Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 990
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-33645960

RESUMO

Photothermal/photodynamic therapy (PTT/PDT) and synergistic therapeutic strategies are often sought after, owing to their low side effects and minimal invasiveness compared to chemotherapy and surgical treatments. However, in spite of the development of the most PTT/PDT materials with good tumor-inhibitory effect, there are some disadvantages of photosensitizers and photothermal agents, such as low stability and low photonic efficiency, which greatly limit their further application. Therefore, in this study, a novel bismuth-based hetero-core-shell semiconductor nanomaterial BiNS-Fe@Fe with good photonic stability and synergistic theranostic functions was designed. On the one hand, BiNS-Fe@Fe with a high atomic number exhibits good X-ray absorption, enhanced magnetic resonance (MR) T2-weighted imaging, and strong photoacoustic imaging (PAI) signals. In addition, the hetero-core-shell provides a strong barrier to decline the recombination of electron-hole pairs, inducing the generation of a large amount of reactive oxygen species (ROS) when irradiated with visible-NIR light. Meanwhile, a Fenton reaction can further increase ROS generation in the tumor microenvironment. Furthermore, an outstanding chemodynamic therapeutic potential was determined for this material. In particular, a high photothermal conversion efficiency (η = 37.9%) is of significance and could be achieved by manipulating surface decoration with Fe, which results in tumor ablation. In summary, BiNS-Fe@Fe could achieve remarkable utilization of ROS, high photothermal conversion law, and good chemodynamic activity, which highlight the multimodal theranostic potential strategies of tumors, providing a potential viewpoint for theranostic applications of tumors.

2.
Sci Adv ; 7(1)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33523857

RESUMO

In ultraviolet (UV) radiation-exposed skin, mutations fuel clonal cell growth. The relationship between UV exposure and the accumulation of clonal mutations (CMs) and the correlation between CMs and skin cancer risk are largely unexplored. We characterized 450 individual-matched sun-exposed (SE) and non-SE (NE) normal human skin samples. The number and relative contribution of CMs were significantly different between SE and NE areas. Furthermore, we identified hotspots in TP53, NOTCH1, and GRM3 where mutations were significantly associated with UV exposure. In the normal skin from patients with cutaneous squamous cell carcinoma, we found that the cancer burden was associated with the UV-induced mutations, with the difference mostly conferred by the low-frequency CMs. These findings provide previously unknown information on UV's carcinogenic effect and pave the road for future development of quantitative assessment of subclinical UV damage and skin cancer risk.

3.
Sci Transl Med ; 13(580)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568518

RESUMO

Nucleic acids are used in many therapeutic modalities, including gene therapy, but their ability to trigger host immune responses in vivo can lead to decreased safety and efficacy. In the case of adeno-associated viral (AAV) vectors, studies have shown that the genome of the vector activates Toll-like receptor 9 (TLR9), a pattern recognition receptor that senses foreign DNA. Here, we engineered AAV vectors to be intrinsically less immunogenic by incorporating short DNA oligonucleotides that antagonize TLR9 activation directly into the vector genome. The engineered vectors elicited markedly reduced innate immune and T cell responses and enhanced gene expression in clinically relevant mouse and pig models across different tissues, including liver, muscle, and retina. Subretinal administration of higher-dose AAV in pigs resulted in photoreceptor pathology with microglia and T cell infiltration. These adverse findings were avoided in the contralateral eyes of the same animals that were injected with the engineered vectors. However, intravitreal injection of higher-dose AAV in macaques, a more immunogenic route of administration, showed that the engineered vector delayed but did not prevent clinical uveitis, suggesting that other immune factors in addition to TLR9 may contribute to intraocular inflammation in this model. Our results demonstrate that linking specific immunomodulatory noncoding sequences to much longer therapeutic nucleic acids can "cloak" the vector from inducing unwanted immune responses in multiple, but not all, models. This "coupled immunomodulation" strategy may widen the therapeutic window for AAV therapies as well as other DNA-based gene transfer methods.

