Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 735
Filtrar
1.
Int J Cardiol Heart Vasc ; 38: 100938, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34977329

RESUMO

Purpose: This study evaluated the diagnostic values of the extent of lung injury manifested in non-contrast enhanced CT (NCCT) images, the inflammatory and immunological biomarkers C-reactive protein (CRP) and lymphocyte for detecting acute cardiac injury (ACI) in patients with COVID-19. The correlations between the NCCT-derived parameters and arterial blood oxygen level were also investigated. Methods: NCCT lung images and blood tests were obtained in 143 patients with COVID-19 in approximately two weeks after symptom onset, and arterial blood gas measurement was also acquired in 113 (79%) patients. The diagnostic values of normal, moderately and severely abnormal lung parenchyma volume relative to the whole lungs (RVNP, RVMAP, RVSAP, respectively) measured from NCCT images for detecting the heart injury confirmed with high-sensitivity troponin I assay was determined. Results: RVNP, RVMAP and RVSAP exhibited similar accuracy for detecting ACI in COVID-19 patients. RVNP was significantly lower while both RVMAP and RVSAP were significantly higher in the patients with ACI. All of the NCCT-derived parameters exhibited poor linear and non-linear correlations with PaO2 and SaO2. The patients with ACI had a significantly higher CRP level but a lower lymphocyte level compared to the patients without ACI. Combining one of these two biomarkers with any of the three NCCT-derived parameter further improved the accuracy for predicting ACI in patients with COVID-19. Conclusion: The NCCT-delineated normal and abnormal lung parenchmyma tissues were statistically significant predictors of ACI in patients with COVID-19, but both exhibited poor correlations with the arterial blood oxygen level. The incremental diagnostic values of lymphocyte and CRP suggested viral infection and inflammation were closely related to the heart injury during the acute stage of COVID-19.

2.
World J Pediatr ; 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34984641

RESUMO

BACKGROUND: This study aimed to describe length of stay (LOS) to discharge and site variations among very preterm infants (VPIs) admitted to 57 Chinese neonatal intensive care units (NICUs) and to investigate factors associated with LOS for VPIs. METHODS: This retrospective multicenter cohort study enrolled all infants < 32 weeks' gestation and admitted to 57 NICUs which had participated in the Chinese Neonatal Network, within 7 days after birth in 2019. Exclusion criteria included major congenital anomalies, NICU deaths, discharge against medical advice, transfer to non-participating hospitals, and missing discharge date. Two multivariable linear models were used to estimate the association of infant characteristics and LOS. RESULTS: A total of 6580 infants were included in our study. The overall median LOS was 46 days [interquartile range (IQR): 35-60], and the median corrected gestational age at discharge was 36 weeks (IQR: 35-38). LOS and corrected gestational age at discharge increased with decreasing gestational age. The median corrected gestational age at discharge for infants at 24 weeks, 25 weeks, 26 weeks, 27-28 weeks, and 29-31 weeks were 41 weeks, 39 weeks, 38 weeks, 37 weeks and 36 weeks, respectively. Significant site variation of LOS was identified with observed median LOS from 33 to 71 days in different hospitals. CONCLUSIONS: The study provided concurrent estimates of LOS for VPIs which survived in Chinese NICUs that could be used as references for medical staff and parents. Large variation of LOS independent of infant characteristics existed, indicating variation of care practices requiring further investigation and quality improvement.

