RESUMO
AIMS: Root-knot nematodes (RKNs) are plant pathogens that cause huge economic losses worldwide. The biological management of RKNs may be a sustainable alternative to chemical control methods. Here, the biocontrol potential of Methylorubrum rhodesianum M520 against the RKN Meloidogyne incognita was investigated to theoretically support its application as a biocontrol agent in field production. METHODS AND RESULTS: In-vitro assays showed 91.9% mortality of M. incognita second-stage juveniles in the presence of strain M520 and that the hatching rate of M. incognita eggs was 21.7% lower than that of eggs treated with sterile water. In pot experiments, the M520 treatment caused 70.8% reduction in root-knots and increased plant shoot length and stem and root fresh weights, compared to control plant values. In split-root experiments, cucumber roots treated with M520 showed 25.6% decrease in root gall number, compared to that in control roots. CONCLUSION: M520 has multiple mechanisms against RKNs and might be used as a biocontrol agent against M. incognita in cucumber, laying a foundation for further studying M520 biocontrol against RKNs.
Assuntos
Cucumis sativus , Methylobacteriaceae , Tylenchida , Tylenchoidea , Animais , Raízes de PlantasRESUMO
Fusarium oxysporum f. sp. phaseoli, the causal agent of cowpea fusarium wilt, is a serious threat to cowpea production in China. In this study, a sample of cowpea fusarium wilt was identified as Fusarium oxysporum f. sp. phaseoli using the methods of morphological characters and molecular detection. We further reported the first genome assembly for Fusarium oxysporum f. sp. phaseoli, with 53.7 Mb genome sequence comprising 14,694 genes. Comparative genomic analysis among five Fusarium oxysporum genomes showed that four accessory chromosomes in the five Fusarium oxysporum display similar characteristics, with low sequence similarity (55.35%, vs. overall average of 81.76%), low gene density (2.18 genes/10 kb vs. 3.02 genes/Mb) and highly transposable element density (TEs) (15.01/100 kb vs. 4.89/100 kb), indicating that variable accessory chromosomes are the main source of Fusarium oxysporum evolution. We identified a total of 100 Fusarium oxysporum f. sp. phaseoli-specific effectors in the genome and found 13 specific effector genes located in large insertion or deletion regions, suggesting that insertion or deletion events can cause the emergence of species-specific effectors in Fusarium oxysporum. Our genome assembly of Fusarium oxysporum f. sp. phaseoli provides a valuable resource for the study of cowpea fusarium wilt, and the comparative genomic study of Fusarium oxysporum could contribute to the knowledge of genome and effector-associated pathogenicity evolution in Fusarium oxysporum study.
Assuntos
Fusarium , Fusarium/genética , Doenças das Plantas , Genoma FúngicoRESUMO
An effective selection marker is necessary for genetic engineering and functional genomics research in the post-genomic era. Isaria javanica is an important entomopathogenic fungus with a broad host range and prospective biocontrol potentials. Given that no antibiotic marker is available currently in this fungus, developing an effective selection marker is necessary. In this study, by applying overlap PCR and split-marker deletion strategy, combining PEG-mediated protoplasm transformation method, the uridine auxotrophy gene (ura3) in the I. javanica genome was knocked out. Then, using this transformation system, the pH response transcription factor gene (IjpacC) was disrupted successfully. Loss of IjpacC gene results in an obvious decrease in conidial production, but little impact on mycelial growth. The virulence of the ΔIjpacC mutant on caterpillars is similar to that of the wild-type strain. RT-qPCR detection shows that expression level of an acidic-expressed S53 gene (IF1G_06234) in ΔIjpacC mutant is more significantly upregulated than in the wild-type strain during the fungal infection on caterpillars. Our results indicate that a markerless transformation system based upon complementation of uridine auxotrophy is successfully developed in I. javanica, which is useful for exploring gene function and for genetic engineering to enhance biological control potential of the fungus.
