Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 692
Filtrar
1.
J Pharm Biomed Anal ; 208: 114471, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34814080

RESUMO

Yunaconitine (YAC), crassicauline A (CCA), 8-deacetylyunaconitine (DYA), and 8-deacetylcrassicauline A (DCA), as hidden toxic Aconitum alkaloids, are detected in some products of processed Aconitum carmichaelii lateral root and poisoning cases. The distribution and toxicity of these four components in Aconitum herbs should be further systematically studied for medication safety. This study developed a new UHPLC-QQQ-MS/MS method to determine ten Aconitum alkaloids, including aconitine, mesaconitine, hypaconitine, benzoylaconine, benzoylmesaconine, benzoylhypaconine, YAC, CCA, DYA, and DCA, for Aconitum herbs simultaneously. YAC and CCA were founded in some samples of unprocessed A. carmichaelii lateral root (7.04%), A. carmichaelii root (9.43%), A. brachypodum root (6.00%), and A. ouvrardianum root (100%). Four hidden toxic Aconitum alkaloids were detected in processed A. carmichaelii lateral root (2.56%) and A. vilmorinianum root (100%). Four hidden toxic Aconitum alkaloids played significant roles in the classification of Aconitum herbs by OPLS-DA analysis. The acute toxicity test was performed by up-and-down procedure (UDP). The oral administration of the half lethal dose (LD50) of YAC, CCA, DYA, and DCA to female ICR mice was 2.37 mg/kg, 5.60 mg/kg, 60.0 mg/kg, and 753 mg/kg, respectively. The LD50 by intravenous injection was 0.200 mg/kg, 0.980 mg/kg, 7.60 mg/kg, and 34.0 mg/kg, respectively. The LD50 of unprocessed A. carmichaelii lateral root, A. vilmorinianum root, and A. brachypodum root to mice orally was 1.89 g/kg, 0.950 g/kg, and 0.380 g/kg, respectively. Symptoms of Aconitum alkaloid poisoning in mice were decreased activity, fur erect, palpebral edema, vomiting, polypnea, and convulsions. The main change of organs was flatulence. No poisoning or death occurred in mice at the maximum dosage (27.0 g/kg) of A. ouvrardianum root orally. To better control the quality and safety of Aconitum herbs, this study provides favorable support for improving the existing standards to strengthen the supervision of the four hidden toxic Aconitum alkaloids.

2.
Sci Rep ; 11(1): 23148, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848790

RESUMO

The red color formation of Acer mandshuricum leaves is caused by the accumulation of anthocyanins primarily, but the molecular mechanism researches which underlie anthocyanin biosynthesis in A. mandshuricum were still lacking. Therefore, we combined the transcriptome and metabolome and analyzed the regulatory mechanism and accumulation pattern of anthocyanins in three different leaf color states. In our results, 26 anthocyanins were identified. Notably, the metabolite cyanidin 3-O-glucoside was found that significantly correlated with the color formation, was the predominant metabolite in anthocyanin biosynthesis of A. mandshuricum. By the way, two key structural genes ANS (Cluster-20561.86285) and BZ1 (Cluster-20561.99238) in anthocyanidin biosynthesis pathway were significantly up-regulated in RL, suggesting that they might enhance accumulation of cyanidin 3-O-glucoside which is their downstream metabolite, and contributed the red formation of A. mandshuricum leaves. Additionally, most TFs (e.g., MYBs, bZIPs and bHLHs) were detected differentially expressed in three leaf color stages that could participate in anthocyanin accumulation. This study sheds light on the anthocyanin molecular regulation of anthocyanidin biosynthesis and accumulation underlying the different leaf color change periods in A. mandshuricum, and it could provide basic theory and new insight for the leaf color related genetic improvement of A. mandshuricum.