4.
Stem Cell Res Ther ; 12(1): 108, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33541442

RESUMO

BACKGROUND: Bone fracture repair has gained a lot of attention due to the high incidence of delayed union or even nonunion especially in osteoporotic patients, resulting in a dreadful impact on the quality of life. However, current therapies involve the costly expense and hence become unaffordable strategies for fracture recovery. Herein, developing new strategies for better bone repair is essential and urgent. Catalpol treatment has been reported to attenuate bone loss and promote bone formation. However, the mechanisms underlying its effects remain unraveled. METHODS: Rat bone marrow mesenchymal stem cells (BMSCs) were isolated from rat femurs. BMSC osteogenic ability was assessed using ALP and ARS staining, immunofluorescence, and western blot analysis. BMSC-mediated angiogenic potentials were determined using the western blot analysis, ELISA testing, scratch wound assay, transwell migration assay, and tube formation assay. To investigate the molecular mechanism, the lentivirus transfection was used. Ovariectomized and sham-operated rats with calvaria defect were analyzed using micro-CT, H&E staining, Masson's trichrome staining, microfil perfusion, sequential fluorescent labeling, and immunohistochemistry assessment after administrated with/without catalpol. RESULTS: Our results manifested that catalpol enhanced BMSC osteoblastic differentiation and promoted BMSC-mediated angiogenesis in vitro. More importantly, this was conducted via the JAK2/STAT3 pathway, as knockdown of STAT3 partially abolished beneficial effects in BMSCs. Besides, catalpol administration facilitated bone regeneration as well as vessel formation in an OVX-induced osteoporosis calvarial defect rat model. CONCLUSIONS: The data above showed that catalpol could promote osteogenic ability of BMSC and BMSC-dependent angiogenesis through activation of the JAK2/STAT3 axis, suggesting it may be an ideal therapeutic agent for clinical medication of osteoporotic bone fracture.

5.
J Agric Food Chem ; 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33621077

RESUMO

Screening potential compounds for improving ulcerative colitis (UC) from clinical medication is an effective strategy for drug repurposing. We applied bioinformatics and network pharmacology to the drug screening process in this study, which helped us to screen out troxerutin that could improve UC. Troxerutin belongs to flavonoids and is used clinically as an anticoagulant and thrombolytic agent. This study found a new pharmacological activity of troxerutin, that is, it had a significant improvement effect on UC in mice. Experimental results of in vitro and in vivo levels showed that troxerutin could effectively reduce the level of oxidative stress that caused damages in intestinal epithelial cells and colonic tissue, maintain the distribution and expression of tight junction-related proteins, and protect the barrier function of colon tissue. In addition to the oxidative stress, severe inflammatory response is also an important pathological factor that aggravates UC. However, troxerutin could reduce the infiltration of inflammatory cells in the colon tissue and decrease the expression of inflammation-related proteins and proinflammatory cytokines. Due to its antioxidant and anti-inflammatory effects, troxerutin inhibited the process of cell apoptosis in the colon tissue and relieved the degree of colonic fibrosis. Bioinformatics analysis showed that the ameliorating effect of troxerutin on UC was probably related to its network regulation of signaling pathways. In summary, we discovered a new pharmacological activity of the flavonoid troxerutin against UC, which is conducive to the expansion and application of flavonoids in the treatment of human diseases.

6.
Nanoscale ; 13(6): 3613-3626, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33537695

RESUMO

A combination of chemotherapy and targeted magnetic hyperthermia (TMH) via a designed magnetic nanocrystal (MNC) drug delivery system was considered as an effective tumor synergistic therapy strategy. In this paper, we successfully synthesized tumor neovascular-targeted Mn-Zn ferrite MNCs, which encapsulated paclitaxel (PTX) in a biocompatible PEG-phospholipid (DSPE-PEG2000) layer and surface, simultaneously coupled with a tripeptide of arginine-glycine-aspartic acid (RGD). The high-performance RGD-modified MNC loaded with PTX (MNCs-PTX@RGD) embodied excellent magnetic properties, including high-contrast magnetic resonance imaging (MRI) and remarkable magnetically induced heat generation ability. We established the mouse model bearing subcutaneous 4T1 breast tumor, and demonstrated that MNCs-PTX@RGD could be effectively located in the tumor neovascular epithelial cells under the guidance of in vivo MRI. Notably, MNCs-PTX@RGD could easily penetrate into the tumor tissue from the tumor-fenestrated vascular networks for capturing a sufficient temperature (around 43 °C) exposed to an alternative current magnetic field (ACMF, 2.58 kA m-1, 390 kHz), leading to an effective TMH effect. Subsequently, the TMH-mediated temperature elevation accelerated the PTX release from the inner lipid layer, promoting the synergetic thermo-chemotherapy in vivo. The amplifying synergistic treatment strategy obviously improved the anti-tumor efficacy of MNCs-PTX@RGD, and simultaneously increased the survival time of the mice to more than 46 days, which provided a broad development prospect in clinical applications.