4.
Ann Bot ; 2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35018412

RESUMO

BACKGROUND AND AIMS: Many angiosperms can secrete both floral (FN) and extrafloral (EFN) nectar. However, much remains unclear about how EFN and FN differ in secretion, composition and ecological function, especially when both FN and EFN are secreted on flowers of the same species. METHODS: Hemerocallis citrina flowers secrete both FN and EFN. FN and EFN traits including volume, presentation pattern and temporal rhythms of secretion, were compared by field observation. Sugar and amino acid contents were analysed using regular biochemical methods, whereas proteome was investigated by combined gel-based and gel-free approaches. FN and EFN animal feeders were investigated by field observation. H. citrina plants were exposed by soil drenching to two systemic insecticides, acetamiprid and imidacloprid, and the concentration of these in FN and EFN were measured by ultra-high performance liquid chromatography coupled with mass spectrometry. KEY RESULTS: H. citrina FN was concentrated and sucrose-dominant, secreted in the mature flower tube, and served as a reward for pollinators. Conversely, EFN was hexose-rich, more dilute and less rich in sugar and amino acids. EFN was secreted on the outside of developing floral buds, and was likely to attract predatory animals for defence. EFN had less phenolics, but more pathogenesis-related components, such as chitinase and glucanase. Significantly different proteomic profile and enzymatic activities between FN and EFN suggest that they had different biosynthesis mechanisms. Both neonicotinoid insecticides examined became present in both nectar types soon after application, but in greater concentration within EFN. EFN also attracted a wider range of insect species than FN. CONCLUSIONS: H. citrina FN and EFN differed in production, composition and ecological function. The EFN pathway could be a significant way for neonicotinoids to enter the wild food chain, and must be considered when evaluating the risks to the environment of other systemic insecticides.

5.
Mol Hum Reprod ; 28(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34919712

RESUMO

Although microRNAs (miRNAs) expressed in cumulus cells (CCs) may be used to select competent oocytes/embryos, only a limited number of such miRNAs has been reported. To identify more miRNAs that regulate cumulus expansion (CE) and CC apoptosis, we first established that mouse cumulus-oocyte complexes (COCs) cultured in expansion-supporting medium supported full CE while undergoing mild apoptosis, whereas mouse oocytectomized COCs (OOXs) cultured in apoptosis-triggering medium underwent severe apoptosis while supporting no CE. RNA- and miRNA-sequencing and bioinformatics using CCs from these cultured COCs/OOXs identified candidate apoptosis- and/or CE-regulating miRNAs. Transfection of COCs/OOXs with miRNA mimic or inhibitor validated that miR-212-5p and 149-5p promoted CE by facilitating Has2 expression; miR-31-5p and 27a-3p promoted CE by increasing both Has2 and Ptx3 expression; and miR-351-5p and 503-5p inhibited CE by suppressing Ptx3 expression. Furthermore, miR-212-5p, 149-5p and Nov798 inhibited CC apoptosis, involving both Bcl2/Bax and Fas signaling. Analysis using in vivo matured COCs further verified the above apoptosis- and/or CE-regulating miRNAs, except for miR-149-5p. In conclusion, this study identified and validated new CE- and apoptosis-regulating miRNAs in CCs, which could be used as biomarkers to select competent oocytes/embryos and for elucidating how the oocyte-derived factors regulate CE and CC apoptosis.

6.
Int J Biol Macromol ; 195: 530-537, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34920063

RESUMO

Luminescent hydrogels show extensive applications in many fields because of their excellent optical properties. Although there are many matrixes used to prepare luminescent hydrogels, the synthesis of protein-based luminescent hydrogels is still urgently needed to explore due to their good biodegradability and biocompatibility. In this work, a color-tunable, self-healing protein-based luminescent hydrogel consisting of bovine serum albumin (BSA) and lanthanide complexes is prepared via reductant-triggered gelation. Firstly, a bifunctional organic ligand named 4-(phenylsulfonyl)-pyridine-2,6-dicarboxylic acid (4-PSDPA) is synthesized, which can react with thiol groups and effectively sensitize the luminescence of Eu3+ and Tb3+ ions. Then, the BSA is treated with a reducing agent tris(2-carboxyethyl)phosphine (TCEP) to produce thiol groups. And the newly formed thiol groups can re-match to form disulfide bonds between two BSA molecules or react with Ln(4-PSDPA)3 complexes, resulting in the formation of an albumin-based luminescent hydrogel. Furthermore, the self-healing, biodegradability and biocompatibility of albumin-based hydrogels have also been demonstrated. We expect that the newly developed multifunctional protein-based hydrogels will find potential applications in the fields of biomedical engineering and optical devices.

