Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 600(7887): 59-63, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34666339

RESUMO

Mare volcanics on the Moon are the key record of thermo-chemical evolution throughout most of lunar history1-3. Young mare basalts-mainly distributed in a region rich in potassium, rare-earth elements and phosphorus (KREEP) in Oceanus Procellarum, called the Procellarum KREEP Terrane (PKT)4-were thought to be formed from KREEP-rich sources at depth5-7. However, this hypothesis has not been tested with young basalts from the PKT. Here we present a petrological and geochemical study of the basalt clasts from the PKT returned by the Chang'e-5 mission8. These two-billion-year-old basalts are the youngest lunar samples reported so far9. Bulk rock compositions have moderate titanium and high iron contents  with KREEP-like rare-earth-element and high thorium concentrations. However, strontium-neodymium isotopes indicate that these basalts were derived from a non-KREEP mantle source. To produce the high abundances of rare-earth elements and thorium, low-degree partial melting and extensive fractional crystallization are required. Our results indicate that the KREEP association may not be a prerequisite for young mare volcanism. Absolving the need to invoke heat-producing elements in their source implies a more sustained cooling history of the lunar interior to generate the Moon's youngest melts.

2.
Front Chem ; 8: 594316, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363109

RESUMO

Clinopyroxene is a major host mineral for lithophile elements in the mantle lithosphere, and therefore, its origin is vital for constraints on mantle evolution and melt generation. In situ Sr isotopic measurement of clinopyroxene has been available since the recent development of laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) in the 2000s. Therefore, there is an increasing demand for natural clinopyroxene reference materials for Sr isotope microanalysis. In this contribution, we present six natural clinopyroxene reference materials from South Africa (JJG1424) and China (YY09-47, YY09-04, YY09-24, YY12-01, and YY12-02) for Sr isotope microanalysis. The Sr content of these clinopyroxenes ranges from 50 to 340 µg g-1, which covers most natural clinopyroxene compositions. Homogeneity of these potential reference materials were investigated and evaluated in detail over a 2-year period using 193-nm nanosecond and 257-nm femtosecond laser systems coupled to either a Neptune or Neptune Plus MC-ICP-MS. Additionally, the major and trace element of these clinopyroxenes were examined by electron probe microanalyzer (EPMA) as well as solution and laser ICP-MS. The in situ 87Sr/86Sr values obtained for the six natural clinopyroxene reference materials agree well with data obtained using the thermal ionization mass spectrometer (TIMS) method. The Sr isotopic stability and homogeneity of these clinopyroxenes make them potential reference materials for in situ Sr microanalysis to correct instrumental fractionation or as quality control materials for analytical sessions. The new Sr isotope data provided here might be beneficial for microbeam analysis in the geochemical community.

3.
Proc Natl Acad Sci U S A ; 115(35): 8682-8687, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30104354

RESUMO

The extreme Sr, Nd, Hf, and Pb isotopic compositions found in Pitcairn Island basalts have been labeled enriched mantle 1 (EM1), characterizing them as one of the isotopic mantle end members. The EM1 origin has been vigorously debated for over 25 years, with interpretations ranging from delaminated subcontinental lithosphere, to recycled lower continental crust, to recycled oceanic crust carrying ancient pelagic sediments, all of which may potentially generate the requisite radiogenic isotopic composition. Here we find that δ26Mg ratios in Pitcairn EM1 basalts are significantly lower than in normal mantle and are the lowest values so far recorded in oceanic basalts. A global survey of Mg isotopic compositions of potentially recycled components shows that marine carbonates constitute the most common and typical reservoir invariably characterized by extremely low δ26Mg values. We therefore infer that the subnormal δ26Mg of the Pitcairn EM1 component originates from subducted marine carbonates. This, combined with previously published evidence showing exceptionally unradiogenic Pb as well as sulfur isotopes affected by mass-independent fractionation, suggests that the Pitcairn EM1 component is most likely derived from late Archean subducted carbonate-bearing sediments. However, the low Ca/Al ratios of Pitcairn lavas are inconsistent with experimental evidence showing high Ca/Al ratios in melts derived from carbonate-bearing mantle sources. We suggest that carbonate-silicate reactions in the late Archean subducted sediments exhausted the carbonates, but the isotopically light magnesium of the carbonate was incorporated in the silicates, which then entered the lower mantle and ultimately became the Pitcairn plume source.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...