7.
Free Radic Biol Med ; 163: 356-368, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33385540

RESUMO

Osteoporosis is characterized by impaired bone metabolism. Current estimates show that it affects millions of people worldwide and causes a serious socioeconomic burden. Mitophagy plays key roles in bone marrow mesenchymal stem cells (BMSCs) osteoblastic differentiation, mineralization, and survival. Apelin is an endogenous adipokine that participates in bone homeostasis. This study was performed to determine the role of Apelin in the osteoporosis process and whether it affects mitophagy, survival, and osteogenic capacity of BMSCs in in vitro and in vivo models of osteoporosis. Our results demonstrated that Apelin was down-regulated in ovariectomized-induced osteoporosis rats and Apelin-13 treatment activated mitophagy in BMSCs, ameliorating oxidative stress and thereby reviving osteogenic function via AMPK-α phosphorylation. Besides, Apelin-13 administration restored bone mass and microstructure as well as reinstated mitophagy, enhanced osteogenic function in OVX rats. Collectively, our findings reveal the intrinsic mechanisms underlying Apelin-13 regulation in BMSCs and its potential therapeutic values in the treatment of osteoporosis.

8.
ACS Nano ; 15(2): 3047-3060, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33507069

RESUMO

Coordination-driven surface modification is an effective strategy to achieve nanosystem functionalization and improved physicochemical performance. Black phosphorus (BP)-based nanomaterials demonstrate great potential in cancer therapy, but their poor stability, low X-ray mass attenuation coefficient, and nonselectivity limit the application in radiotherapy. Herein, we used unsaturated iridium complex to coordinate with BP nanosheets to synthesize a two-dimensional layered nanosystem (RGD-Ir@BP) with higher biostability. Ir complex improves the photoelectric properties and photoinduced charge carrier dynamics of BP, hence Ir@BP generated more singlet oxygen after X-ray irradiation. In in vivo experiments, with X-ray irradiation, RGD-Ir@BP effectively inhibited nasopharyngeal carcinoma tumor growth but with minor side effects. Additionally, based on untargeted metabolomics analysis, the combined treatment specifically down-regulated the tumor proliferative mark of prostaglandin E2 in cancer cells. In general, this study provides a design strategy of high-performance coordination-driven BP-based nanosensitizer in cancer radiotherapy.

9.
Phytochemistry ; 183: 112622, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33418168

RESUMO

Four undescribed racemic quinones, umbellatas Q-T, were isolated from the aerial parts of Morinda umbellata L. All enantiomers were separated on a chiral HPLC column, and their structures were elucidated by UV spectroscopy, IR spectroscopy, HR-ESI-MS, 1D and 2D NMR spectroscopy, DP4+ NMR calculations, ECD spectroscopy, and X-ray diffraction. Three of the racemes are polycyclic anthraquinones, and one is a rare racemic trimer of naphthoquinone-bisnaphthohydroquinones. (+)-Umbellata S exhibited potent cytotoxicity (IC50: 6.2-9.3 µM) against the A2780, HeLa, H7420, Ketr3 and SW 1990 human cancer cell lines.


Assuntos
Morinda , Neoplasias Ovarianas , Benzoquinonas , Linhagem Celular Tumoral , Feminino , Humanos , Estrutura Molecular , Componentes Aéreos da Planta , Quinonas/farmacologia
10.
Pathol Res Pract ; 218: 153322, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33422778