3.
Front Psychiatry ; 12: 725596, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764895

RESUMO

Aims: The modern medical model has been transformed into a biopsychosocial model. The integration of the biopsychosocial approach in healthcare can help improve the effectiveness of diagnosis and treatment. This study explored the actual application of the biopsychosocial approach in healthcare and provides a basis for targeted interventions to promote the biopsychosocial approach in healthcare. Methods: Study 1 involved one-on-one interviews with 30 medical staff and focus group interviews with 16 recent patients. Study 2 was a cross-sectional survey of 13,105 medical staff in Hangzhou, China that analyzed the status quo implementation of the biopsychosocial approach in healthcare. Results: Study 1 found that medical staff did not welcome patients to report information unrelated to their disease, hoping patients did not express their emotions. In the treatment process, patients believed that medical staff refused to attend to or did not encourage reporting of any information other than the disease, and that patients should have reasonable expectations for medical staff. Study 2 found that medical staff had a 37.5% probability of actively paying attention to the patient's psychosocial status. Female medical staff (38.5%) were actively concerned about the patient's psychosocial status significantly more than male medical staff (34.2%) (P < 0.01). The medical staff in the psychiatric department (58.4%) paid more active attention to the patient's psychosocial status than staff in the non-psychiatric departments (37.2%). Gender, department, hospital level, and professional title were the factors associated with the medical staff's attention to the patient's psychosocial status (P < 0.05). The influence of age on the probability of medical staff actively paying attention to the psychosocial status of patients increased with the number of years of employment. Participants that were 31-40 years old, had an intermediate professional title, and 11-15 years of employment were the least likely to actively pay attention to patients' psychosocial status. Conclusion: Although the biopsychosocial approach has been popularized for many years, it has not been widely used in medical care. Medical staff pay more attention to patients' physical symptoms and less attention to patients' psychosocial status. It is recommended that training will be provided to medical personnel on implementing a biopsychosocial approach with particular attention to the sociodemographic characteristics of medical personnel. Additionally, we propose helping patients set reasonable expectations, and formulating guidelines for implementing the biopsychosocial approach.

4.
Cancer Lett ; 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34767926

RESUMO

The relationship between microRNA (miRNA) and hosting long non-coding RNA (lncRNA) remains unclear. Here, the expression levels of microRNA-210 (miR-210) and hosting lncRNA MIR210HG are significantly increased and positively correlated in gastric cancer (GC). Gain- and loss-of-function studies demonstrate that miR-210 and MIR210HG synergistically promote the migration and invasion of GC cells in vitro. Furthermore, GC sublines simultaneously expressing miR-210 and MIR210HG display synergistic promotion of lung metastasis in vivo. Mechanistically, MIR210HG interacts with DExH-box helicase 9 (DHX9) to increase DHX9/c-Jun complex's occupancy on the promoter of matrix metallopeptidases (MMPs), and thus promotes migration and invasion of GC cells. Additionally, miR-210 directly suppresses the expression of dopamine receptor D5 (DRD5), serine/threonine kinase 24 (STK24) and MAX network transcriptional repressor (MNT), resulting in enhanced migration and invasion. Finally, MYC proto-oncogene (c-Myc) transactivates miR-210 and MIR210HG. Overexpression of miR-210 or/and MIR210HG can rescue the inhibitory effect on the migration and invasion by silencing c-Myc. Moreover, c-Myc inhibitor significantly decreases lung metastasis of GC in vivo. Collectively, our findings identify a novel mechanism, by which c-Myc-activated miR-210 and MIR210HG synergistically promote the metastasis of GC.

5.
Phytomedicine ; : 153831, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34794861

RESUMO

BACKGROUND: Currently, the identification of accurate biomarkers for the diagnosis of patients with early-stage lung cancer remains difficult. Fortunately, metabolomics technology can be used to improve the detection of plasma metabolic biomarkers for lung cancer. In a previous study, we successfully utilised machine learning methods to identify significant metabolic markers for early-stage lung cancer diagnosis. However, a related research platform for the investigation of tumour metabolism and drug efficacy is still lacking. HYPOTHESIS/PURPOSE: A novel methodology for the comprehensive evaluation of the internal tumour-metabolic profile and drug evaluation needs to be established. METHODS: The optimal location for tumour cell inoculation was identified in mouse chest for the non-traumatic orthotopic lung cancer mouse model. Microcomputed tomography (micro-CT) was applied to monitor lung tumour growth. Proscillaridin A (P.A) and cisplatin (CDDP) were utilised to verify the anti-lung cancer efficacy of the platform. The top five clinically valid biomarkers, including proline, L-kynurenine, spermidine, taurine and palmitoyl-L-carnitine, were selected as the evaluation indices to obtain a suitable lung cancer mouse model for clinical metabolomics research by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). RESULTS: The platform was successfully established, achieving 100% tumour development rate and 0% surgery mortality. P.A and CDDP had significant anti-lung cancer efficacy in the platform. Compared with the control group, four biomarkers in the orthotopic model and two biomarkers in the metastatic model had significantly higher abundance. Principal component analysis (PCA) showed a significant separation between the orthotopic/metastatic model and the control/subcutaneous/KRAS transgenic model. The platform was mainly involved in arginine and proline metabolism, tryptophan metabolism, and taurine and hypotaurine metabolism. CONCLUSION: This study is the first to simulate clinical metabolomics by comparing the metabolic phenotype of plasma in different lung cancer mouse models. We found that the orthotopic model was the most suitable for tumour metabolism. Furthermore, the anti-tumour drug efficacy was verified in the platform. The platform can very well match the clinical reality, providing better lung cancer diagnosis and securing more precise evidence for drug evaluation in the future.