RESUMO
The potato tuberworm, Phthorimaea operculella Zeller, is an oligophagous pest feeding on crops mainly belonging to the family Solanaceae. It is one of the most destructive pests of potato worldwide and attacks foliage and tubers in the field and in storage. However, the lack of a high-quality reference genome has hindered the association of phenotypic traits with their genetic basis. Here, we report on the genome assembly of P. operculella at the chromosomal level. Using Illumina, Nanopore and Hi-C sequencing, a 648.2 Mb genome was generated from 665 contigs, with an N50 length of 3.2 Mb, and 92.0% (596/648.2 Mb) of the assembly was anchored to 29 chromosomes. In total, 16619 genes were annotated, and 92.4% of BUSCO genes were fully represented. The chromosome-level genome of P. operculella will provide a significant resource for understanding the genetic basis for the biological study of this insect, and for promoting the integrative management of this pest in future.
Assuntos
Cromossomos , Mariposas , Solanum tuberosum , Sequenciamento de Nucleotídeos em Larga Escala , Tubérculos/parasitologia , Solanum tuberosum/parasitologia , Mariposas/genética , AnimaisRESUMO
With increasing water resources stress under climate change, it is of great importance to deeply understand the spatio-temporal variation of crop water requirements and their response to climate change for achieving better water resources management and grain production. However, the quantitative evaluation of climate change impacts on crop water requirements and the identification of determining factors should be further explored to reveal the influencing mechanism and actual effects thoroughly. In this study, the water requirements of winter wheat and summer maize from 1981 to 2019 in the lower reaches of the Yellow River Basin were estimated based on the Penman-Monteith model and crop coefficient method using daily meteorological data. Combined with trends test, sensitivity and contribution analysis, the impacts of different meteorological factors on crop water requirement variation were explored, and the dominant factors were then identified. The results indicated that the temperature increased significantly (a significance level of 0.05 was considered), whereas the sunshine duration, relative humidity and wind speed decreased significantly from 1981 to 2019 in the study area. The total water requirements of winter wheat and summer maize presented a significant decreasing trend (-1.36 mm/a) from 1981 to 2019 with a multi-year average value of 936.7 mm. The crop water requirements of winter wheat was higher than that of summer maize, with multi-year average values of 546.6 mm and 390.1 mm, respectively. In terms of spatial distribution patterns, the crop water requirement in the north was generally higher than that in the south. The water requirements of winter wheat and summer maize were most sensitive to wind speed, and were less sensitive to the minimum temperature and relative humidity. Wind speed was the leading factor of crop water requirement variation with the highest contribution rate of 116.26% among the considered meteorological factors. The results of this study will provide important support for strengthening the capacity to cope with climate change and realizing sustainable utilization of agricultural water resources in the lower reaches of the Yellow River Basin.
Assuntos
Triticum , Zea mays , Triticum/fisiologia , Zea mays/fisiologia , Mudança Climática , Rios , Produtos Agrícolas , Água , ChinaRESUMO
Fusarium oxysporum f. sp. conglutinans (FOC), the causal agent of cabbage fusarium wilt, is a serious threat to cabbage production in northern China, and most Chinese FOC isolates were identified as FOC race 1 (FOC1). To better understand the genetic diversity of FOC1 in northern China, we collected FOC isolates from five provinces in northern China and identified them as FOC1 through pathogenicity and race test. To evaluate the genome-level diversity of FOC1, we performed a genome assembly for a FOC1 isolate (FoYQ-1) collected from Yanqing, Beijing, where cabbage fusarium wilt was first reported in China. Using resequencing data of FOC1 isolates, we conducted a genome-wide SNP (single nucleotide polymorphism) analysis to investigate the genetic diversity and population structure of FOC1 isolates in northern China. Our study indicated that Chinese FOC1 can be grouped into four populations and revealed that the genetic diversity of FOC1 were closely associated with geographical locations. Our study further suggests that genetic differentiation occurred when FOC1 spread to the northwest provinces from Beijing Province in China. The FOC1 genetic diversity based on whole-genome SNPs could deepen our understanding of FOC1 variation and provide clues for the control of cabbage fusarium wilt in China.