RESUMO

Gastric cancer is considered as the third leading cause of deaths and the fifth most common cancers worldwide. Common treatment approaches include chemotherapy, radiation, gastric resection and targeted therapies. The emergence of gastric cancer immunotherapy has already shown some promising results and have altered the therapeutic procedures. Now, different combination therapies as well as novel immunotherapies targeting new molecules have been proposed. Despite ongoing investigations on the therapeutic options and significant advancements in this regard, the disease is poorly prognosed. In fact, limited therapeutic options and delayed diagnosis lead to the progression, dissemination and metastasis of the disease. Current immunotherapies are mostly based on cytotoxic immunocytes, monoclonal antibodies and gene transferred vaccines. The use of Immune checkpoint inhibitors (ICIs) have grown rapidly. In this review, we aimed to explore perspective and progression of different approaches of immunotherapy in the treatment of GC and the clinical outcomes reported so far. We also summarized the tumor immunosurveillance and tumor immunoescape.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 250: 119353, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33422880

RESUMO

Fluorescent brighteners, illegally used to whitening wheat flour, are detrimental to people health. The aim was to establish a rapid and direct method to identify and quantify fluorescent whitening agent OB-1 (FWA OB-1) in wheat flour by using multi-molecular infrared (MM-IR) spectroscopy combined with stereomicroscopy. Characteristic peak profile of FWA OB-1 used as a judgment basis was spatially revealed by stereomicroscopy with group-peak matching of MM-IR at 1614 cm-1, 1501 cm-1 and 893 cm-1 and were further unveiled by the second derivative infrared spectroscopy (SD-IR) and its two-dimensional correlation infrared (SD-2DCOS IR) spectroscopy for higher resolution, and were validated by high-performance liquid chromatography (HPLC). Moreover, a quantitative prediction model based on IR spectra was established by partial least squares 1 (PLS1) (R2, 98.361; SEE, 5.032; SEP, 5.581). The developed method was applicable for rapid and direct analysis of FWA OB-1 (low to 10 ppm) in flour with relative standard deviation (RSD) of 5%. The capabilities of MM-IR with spectral qualitative and quantitative analysis would be applicable to direct identification and quantitation of fluorescent whitening agents or other IR-active compounds in powder objects.

12.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(1): 67-73, 2021 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-33476540

RESUMO

OBJECTIVE: To study the detection rate, epidemic pattern, and clinical features of respiratory syncytial virus (RSV) in hospitalized children with acute lower respiratory infection (ALRI). METHODS: Nasopharyngeal aspirates were collected from children with ALRI, aged < 2 years, who were hospitalized in Children's Hospital of Chongqing Medical University from June 2013 to May 2018. Multiplex PCR was used to detect 16 common respiratory viruses. The epidemiological characteristics of RSV were analyzed. RESULTS: A total of 2 066 hospitalized children with ALRI were enrolled. Among the children, 1 595 (77.20%) tested positive for virus and 826 (39.98%) tested positive for RSV [410(49.6%) positive for RSV-A, 414 (50.1%) positive for RSV-B, and 2 (0.2%) positive for both RSV-A and RSV-B]. RSV-B was the main subtype detected in 2013-2014 and 2016-2017, while RSV-A was the main subtype in 2014-2015 and 2017-2018, and these two subtypes were prevalent in 2015-2016. The highest detection rate of RSV was noted in winter. RSV + human rhinovirus was the most common combination of viruses and was detected in 123 children. These children were more likely to develop wheezing than those with single RSV detected (P=0.030). A total of 298 samples were detected with single RSV, 148 were detected with RSV mixed with other viruses, 389 were detected with other viruses, and 241 were detected negative for viruses. Compared with the other viruses and negative virus groups, the single RSV group had a significantly younger age and significantly higher incidence rates of dyspnea, respiratory failure, and severe lower respiratory tract infection (P < 0.0083). The RSV-A positive group had a significantly higher proportion of boys than the RSV-B positive group (P=0.004), but there were no significant differences in clinical manifestations between the two groups. CONCLUSIONS: In Chongqing in 2013-2018, RSV-A and RSV-B not only can predominate alternately, but also can co-circulate during a season. RSV is the major viral pathogen of hospitalized children with ALRI and can cause severe lower respiratory tract infection. There are no differences in clinical manifestations between children with RSV-A infection and those with RSV-B infection, but boys are more susceptible to RSV-A infection.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Criança , Criança Hospitalizada , Pré-Escolar , China/epidemiologia , Feminino , Humanos , Lactente , Masculino , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções Respiratórias/epidemiologia
13.
J Virol ; 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504607

