LIPH-4 functions as a novel oncogenic lncRNA by acting as a ceRNA for miR-216b to regulate IGF2BP2, indicating LIPH-4 likely constitutes a prognostic biomarker and therapeutic target in ESCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...