6.
Front Oncol ; 11: 741341, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722293

RESUMO

Objective: To evaluate the efficacy and safety of standard or low-dose chemotherapy followed by HLA-mismatched allogeneic T-cell infusion (allo-TLI) for the treatment of elderly patients with acute myeloid leukemia (AML) and patients with intermediate-2 to high-risk myelodysplastic syndrome (MDS). Methods: We carried out a prospective, multicenter, single-arm clinical trial. Totally of 25 patients were enrolled, including 17 AML patients and 8 MDS patients. Each patient received four courses of non-ablative chemotherapy, with HLA-mismatched donor CD3+ allo-TLI 24 h after each course. AML patients received chemotherapy with decitabine, idarubicin, and cytarabine, and MDS patients received decitabine, cytarabine, aclarubicin, and granulocyte colony-stimulating factor. Results: A total of 79 procedures were performed. The overall response rates of the AML and MDS patients were 94% and 75% and the 1-year overall survival rates were 88% (61-97%) and 60% (13-88%), respectively. The overall 60-day treatment-related mortality was 8%. Compared with a historical control cohort that received idarubicin plus cytarabine (3 + 7), the study group showed significantly better overall response (94% vs. 50%, P=0.002) and overall survival rates (the 1-year OS rate was 88% vs. 27%, P=0.014). Post-TLI cytokine-release syndrome (CRS) occurred after 79% of allo-TLI operations, and 96% of CRS reactions were grade 1. Conclusion: Elderly AML patients and intermediate-2 to high-risk MDS patients are usually insensitive to or cannot tolerate regular chemotherapies, and may not have the opportunity to undergo allogeneic stem cell transplantation. Our study showed that non-ablative chemotherapy followed by HLA-mismatched allo-TLI is safe and effective, and may thus be used as a first-line treatment for these patients. Clinical Trial Registration: https://www.chictr.org.cn/showproj.aspx?proj=20112.

7.
Front Cardiovasc Med ; 8: 750186, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722681

RESUMO

Background: Doxorubicin (Dox) is one of the most effective chemotherapy agents used in the treatment of solid tumors and hematological malignancies. However, it causes dose-related cardiotoxicity that may lead to heart failure in patients. Luteolin (Lut) is a common flavonoid that exists in many types of plants. It has been studied for treating various diseases such as hypertension, inflammatory disorders, and cancer. In this study, we evaluated the cardioprotective and anticancer effects of Lut on Dox-induced cardiomyopathy in vitro and in vivo to explore related mechanisms in alleviating dynamin-related protein (Drp1)-mediated mitochondrial apoptosis. Methods: MTT and LDH assay were used to determine the viability and toxicity of cardiomyocytes treated with Dox and Lut. Flow cytometry was used to examine ROS levels, and electron and confocal microscopy was employed to assess the mitochondrial morphology. The level of apoptosis was examined by Hoechst 33258 staining. The protein levels of myocardial fission protein and apoptosis-related protein were examined using Western blot. Transcriptome analysis of the protective effect of Lut against Dox-induced cardiac toxicity in myocardial cells was performed using RNA sequencing technology. The protective effects of Lut against cardiotoxicity mediated by Dox in zebrafish were quantified. The effect of Lut increase the antitumor activity of Dox in breast cancer both in vitro and in vivo were further employed. Results: Lut ameliorated Dox-induced toxicity in H9c2 and AC16 cells. The level of oxidative stress was downregulated by Lut after Dox treatment of myocardial cells. Lut effectively reduced the increased mitochondrial fission post Dox stimulation in cardiomyocytes. Apoptosis, fission protein Drp1, and Ser616 phosphorylation were also increased post Dox and reduced by Lut. In the zebrafish model, Lut significantly preserved the ventricular function of zebrafish after Dox treatment. Moreover, in the mouse model, Lut prevented Dox-induced cardiotoxicity and enhanced the cytotoxicity in triple-negative breast cancer by inhibiting proliferation and metastasis and inducing apoptosis.