RESUMO

The limited antiviral options and lack of an effective vaccine against human respiratory syncytial virus (RSV) highlight the need for a novel antiviral therapy. One alternative is to identify and target the host factors required for viral infection. Here, using RNA interference to knock down Rab proteins, we provide multiple lines of evidence that Rab5a is required for RSV infection: (a) Rab5a is upregulated both in RSV-A2-infected A549 cells and RSV-A2-challenged BALB/c mice's airway epithelial cells at early infection phase; (b) shRNA-mediated knockdown of Rab5a is associated with reduced lung pathology in RSV A2 challenged mice; (c) Rab5a expression is correlated with disease severity of RSV infection of infants. Knockdown of Rab5a increases IFN-λ (lambda) production by mediating IRF1 nuclear translocation. Our results highlight a new role for Rab5a in RSV infection, such that its depletion inhibits RSV infection by stimulating the endogenous respiratory epithelial antiviral immunity, which suggests that Rab5a is a potential target for novel therapeutics against RSV infection.Importance This study highlights the important role of Rab5a in RSV infection, such that its depletion inhibits RSV infection by stimulating the endogenous respiratory epithelial antiviral immunity and attenuates inflammation of the airway, which suggests that Rab5a is a powerful potential target for novel therapeutics against RSV infection.

14.
Bioresour Technol ; 319: 124171, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33039842

RESUMO

The effect of NaOH catalytic ethanol pretreatment under various temperatures (130-180 °C) and time (15-90 min) on the chemical composition and enzymatic saccharification of sugarcane bagasse was investigated in this study. The results showed that NaOH catalytic ethanol pretreatment assisted delignification and the reservation of cellulose and hemicellulose. When sugarcane bagasse was pretreated at 180 °C for 30 min, a substantial glucose yield of 91.6% was obtained after hydrolysis for 72 h, representing 94.6% of glucose in pretreated residue. This yield was promoted with respect to the compositional change and surface alteration of pretreated substrate. With the supplement of Tween 80, the enzyme usage would be saved by 50% and the enzymolysis time could be shortened to 24 h while obtaining comparable glucose yield. This study provided an economical feasible and gradual process for the generation of glucose, which was followed by fermentation and conversion to platform chemicals.


Assuntos
Saccharum , Celulose , Etanol , Hidrólise , Hidróxido de Sódio , Tensoativos
15.
Talanta ; 222: 121325, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33167191

RESUMO

Simultaneously rapid detection of trace adulterants in the complex systems of food without extraction is considered highly challenging. Herein, a high-throughput and rapid methodology, multi-molecular infrared (MM-IR) spectroscopy was developed for simultaneous detection of multiple trace adulterants in food. Flour was applied to demonstrate the capabilities of MM-IR with spatial resolution, spectral qualitative and quantitative analysis. Signals of 5 trace adulterants (rongalit, potassium bromate, borax, aluminum potassium sulfate and fluorescent brighter) were spatially revealed by IR hyperspectral imaging with group-peak matching, and further unveiled spectrally with second derivative two dimensional correlation infrared (SD-2DCOS IR) spectroscopy for higher resolution. Moreover, quantitative analysis of trace adulterants was conducted with partial least squares (PLS) modeling in ppm level. Composed of the above techniques and a series of resolution enhancement techniques (MW-2DCOS IR, 2T-2DCOS IR, etc.), MM-IR presented significant advantages on simultaneous detection of trace adulterants in food and therefore possessed the potential for food comprehensive analysis.