RESUMO
Peptidases are very important to parasites, which have central roles in parasite biology and pathogenesis. In this study, by comparative genome analysis, genome-wide peptidase diversities among plant-parasitic nematodes are estimated. We find that genes encoding cysteine peptidases in family C13 (legumain) are significantly abundant in pine wood nematodes Bursaphelenchus genomes, compared to those in other plant-parasitic nematodes. By phylogenetic analysis, a clade of B. xylophilus-specific legumain is identified. RT-qPCR detection shows that these genes are highly expressed at early stage during the nematode infection process. Utilizing transgene technology, cDNAs of three species-specific legumain were introduced into the Arabidopsis γvpe mutant. Functional complementation assay shows that these B. xylophilus legumains can fully complement the activity of Arabidopsis γVPE to mediate plant cell death triggered by the fungal toxin FB1. Secretory activities of these legumains are experimentally validated. By comparative transcriptome analysis, genes involved in plant cell death mediated by legumains are identified, which enrich in GO terms related to ubiquitin protein transferase activity in category molecular function, and response to stimuli in category biological process. Our results suggest that B. xylophilu-specific legumains have potential as effectors to be involved in nematode-plant interaction and can be related to host cell death.
Assuntos
Arabidopsis , Micotoxinas , Parasitos , Pinus , Rabditídios , Tylenchida , Animais , Arabidopsis/genética , Cisteína/genética , Cisteína Endopeptidases , Peptídeo Hidrolases/genética , Filogenia , Pinus/parasitologia , Doenças das Plantas/parasitologia , Plantas/parasitologia , Transferases/genética , Tylenchida/genética , Ubiquitinas/genética , Virulência , XylophilusRESUMO
Root-knot nematodes (RKN; Meloidogyne spp.) cause a significant decrease in the yield of cucumber crops every year. Cucumis metuliferus is an important wild germplasm that has resistance to RKN in which plant root volatiles are thought to play a role. However, the underlying molecular mechanism is unclear. To investigate it, we used the resistant C. metuliferus line CM3 and the susceptible cucumber line Xintaimici (XTMC). CM3 roots repelled Meloidogyne incognita second-stage larvae (J2s), while the roots of XTMC plants attracted the larvae. CM3 and XTMC were found to contain similar amounts of root volatiles, but many volatiles, including nine hydrocarbons, three alcohols, two aldehydes, two ketones, one ester, and one phenol, were only detected in CM3 roots. It was found that one of these, (methoxymethyl)-benzene, could repel M. incognita, while creosol and (Z)-2-penten-1-ol could attract M. incognita. Interestingly, creosol and (Z)-2-penten-1-ol effectively killed M. incognita at high concentrations. Furthermore, we found that a mixture of CM3 root volatiles increased cucumber resistance to M. incognita. The results provide insights into the interaction between the host and plant-parasitic nematodes in the soil, with some compounds possibly acting as nematode biofumigation, which can be used to manage nematodes.