8.
Brain Res Bull ; 178: 9-16, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34728231

RESUMO

Patients who have surgery during the first few years of their lives may have an increased risk of behavioral abnormality. Our previous study has shown a role of glial cell-derived neurotrophic factor (GDNF) in neonatal surgery-induced learning and memory impairment in rats. This study was designed to determine whether neonatal surgery induced hyperactive behavior in addition to learning and memory impairment and whether GDNF played a role in these changes. Postnatal day 7 male and female Sprague-Dawley rats were subjected to right common carotid arterial exposure under sevoflurane anesthesia. Their learning, memory and behavior were tested from 23 days after the surgery. GDNF was injected intracerebroventricularly at the end of surgery. Surgery reduced GDNF expression in the hippocampus. Surgery impaired learning and memory and induced a hyperactive behavior as assessed by Barnes maze, fear conditioning and open field tests. In addition, surgery reduced dendritic arborization and spine density. The effects were attenuated by GDNF injection. These results suggest that surgery induces a hyperactive behavior pattern, impairment of learning and memory, and neuronal microstructural damage later in the lives in rats. GDNF reduction may mediate these surgical effects.

9.
Life Sci ; 287: 120152, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34793769

RESUMO

Bile acids are important hydroxylated steroids that are synthesized in the liver from cholesterol for intestinal absorption of lipids and other fatty-nutrient. They also display remarkable and immense functions such as regulating immune responses, managing the apoptosis of cells, participating in glucose metabolism, and so on. Some bile acids were used for the treatment or prevention of diseases such as gallstones, primary biliary cirrhosis, and colorectal cancer. Meanwhile, the accumulation of toxic bile acids leads to apoptosis, necrosis, and inflammation. Alteration of bile acids metabolism, as well as the gut microbiota that interacted with bile acids, contributes to the pathogenesis of metabolic diseases. Therefore, the purpose of this review is to summarize the current functions and pre-clinical or clinical applications of bile acids, and to further discuss the alteration of bile acids in metabolic disorders as well as the manipulation of bile acids metabolism as potential therapeutic targets.

10.
Mol Biol Cell ; : mbcE21060285, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34818061

RESUMO

Actin nucleation is achieved by collaborative teamwork of actin nucleator factors (NFs) and nucleation-promoting factors (NPFs) into functional protein complexes. Selective inter- and intramolecular interactions between the nucleation complex constituents enable diverse modes of complex assembly in initiating actin polymerization upon demand. Budding yeast has two formins, Bni1 and Bnr1, which are teamed up with different NPFs. However, the selective pairing between formin NFs and NPFs into the nucleation core for actin polymerization is not completely understood. By examining the functions and interactions of NPFs and NFs via biochemistry, genetics, and mathematical modeling approaches, we found that two NPFs, Aip5 and Bud6, showed joint teamwork effort with Bni1 and Bnr1, respectively, by interacting with the C-terminal intrinsically disordered region (IDR) of formin, in which two NPFs work together to promote formin-mediated actin nucleation. Although the C-terminal IDRs of Bni1 and Bnr1 are distinct in length, each formin IDR orchestrates the recruitment of Bud6 and Aip5 cooperatively by different positioning strategies to form a functional complex. Our study demonstrated the dynamic assembly of the actin nucleation complex by recruiting multiple partners in budding yeast, which may be a general feature for effective actin nucleation by formins. [Media: see text].

11.
Am J Ind Med ; 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34825401

RESUMO

BACKGROUND: Workers in fireworks production are mainly at risk for explosion injury. However, there are few reports on the consequences of methanol poisoning in fireworks laborers. CASE PRESENTATION: We report on three patients with visual loss caused by inhalation exposure to high concentrations of methanol, who were engaged in the granulation process of the fireworks manufacturing industry. They presented with severe metabolic acidosis and visual impairments, accompanied by headache, chest tightness, shortness of breath, dizziness, and vomiting. All were diagnosed with acute methanol poisoning. One patient developed bilateral blindness and two patients improved after timely hemodialysis treatment. CONCLUSIONS: These case reports emphasize the risk of methanol poisoning in the fireworks industry or other factories using commercial alcohol with high methanol content. Early hemodialysis intervention and metabolic acidosis correction are crucial for rescuing visual impairment caused by methanol exposure. Awareness and supervision of commercial alcohol use are indispensable for similar industrial processes.