7.
Epigenomics ; 14(2): 81-100, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34913398

RESUMO

Aim: To explore potential abnormal epigenetic modifications and immune-cell infiltration in tissues from systemic lupus erythematosus (SLE) patients. Materials & methods: To utilize bioinformatics analysis and 'wet lab' methods to identify and verify differentially expressed genes in multiple targeted organs in SLE. Results: Seven key genes, IFI44, IFI44L, IFIT1, IFIT3, PLSCR1, RSAD2 and OAS2, which are regulated by epigenetics and may be involved in the pathogenesis of SLE, are identified by combined long noncoding RNA-miRNA-mRNA network analysis and DNA methylation analysis. The results of quantitative reverse transcription PCR, immunohistochemistry and DNA methylation analysis confirmed the potential of these genes as biomarkers. Conclusion: This study reveals the potential mechanisms in SLE from epigenetic modifications and immune-cell infiltration, providing diagnostic biomarkers and therapeutic targets for SLE.

8.
J Colloid Interface Sci ; 607(Pt 2): 1362-1372, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34583041

RESUMO

Lead (Pb) species trigger serious poisoning of selective catalytic reduction (SCR) catalysts. To improve the Pb resistance ability, revealing the impact mechanism of Pb species on the commercial SCR catalysts from a molecular level is of great significance. Herein, first-principles calculations were applied to unveil the Pb adsorption mechanism on the vanadium-based catalysts, the results were also compared with the previous experimental findings. The intrinsic interaction mechanism between Pb and catalyst components was interpreted by clarifying the change of the catalyst electronic structures (including charge transfer, bond formation situations, and active sites reactivities). It is found that the adsorption of Pb species belongs to chemisorption, evident electron transfer with the catalyst surface is inspected and intense charge transfer indicates strong adsorption. A remarkable interaction with the V = O active sites occurs and stable Pb-O bonds are formed, which significantly changes the electronic structures of the V = O sites and inhibits the NH3 adsorption, thus suppressing the SCR activity. Finally, thermodynamic analysis was applied to elucidate the temperature influence on Pb adsorption. It is found that Pb adsorption on catalysts cannot proceed spontaneously over 500 K. At higher temperatures the adsorption is inhibited and the Pb species become less stable, which partially explains why the Pb-poisoning effect at high temperatures is relatively moderate than that at low temperatures.


Assuntos
Amônia , Vanádio , Adsorção , Catálise , Oxirredução
9.
J Pharm Biomed Anal ; 207: 114432, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34715580

RESUMO

The traditional Chinese medicine syndrome "Kidney yang deficiency" is a kind of chronic kidney disease. With the development of society, the incidence of chronic kidney disease is increasing year by year, which also brings great economic pressure to people. Semen Cuscutae is an important traditional Chinese medicine to tonify liver and kidney, mainly used to tonify deficiency of liver and kidney, spleen and kidney deficiency and diarrhea. Although there are a lot of research at the molecular and cellular level to study the Semen Cuscutae on the treatment of Kidney yang deficiency syndrome, but there's no comprehensive research complete with metabolomics method from plasma, feces and urine metabolites aspects. The purpose of this study is to find the potential differential biomarkers of the Kidney yang deficiency model and blank group rats in plasma, urine and feces, and to investigate the mechanism of Semen Cuscutae in the treatment of Kidney yang deficiency syndrome. In this study, ultra high-performance liquid chromatography-quadrupole time-of-flight Mass Spectrometry (UPLC-QTOF/MS) was used to identify potential biomarkers. Through the analysis of metabolic profiles of plasma, urine, and feces, as well as multivariate statistical analysis and pathway analysis, the therapeutic mechanism of Semen Cuscutae for Kidney yang deficiency syndrome was described. The results showed that there were 69 differential metabolites in plasma, 93 differential metabolites in feces and 62 differential metabolites in urine, and the changes of the levels of these biomarkers showed that Semen Cuscutae had a good therapeutic effect on Kidney yang deficiency syndrome. Through the analysis of the channel, the metabolite changes mainly affected the steroid hormone biosynthesis, arachidonic acid metabolism, primary bile acid biosynthesis, sheath lipid metabolism and biosynthesis of tyrosine, phenylalanine metabolism, retinol metabolism,taurine and hypotaurine metabolism, lysine degradation and vitamin B6 metabolism, tryptophan metabolism, terpenoid backbone biosynthesis and starch and sucrose metabolism. Therefore, the results suggested that Semen Cuscutae could exert a good therapeutic effect by reversing the levels of some biomarkers.