RESUMO
Root-knot nematodes, Meloidogyne spp., secrete effectors to modulate plant immune responses and establish a parasitic relationship with host plants. However, the functions and plant targets of C-type lectin (CTL)-like effectors of Meloidogyne incognita remain unknown. Here, we characterized a CTL-like effector of M. incognita, MiCTL1a, and identified its target and role in nematode parasitism. In situ hybridization demonstrated the expression of MiCTL1 in the subventral glands; and in planta, immunolocalization showed its secretion during M. incognita parasitism. Virus-induced gene silencing of the MiCTL1 reduced the infection ability of M. incognita in Nicotiana benthamiana. The ectopic expression in Arabidopsis not only increased susceptibility to M. incognita but also promoted root growth. Yeast two-hybrid and co-immunoprecipitation assays revealed that MiCTL1a interacts with Arabidopsis catalases, which play essential roles in hydrogen peroxide homeostasis. Knockout or overexpression of catalases showed either increased or reduced susceptibility to M. incognita, respectively. Moreover, MiCTL1a not only reduced catalase activity in vitro and in planta but also modulated stress-related gene expressions in Arabidopsis. Our data suggest that MiCTL1a interacts with plant catalases and interferes with catalase activity, allowing M. incognita to establish a parasitic relationship with its host by fine-tuning responses mediated by reactive oxygen species.
Assuntos
Tylenchoidea , Animais , Catalase , Proteínas de Helminto , Lectinas Tipo C , Doenças das PlantasRESUMO
To evaluate the possible associations between fetal α-thalassemia and risk of adverse pregnancy outcomes using a provincial woman-child health service information database in China. This was a case control study (N = 438,747) in which we compared all singleton pregnancies of women with or without the α-thalassemia trait from May 2016 to May 2020, and where women with the trait were further allocated to a normal fetal group, a group of fetuses with the α-thalassemia trait, and a fetal group with hemoglobin H (HbH) disease according to the results of fetal DNA analysis. With thalassemic women whose fetuses were normal as the reference, fetuses in the HbH disease group showed a higher increase in the odds of Apgar scores being < 7 at 1 min (adjusted odds ratio [aOR], 2.79; 1.03-7.59) and 5 min (aOR, 4.56; 1.07-19.40). With non-thalassemic women as the reference, these trends were more obvious (aOR, 4.83; 2.55-9.16; aOR, 6.24; 2.75-14.18, respectively); whereas the normal fetal group was more likely to be diagnosed with postpartum hemorrhage (aOR, 1.66; 1.10-2.50). In addition, fetal HbH disease and gestational age were two independent factors influencing low Apgar scores, and their combination reflected medium accuracy in Apgar predictions.
Assuntos
Talassemia alfa/terapia , Adolescente , Adulto , Índice de Apgar , Estudos de Casos e Controles , Criança , China , DNA/análise , Gerenciamento de Dados , Feminino , Feto , Idade Gestacional , Humanos , Pessoa de Meia-Idade , Gravidez , Resultado da Gravidez , Nascimento Prematuro , Cuidado Pré-NatalRESUMO
Cucumis metuliferus (African horned cucumber), a wild relative of Cucumis sativus (cucumber) and Cucumis melo (melon), displays high-level resistance to several important plant pathogens (e.g., root-knot nematodes and several viruses). Here, we report a chromosome-level genome assembly for C. metuliferus, with a 316 Mb genome sequence comprising 29 039 genes. Phylogenetic analysis of related species in family Cucurbitaceae indicated that the divergence time between C. metuliferus and melon was 17.8 million years ago. Comparisons between the C. metuliferus and melon genomes revealed large structural variations (inversions and translocations >1 Mb) in eight chromosomes of these two species. Gene family comparison showed that C. metuliferus has the largest number of resistance-related nucleotide-binding site leucine-rich repeat (NBS-LRR) genes in Cucurbitaceae. The loss of NBS-LRR loci caused by large insertions or deletions (indels) and pseudogenization caused by small indels explained the loss of NBS-LRR genes in Cucurbitaceae. Population structure analysis suggested that C. metuliferus originated in Zimbabwe, then spread to other southern African regions where it likely underwent similar domestic selection as melon. This C. metuliferus reference sequence will accelerate the understanding of the molecular evolution of resistance-related genes and enhance cucurbit crop improvement efforts.