12.
J Mol Med (Berl) ; 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34837498

RESUMO

Neurogenetic diseases are neurological conditions with a genetic cause (s). There are thousands of neurogenetic diseases, and most of them are incurable. The development of bioinformatics and elucidation of the mechanism of pathogenesis have allowed the development of gene therapy approaches, which show great potential in treating neurogenetic diseases. Viral vectors delivery, antisense oligonucleotides, gene editing, RNA interference, and burgeoning viroid delivery technique are promising gene therapy strategies, and commendable therapeutic effects in the treatment of neurogenetic diseases have been achieved (Fig. 1). This review highlights a sampling of advances in gene therapies for neurogenetic disorders. Fig. 1 Examples of gene therapy strategies used in the treatment of neurogenetic diseases. The schematic diagram shows different gene therapy approaches used for treating a sampling of neurogenetic disorders, such as ASO therapy, gene editing, gene augmentation, and RNA interference.

13.
Artigo em Inglês | MEDLINE | ID: mdl-34831930

RESUMO

This study aimed to explore which factors had a greater impact on substance craving in people with substance use and the direction of the impact. A total of 895 male substance users completed questionnaires regarding substance craving, psychological security, positive psychological capital, interpersonal trust, alexithymia, impulsivity, parental conflict, aggression behavior, life events, family intimacy, and deviant peers. Calculating the factor importance by gradient boosting method (GBM), found that the psychosocial factors that had a greater impact on substance craving were, in order, life events, aggression behavior, positive psychological capital, interpersonal trust, psychological security, impulsivity, alexithymia, family intimacy, parental conflict, and deviant peers. Correlation analysis showed that life events, positive psychological capital, interpersonal trust, psychological security, and family intimacy negatively predicted substance craving, while aggression behavior, impulsivity, alexithymia, parental conflict, and deviant peers positively predicted substance cravings. These findings have important implications for the prevention and intervention of substance craving behavior among substance users.

14.
Nanotechnology ; 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34844231

RESUMO

The micro-stripe structure was prepared by laser interference induced forward transfer (LIIFT) technique, composed of Ag nano-particles (NPs). The effects of the film thickness with the carbon nano-particles mixed polyimide (CNPs@PI), Ag film thickness, and laser fluence were studied on the transferred micro-stripe structure. The periodic Ag micro-stripe with good resolution was obtained in a wide range of CNPs@PI film thickness from ~ 0.5 µm to ~ 1.0 µm for the Ag thin film ~ 20 nm. The distribution of the Ag NPs composing the micro-stripe was compact. Nevertheless, the average size of the transferred Ag NPs was increased from ~ 41 nm to ~ 197 nm with the change of the Ag donor film from ~ 10 nm to ~ 40 nm. With the increase of the laser fluence from 102 mJ•cm-2to 306 mJ•cm-2per-beam, the transferred Ag NPs became aggregative, improving the resolution of the corresponding micro-stripe. Finally, the transferred Ag micro-stripe exhibited the significant surface enhanced Raman scattering (SERS) property for rhodamine B (RhB). While the concentration of the RhB reached 10-10mol•L-1, the Raman characteristic peaks of the RhB were still observed clearly at 622 cm-1, 1359 cm-1, and 1649 cm-1. These results indicate that the transferred Ag micro-stripe has potential application as a SERS chip in drug and food detection.

15.
J Am Chem Soc ; 143(45): 18805-18819, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34714049

RESUMO

Through 30 years of research, researchers have gained a deep understanding of the synthesis, characteristics, and applications of carbon nanotubes (CNTs). However, up to now, there are still few industries using CNT as the leading material. The difficulty of CNTs to be applied in industry is the gap between the properties of CNT-based aggregates and those of a single carbon nanotube. Therefore, how to maintain the intrinsic properties of CNTs when they are assembled into aggregates is of great significance. Herein, we summarize and analyze the research status of CNT materials applied in different fields from proven techniques to potential industries, including energy storage, electronics, mechanical and other applications. For each application, the intrinsic properties of CNTs and the real performances of their aggregates are compared to figure out the key problems in CNT synthesis. Finally, we give an outlook for building a bridge for CNTs from nanoscale structure to macroscopic application, giving inspiration to researchers making efforts toward the real application of carbon nanotubes.