16.
Life Sci ; 267: 118933, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33359744

RESUMO

AIMS: Non-small cell lung cancer (NSCLC) is considered a highly fatal tumor. Importantly, angiogenesis is critical for tumor progression. Long non-coding RNAs (lncRNAs), which are untranslatable, control cell functions through different pathways. lncRNA EPIC1 has been reported to promote cell viability, cell cycle progression, and invasion. However, the relationship between EPIC1 and tumor angiogenesis remains an enigma. We explored the role of EPIC1 in tumor angiogenesis in NSCLC. MATERIALS AND METHODS: First, EPIC1 expression was analyzed using the GEPIA database and was further verified using qPCR in tumor tissues from patients with NSCLC and NSCLC cell lines. Next, EPIC1 function was detected using loss-of-function and gain-of-function assays. Moreover, EdU staining, flow cytometry, and channel formation assays were performed to assess HUVEC proliferation and channel the formation in the NSCLC-HUVEC transwell co-culture system. KEY FINDINGS: EPIC1 expression was significantly upregulated in NSCLC tissues and cell lines. Furthermore, the overexpression of EPIC1 in NSCLC cells stimulated HUVEC channel formation and proliferation by activating Ang2/Tie2 signaling, and the opposite results were obtained when EPIC1 was silenced in NSCLC cells. The density of new blood vessels was simultaneously increased by EPIC1 overexpression in vivo, using CAM angiogenesis model and a nude mouse tumor model. Finally, all these experimental findings could be established in the samples from patients with NSCLC. We postulate that EPIC1 promotes tumor angiogenesis by activating the Ang2/Tie2 axis in NSCLC. SIGNIFICANCE: Elucidating the molecular and cellular mechanisms of EPIC1 in tumor angiogenesis provides a novel perspective on NSCLC clinical therapy.


Assuntos
Angiopoietina-2/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , RNA Longo não Codificante/genética , Receptor TIE-2/metabolismo , Angiopoietina-2/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/irrigação sanguínea , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Embrião de Galinha , Bases de Dados Genéticas , Modelos Animais de Doenças , Xenoenxertos , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , RNA Longo não Codificante/metabolismo , Receptor TIE-2/genética , Transdução de Sinais
17.
Nanoscale ; 13(1): 185-194, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33325961

RESUMO

It is interesting yet challenging to design theranostic nanoplatforms for the accurate diagnosis and therapy of diseases; these nanoplatforms consist of single contrast-enhanced imaging or therapeutic agents, and they possess their own unique shortcomings that limit their widespread bio-medical applications. Therefore, designing a potential theranostic agent is an emerging approach for the synergistic diagnosis and therapeutics in bio-medical applications. Herein, a lanthanide-loaded (NaLnF4) heterostructure BiOCl ultrathin nanosheet (BiNS@NaLnF4) as a theranostic agent was synthesized facilely by a solvothermal protocol. BiNS@NaLnF4 was employed as a multi-modal contrast agent for computed tomography (CT) and magnetic resonance imaging (MRI), showing a high-performance X-ray absorption contrast effect, an outstanding T1-weighted imaging function result, good cytocompatibility and favorable in vivo effective imaging for CT. Notably, BiNS@NaLnF4 was applied to achieve a satisfactory photon-thermal conversion efficiency (35.3%). Moreover, the special heterostructure barrier achieved increased utilization of electrons/holes, enhancing the generation of reactive oxygen species (ROS) under visible-light irradiation to further expand the therapeutic effect. Dramatically, visible light emission with the up-conversion law was employed to stimulate ROS after irradiation with a 980 nm laser. Simultaneously, the as-prepared BiNS@NaLnF4 can be applied in photothermal/photodynamic therapy (PTT/PDT) investigation for tumor ablation. In summary, the results reveal that BiNS@NaLnF4 is a potential multi-modal theranostic candidate, providing new insights for synergistic theranostics of tumors.