Assuntos
Cucumis/genética , Genes de Plantas , Genoma de Planta , Filogenia , África , Cromossomos de Plantas , Cucumis melo/genética , Evolução Molecular , Variação Genética , Genética Populacional , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Seleção Genética , ZimbábueRESUMO
Root-knot nematodes (Meloidogyne spp.) are soilborne pathogens that infect vegetable crops and cause major economic losses worldwide annually. Therefore, there is an urgent need for novel nematicides or biological control agents to reduce the damage caused by root-knot nematodes. In this study, we tested efficacy of the Bacillus cereus strain Bc-cm103, isolated from the rhizoplane of Cucumis metuliferus, against Meloidogyne incognita. Strain Bc-cm103 fermentation broth caused 100% mortality of the nematode second-stage juveniles within 12 h and decreased the egg hatching rate by 40.06% within 72 h compared with sterile water. Confocal laser-scanning microscopy revealed that strain Bc-cm103 formed a biofilm on cucumber (C. sativus) roots, which protected the roots from the infection of M. incognita. Additionally, strain Bc-cm103 activated the defense-responsive genes PR1, PR2, LOX1, and CTR1 in cucumber. Furthermore, strain Bc-cm103 significantly reduced the appearance of root galls in pot, split-root, and field tests. These results indicated that B. cereus strain Bc-cm103 had a strong suppressive effect on M. incognita and therefore could be used as a potential biocontrol agent against this pathogen.
Assuntos
Tylenchoidea , Animais , Antinematódeos , Bacillus cereus , Agentes de Controle BiológicoRESUMO
Sodium p-aminosalicylic acid (PAS-Na) has been previously shown to protect the brain from manganese (Mn)-induced toxicity. However, the efficacy of PAS-Na in protecting other organs from Mn toxicity and the mechanisms associated with this protection have yet to be addressed. Therefore, here, we assessed pancreatic damage in response to Mn treatment and the efficacy of PAS-Na in limiting this effect, along with specific mechanisms that mediate PAS-Na's protection. Mn exposure led to increased blood Mn content in dose- and time-dependent manner. Furthermore, subchronic Mn exposure (20 mg/kg for 8 weeks) led to pancreatic damage in a dose-dependent manner. In addition, the elevated Mn levels increased iron and decreased zinc and magnesium content in the pancreas. These effects were noted even 8 weeks after Mn exposure cessation. Mn exposure also affected the levels of amylase, lipase, and inflammatory factors such as tumor necrosis factor (TNF-α) and interleukin-1 ß (IL-1ß). PAS-Na significantly inhibited the increase in Mn concentration in both blood and pancreas, restored Mn-induced pancreatic damage, reversed the Mn-induced alterations in metal levels, and restored amylase and lipase concentrations. Taken together, we conclude that in rats, PAS-Na shows pharmacological efficacy in protecting the pancreas from Mn-induced damage.
Assuntos
Ácido Aminossalicílico , Ácido Aminossalicílico/farmacologia , Animais , Manganês/toxicidade , Pâncreas , Ratos , Ratos Sprague-Dawley , SódioRESUMO
Matricaria chamomilla flower extract was used as a biocompatible material for synthesis of zinc oxide nanoparticles (ZnONPs). The synthesized NPs were evaluated for their antibacterial potential in vitro and in vivo against the Gram-negative bacterium Ralstonia solanacearum, which causes devastating bacterial wilt disease in tomato and other crops. Synthesized ZnONPs were further analyzed by UV-visible spectroscopy, Fourier transform infrared spectroscopy, x-ray diffraction, transmission electron microscopy, and scanning electron microscopy with energy-dispersive spectroscopy. The synthesized polydisperse ZnONPs were found to be in the size range of 8.9 to 32.6 nm, and at 18.0 µg ml-1 exhibited maximum in vitro growth inhibition of the pathogen R. solanacearum. Scanning electron microscopy analysis of affected bacterial cells showed morphological deformation such as disruption of the cell membrane and wall, and the leakage of cell contents. Results of in vivo studies also showed that application of ZnONPs to the artificially inoculated tomato plants with the pathogen R. solanacearum significantly enhanced the plant growth by reducing bacterial soil population and disease severity as compared with the untreated control. Biosynthesized ZnONPs could be an effective approach to control the bacterium R. solanacearum.