16.
Front Microbiol ; 12: 696195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603225

RESUMO

Cadmium (Cd) is carcinogenic to humans and can accumulate in the liver, kidneys, and bones. There is widespread presence of cadmium in the environment as a consequence of anthropogenic activities. It is important to detect cadmium in the environment to prevent further exposure to humans. Previous whole-cell biosensor designs were focused on single-sensing constructs but have had difficulty in distinguishing cadmium from other metal ions such as lead (Pb) and mercury (Hg). We developed a dual-sensing bacterial bioreporter system to detect bioavailable cadmium by employing CadC and CadR as separate metal sensory elements and eGFP and mCherry as fluorescent reporters in one genetic construct. The capability of this dual-sensing biosensor was proved to simultaneously detect bioavailable cadmium and its toxic effects using two sets of sensing systems while still maintaining similar specificity and sensitivity of respective signal-sensing biosensors. The productions of double-color fluorescence were directly proportional to the exposure concentration of cadmium, thereby serving as an effective quantitative biosensor to detect bioavailable cadmium. This novel dual-sensing biosensor was then validated to respond to Cd(II) spiked in environmental water samples. This is the first report of the development of a novel dual-sensing, whole-cell biosensor for simultaneous detection of bioavailable cadmium. The application of two biosensing modules provides versatile biosensing signals and improved performance that can make a significant impact on monitoring high concentration of bioavailable Cd(II) in environmental water to reduce human exposure to the harmful effects of cadmium.

17.
Glob Health Res Policy ; 6(1): 37, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593054

RESUMO

BACKGROUND: COVID-19 has seriously affected people's mental health and changed their behaviors. Previous studies for mental state and behavior promotion only targeted limited people or were not suitable for daily activity restrictions. Therefore, we decided to explore the effect of health education videos on people's mental state and health-related behaviors. METHODS: Based on WeChat, QQ, and other social media, we conducted an online survey by snowball sampling. Spearman's non-parametric method was used to analyze the correlation related to mental health problems and health-related behaviors. Besides, we used binary logistic regression analyses to examine mental health problems and health-related behaviors' predictors. We performed SPSS macro PROCESS (model 4 and model 6) to analyze mediation relationships between exposure to health education videos and depression/anxiety/health-related behaviors. These models were regarded as exploratory. RESULTS: Binary logistic regression analyses indicated that people who watched the health education videos were more likely to wear masks (OR 1.15, p < 0.001), disinfect (OR 1.26, p < 0.001), and take temperature (OR 1.37, p < 0.001). With higher level of posttraumatic growth (PTG) or perceived social support (PSS), people had lower percentage of depression (For PSS, OR 0.98, p < 0.001; For PTG, OR 0.98, p < 0.01) and anxiety (For PSS, OR 0.98, p < 0.001; For PTG, OR 0.98, p = 0.01) and better health behaviors. The serial multiple-mediation model supported the positive indirect effects of exposure to health education videos on the depression and three health-related behaviors through PSS and PTG (Depression: B[SE] = - 0.0046 [0.0021], 95% CI - 0.0098, - 0.0012; Mask-wearing: B[SE] = 0.0051 [0.0023], 95% CI 0.0015, 0.0010; Disinfection: B[SE] = 0.0059 [0.0024], 95% CI 0.0024, 0.0012; Temperature-taking: B[SE] = 0.0067 [0.0026], 95% CI 0.0023, 0.0013). CONCLUSION: Exposure to health education videos can improve people's self-perceived social support and inner growth and help them cope with the adverse impact of public health emergencies with better mental health and health-related behaviors.