18.
J Ethnopharmacol ; 266: 113461, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33039625

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jinmaitong (JMT) is a prescription of Traditional Chinese Medicine, which is composed of ten herbal drugs and two animal drugs. It has long been used for the treatment of diabetic peripheral neuropathy (DPN). AIM OF STUDY: Wnt/ß-catenin pathway is considered as an essential and direct driver of myelinogenesis. This study aims to evaluate the protective effect of JMT against DPN dynamically during a 16-weeks' treatment, and to investigate the underlying mechanism in which the Wnt/ß-catenin pathway is involved. MATERIALS AND METHODS: Diabetic model was induced by single intraperitoneal injection of Streptozotocin (STZ) using male Sprague-Dawley rats. The model rats were divided into five groups and administrated with JMT at three doses (0.437, 0.875, and 1.75 g/kg per day), neurotropin (positive drug, 2.67 NU/kg per day), and placebo (deionized water), respectively, for continuous 8 weeks (n = 9-10), 12 weeks (n = 8-10), or 16 weeks (n = 7-9). Meanwhile, rats in control group were administrated with placebo (n = 10 for 8 weeks, n = 9 for 12 and 16 weeks, respectively). Blood glucose and body weight were monitored every four weeks. Mechanical allodynia was assessed using mechanical withdrawal threshold (MWT) test. The morphological change of sciatic nerves were observed by transmission electron microscope (TEM) and hematoxylin and eosin (HE) stain. The mRNA and protein levels of targeted genes were evaluated by quantitative real time-PCR and western bolt, respectively. Myelin protein zero (MPZ) and mediators involved in Wnt/ß-catenin pathway, such as ß-catenin, glycogen synthase kinase 3ß (GSK-3ß), and WNT inhibitory factor-1 (WIF-1), were compared among different groups after treatment of 8, 12, and 16 weeks, respectively. RESULTS: The mechanical allodynia and peripheral nerve morphology were degenerated in DPN rats over time, and notably improved after JMT-treatment of 12 and 16 weeks. The decreased MPZ level in DPN rats were also significantly amended by JMT. More importantly, we found that the suppressed Wnt/ß-catenin pathway in sciatic nerves of DPN rats was overtly up-regulated by JMT in a time-dependent manner. Among the three doses, JMT at the middle dose showed the best effect. CONCLUSIONS: JMT effectively ameliorated diabetic-induced peripheral neuropathy, which was mediated by the activation of Wnt/ß-catenin signaling pathway. This study provided new perspective to understand the neuroprotective mechanism of JMT.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/fisiopatologia , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/administração & dosagem , Masculino , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Estreptozocina
19.
Life Sci ; 267: 118926, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33358901

RESUMO

Osteoarthritis (OA) is a degenerative disease, which has a high incidence in middle-aged and elderly people and tends to occur in weight-bearing or active joints. Current treatment can only relieve symptoms and delay the progression of OA in result of its indistinct pathogenesis. In recent years, more and more studies have focused on the pathogenesis of OA. Nucleolar GTP binding protein 3 (GNL3) is associated with chondrogenic differentiation and can participate in genomic regulation as RNA binding protein (RBP). We used RNA sequencing (RNA-seq) to analyze the overall transcription level of the human cervical cancer cell line HeLa after GNL3 deletion. The results showed that downstream genes IL24 and PTN were down-regulated. IL24 takes part in the progression of OA by inducing articular osteocyte apoptosis, while PTN conducts to the progression of OA by promoting angiogenesis. We validated the results in the human chondrosarcoma cell line SW1353 and OA patients. Compared with the control group, GNL3, IL24 and PTN genes were elevated in OA specimens. This study explored the relationship between GNL3 and these two downstream genes, hoping to find biomarkers in the pathogenesis of osteoarthritis that can be used as therapeutic targets in the future.


Assuntos
Proteínas de Transporte/metabolismo , Citocinas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Interleucinas/metabolismo , Proteínas Nucleares/metabolismo , Osteoartrite/metabolismo , Adulto , Idoso , Proteínas de Transporte/genética , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Diferenciação Celular/fisiologia , Condrócitos/metabolismo , Condrócitos/patologia , Condrogênese/fisiologia , Citocinas/genética , Feminino , Cabeça do Fêmur/metabolismo , Proteínas de Ligação ao GTP/genética , Células HeLa , Humanos , Interleucinas/genética , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Osteoartrite/genética , Osteoartrite/patologia , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
20.
Nat Commun ; 11(1): 6182, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273464

RESUMO

Upon sensing cytosolic DNA, the enzyme cGAS induces innate immune responses that underpin anti-microbial defenses and certain autoimmune diseases. Missense mutations of PRKDC encoding the DNA-dependent protein kinase (DNA-PK) catalytic subunit (DNA-PKcs) are associated with autoimmune diseases, yet how DNA-PK deficiency leads to increased immune responses remains poorly understood. In this study, we report that DNA-PK phosphorylates cGAS and suppresses its enzymatic activity. DNA-PK deficiency reduces cGAS phosphorylation and promotes antiviral innate immune responses, thereby potently restricting viral replication. Moreover, cells isolated from DNA-PKcs-deficient mice or patients carrying PRKDC missense mutations exhibit an inflammatory gene expression signature. This study provides a rational explanation for the autoimmunity of patients with missense mutations of PRKDC, and suggests that cGAS-mediated immune signaling is a potential target for therapeutic interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...