Assuntos
Matricaria , Nanopartículas , Ralstonia solanacearum , Óxido de Zinco , Testes de Sensibilidade Microbiana , Óxido de Zinco/farmacologiaRESUMO
Pochonia chlamydosporia is a fungal parasite of nematode eggs. Studies have shown that some strains of Pochonia chlamydosporia can promote plant growth and induce plants' systemic resistance to root-knot nematodes by colonizing in their roots. This study aimed to verify the effect of the PC-170 strain on tomato growth and systemic resistance. Split-root experiments were conducted to observe the systemic resistance induced by PC-170. To explore the defense pathway that was excited due to the colonization by PC-170, we tested the expression of marker genes for defense pathways, and used mutant lines to verify the role of plant defense pathways. Our results showed that PC-170 can colonize roots, and promotes growth. We found a role for jasmonic acid (JA) in modulating tomato colonization by PC-170. PC-170 can activate tomato defense responses to reduce susceptibility to infection by the root-knot nematode Meloidogyne incognita, and induced resistance to some pathogens in tomatoes. The marker genes of the defense pathway were significantly induced after PC-170 colonization. However, salicylic acid (SA)- and jasmonic acid (JA)-dependent defenses in roots were variable with the invasion of different pathogens. Defense pathways play different roles at different points in time. SA- and JA-dependent defense pathways were shown to cross-communicate. Different phytohormones have been involved in tomato plants' responses against different pathogens. Our study confirmed that adaptive JA signaling is necessary to regulate PC-170 colonization and induce systemic resistance in tomatoes.
RESUMO
Bacillus cereus strain Bc-cm103 shows nematicidal activity and, therefore, has been used as a biological control agent to control the root-knot nematode Meloidogyne incognita. However, it remains unknown whether volatile organic compounds (VOCs) produced by B. cereus strain Bc-cm103 are effective in biocontrol against M. incognita. Therefore, in this study, we investigated the activity of Bc-cm103 VOCs against M. incognita. The B. cereus strain Bc-cm103 significantly repelled the second-stage juveniles (J2s) of M. incognita. In vitro evaluation of VOCs produced by the fermentation of Bc-cm103 in a three-compartment Petri dish revealed the mortality rates of M. incognita J2s as 90.8% at 24 h and 97.2% at 48 h. Additionally, evaluation of the ability of Bc-cm103 VOCs to suppress M. incognita infection in a double-layered pot test showed that root galls on cucumber roots decreased by 46.1%. Furthermore, 21 VOCs were identified from strain Bc-cm103 by solid-phase microextraction gas chromatography-mass spectrometry, including alkanes, alkenes, esters, and sulfides. Among them, dimethyl disulfide (30.63%) and S-methyl ester butanethioic acid (30.29%) were reported to have strong nematicidal activity. Together, these results suggest that B. cereus strain Bc-cm103 exhibits fumigation activity against M. incognita.
Assuntos
Tylenchoidea , Compostos Orgânicos Voláteis , Animais , Bacillus cereus , Fumigação , Compostos Orgânicos Voláteis/farmacologiaRESUMO
Phytopathogenic fungi, causing significant economic and production losses, are becoming a serious threat to global food security. Due to an increase in fungal resistance and the hazardous effects of chemical fungicides to human and environmental health, scientists are now engaged to explore alternate non-chemical and ecofriendly management strategies. The use of biocontrol agents and their secondary metabolites (SMs) is one of the potential approaches used today. Trichoderma spp. are well known biocontrol agents used globally. Many Trichoderma species are the most prominent producers of SMs with antimicrobial activity against phytopathogenic fungi. Detailed information about these secondary metabolites, when grouped together, enhances the understanding of their efficient utilization and further exploration of new bioactive compounds for the management of plant pathogenic fungi. The current literature provides the information about SMs of Trichoderma spp. in a different context. In this review, we summarize and group different antifungal SMs of Trichoderma spp. against phytopathogenic fungi along with a comprehensive overview of some aspects related to their chemistry and biosynthesis. Moreover, a brief overview of the biosynthesis pathway, action mechanism, and different approaches for the analysis of SMs and the factors affecting the regulation of SMs in Trichoderma is also discussed.