Assuntos
COVID-19/psicologia , Comportamentos Relacionados com a Saúde , Educação em Saúde/estatística & dados numéricos , Saúde Mental/estatística & dados numéricos , Saúde Pública/estatística & dados numéricos , Adulto , Idoso , China , Feminino , Educação em Saúde/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Apoio Social , Adulto Jovem
18.
Front Cardiovasc Med ; 8: 736059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631833

RESUMO

The level of triglyceride (TG) ≥ 2. 3 mmol/L is suggestive of marked hypertriglyceridemia (HTG) and requires treatment with a triglyceride-lowering agent in high-risk and very high-risk patients as recommended by the 2019 ESC/EAS guidelines for the management of dyslipidemia. However, the optimal cutoff value required to diagnose non-fasting HTG that corresponds to the fasting goal level of 2.3 mmol/L in Chinese subjects is unknown. This study enrolled 602 cardiology inpatients. Blood lipid levels, including calculated non-high-density lipoprotein cholesterol (non-HDL-C) and remnant cholesterol (RC), were measured at 0, 2, and 4 h after a daily Chinese breakfast. Of these, 482 inpatients had TG levels of <2.3 mmol/L (CON group) and 120 inpatients had TG levels of ≥2.3 mmol/L (HTG group). Receiver operating characteristic (ROC) curve analysis was used to determine the cutoff values for postprandial HTG that corresponded to a target fasting level of 2.3 mmol/L. Marked hypertriglyceridemia (≥2.3 mmol/L) was found in 120 (19.9%) patients in this study population. The levels of non-fasting TG and RC increased significantly in both groups and reached the peak at 4 h after a daily meal, especially in the HTG group (p < 0.05). The optimal cutoff value of TG at 4 h, which corresponds to fasting TG of ≥2.3 mmol/L, that can be used to predict HTG, was 2.66 mmol/L. According to the new non-fasting cutoff value, the incidence of non-fasting HTG is close to its fasting level. In summary, this is the first study to determine the non-fasting cutoff value that corresponds to a fasting TG of ≥2.3 mmol/L in Chinese patients. Additionally, 2.66 mmol/l at 4 h after a daily meal could be an appropriate cutoff value that can be used to detect non-fasting marked HTG in Chinese subjects.

19.
Mol Pharm ; 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34699242

RESUMO

Pancreatic ductal adenocarcinoma is a deadly disease with limited treatment options due to late diagnosis and resistance to conventional chemotherapy. Among emerging therapeutic targets, the CXCR4 chemokine receptor and polo-like kinase 1 (PLK1) play critical roles in the progression, metastasis, and chemoresistance of pancreatic cancer. Here, we tested the hypothesis that combining CXCR4 inhibition by a polymeric CXCR4 antagonist PAMD-CHOL with PLK1 knockdown by siRNA will enhance the therapeutic effect of gemcitabine (GEM) in the orthotopic model of metastatic pancreatic cancer. We formulated nanoparticles with cholesterol-modified PAMD and siPLK1 and found strong synergism when combined with GEM treatment in vitro in both murine and human pancreatic cancer cell lines. The biodistribution of the nanoparticles in orthotopic pancreatic cancer models revealed strong accumulation in primary and metastatic tumors, with limited hepatic disposition. The cholesterol-containing nanoparticles showed not only increased tumor accumulation than the cholesterol-lacking control but also deeper penetration into the tumors. In a therapeutic study in vivo, the triple combination of PAMD-CHOL/siPLK1 and GEM showed superior anticancer activity when compared with single and dual combination controls. In conclusion, PAMD-CHOL/siPLK1 nanoparticles synergistically enhance anticancer activity of GEM in pancreatic cancer and represent a promising addition to the treatment arsenal.

20.
Artigo em Inglês | MEDLINE | ID: mdl-34714499

RESUMO

In this study, the bi-layered disulfiram-loaded fiber membranes with the antibacterial activity and different surface wettabilities are prepared using electrospinning technology. In the application of wound dressing, the hydrophilic surface of fiber membranes is beneficial for cell adhesion and drug release to heal the wound. Meanwhile, the outside hydrophobic surface is able to block water penetration to reduce the probability of wound infection. The obtained bi-layered drug-loaded fiber membranes are composed of polyvinylidene fluoride (PVDF) bottom surface and disulfiram (DSF)/polylactic acid (PLA) top surface. To modify the top surface wettability, the oxygen plasma modification of bi-layered membranes was carried out. The morphology, wettability, and chemical compositions of bi-layered drug-loaded fiber membranes were analyzed using the scanning electronic microscope (SEM), drop shape analysis instrument, X-ray diffractometer (XRD), and X-ray photoelectron spectrometer (XPS). The bi-layered disulfiram-loaded membranes showed the potent antibacterial activity in vitro against both Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). It was found that the bi-layered membranes had good biocompatibility with L929 cells. Thus, the obtained bi-layered disulfiram-loaded fiber membranes are suitable for wound dressing application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...