RESUMO
Large amounts of effectors are secreted by the oesophageal glands of plant-parasitic nematodes, but their molecular mode of action remains largely unknown. We characterized a Meloidogyne incognita protein disulphide isomerase (PDI)-like effector protein (MiPDI1) that facilitates nematode parasitism. In situ hybridization showed that MiPDI1 was expressed specifically in the subventral glands of M. incognita. It was significantly upregulated during parasitic stages. Immunolocalization demonstrated MiPDI1 secretion in planta during nematode migration and within the feeding cells. Host-induced silencing of the MiPDI1 gene affected the ability of the nematode to infect the host, whereas MiPDI1 expression in Arabidopsis increased susceptibility to M. incognita, providing evidence for a key role of MiPDI1 in M. incognita parasitism. Yeast two-hybrid, bimolecular fluorescence complementation and coimmunoprecipitation assays showed that MiPDI1 interacted with a tomato stress-associated protein (SlSAP12) orthologous to the redox-regulated AtSAP12, which plays an important role in plant responses to abiotic and biotic stresses. SAP12 silencing or knocking out in Nicotiana benthamiana and Arabidopsis increased susceptibility to M. incognita. Our results suggest that MiPDI1 acts as a pathogenicity factor promoting disease by fine-tuning SAP-mediated responses at the interface of redox signalling, defence and stress acclimation in Solanaceae and Arabidopsis.
Assuntos
Arabidopsis , Tylenchoidea , Animais , Arabidopsis/genética , Proteínas de Choque Térmico , Doenças das Plantas , TabacoRESUMO
Losses in crops caused by plant pathogenic bacteria and parasitic nematode are increasing because of a decrease in efficacy of traditional management measures. There is an urgent need to develop nonchemical and ecofriendly based management to control plant diseases. A potential approach of controlling plant disease in the crops is the use of biocontrol agents and their secondary metabolites (SMs). Luckily fungi and especially the genus Trichoderma comprise a great number of fungal strains that are the potential producer of bioactive secondary metabolites. In this study secondary metabolites from ten Trichoderma spp. were evaluated for their antibacterial and nematicidal potential against phytopathogenic bacteria Ralstonia solanacearum, Xanthomonas compestris and plant parasitic nematode Meloidogyne incognita. Five different growth media were evaluated for the production of SMs. It was shown that SMs of different Trichoderma spp. obtained on different growth media were different in the degree of their bioactivity. Comparison of five growth media showed that SMs produced on solid wheat and STP media gave higher antibacterial activity. SMs of T. pseudoharzianum (T113) obtained on solid wheat media were more effective against the studied bacteria followed by SMs from T. asperelloides (T136), T. pseudoharzianum (T129) and T. pseudoharzianum (T160). Scanning electron microscopy (SEM) was further conducted to observe the effect of SMs on bacterial cell morphology. As evident from the SEM, SMs produced severe morphological changes, such as rupturing of the bacterial cell walls, disintegration of cell membrane and cell content leaking out. SMs from T. viridae obtained on liquid STP and solid wheat media showed the highest percent of M. incognita juveniles (J2s) mortality and inhibition in egg hatching of M. incognita. The results of our study suggest that T. pseudoharzianum (T113) and T. viridae could be selected as an effective candidate for SMs source against phytopathogenic bacteria and M. incognita respectively.