Assuntos
Metabolômica , Sêmen , Animais , Cromatografia Líquida de Alta Pressão , Rim , Espectrometria de Massas , Ratos
10.
Food Chem ; 367: 130738, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34384978

RESUMO

A homogeneous galactoglucan was purified from the alkali-extracted polysaccharides from the basidioma of Macrolepiota albuminosa by gradient ethanol precipitation, whose proposed structure was given for the first time. Results showed it had a molecular weight of 210 kDa, and mainly consisted of glucose and galactose. There were abundant filaments, randomly distributed sheet-like and flaky appearance in its surface by SEM observation. Its backbone comprised ß-(1 â†’ 6)-Glcp, α-(1 â†’ 6)-Galp and ß-(1 â†’ 3,6)-Glcp residues at 4:1:1, terminated by ß-(1 â†’ 3)-Glcp and T-Glcp residues. Rheological measurements suggested its steady flow behavior was highly dependent on concentrations. Newtonian behavior was evident at low concentrations, whereas pseudoplastic behavior was observed at high concentrations. Besides, the X-ray diffraction patterns proved the presence of amorphous structure. The conformational parameters were detected by HPSEC-MALLS-RI, revealing a random coil conformation in NaNO3 aqueous solution. This work provides a theoretical basis for the application of polysaccharides from M. albuminosa in food- and drug-based therapies.


Assuntos
Galactanos , Polissacarídeos Bacterianos , Glucanos , Peso Molecular , Polissacarídeos
11.
Food Chem ; 368: 130772, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34399182

RESUMO

Macrolepiota albuminosa (Berk.) Pegler is abundant in active polysaccharides, but little is known about their structures and solution properties. In this study, water-extracted polysaccharides from M. albuminosa (MAWP) were purified into three fractions with structural heterogeneity, which was attributed to the diversity in molecular weight, monosaccharide composition and linkage patterns, further affecting their solution properties. Methylation and NMR analysis revealed MAWP-60p and MAWP-70 were a 3-O-methylated glucomannogalactan and a previously unreported glucomannogalactan, whereas MAWP-80 was elucidated as a branched galactoglucan. Besides, three fractions exhibited random coil conformation in aqueous solution, while MAWP-60p had the highest viscosity due to its highest molecular weight, mean square radius of gyration (Rg) and O-methyl group attached to the backbone. The molecular weight, monosaccharide composition and glycosidic linkages might be the major contributors to the flexibility, molecular size and stereochemistry of mushroom polysaccharide chains.


Assuntos
Agaricales , Polissacarídeos , Carboidratos da Dieta , Peso Molecular , Monossacarídeos , Viscosidade
12.
Bioresour Technol ; 344(Pt A): 126117, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34653631

RESUMO

Fucoxanthin (Fx) has gained a growing attention due to the remarkable biological activities. The limited biomass of was the restrictive factor for Fx production in Phaeodactylum tricornutum. In this study, Laminaria japonica hydrolysate (LPH) with a low addition proportion of 1.5 ml/L, was proved to promote fucoxanthin accumulation and cell growth simultaneously. Fx topped at 27.9 mg/L after 10-d cultivation in the LPH group, with a biomass of 1.59 g/L and a Fx content of 17.55 mg/g. Three key plant hormones in LPH were screened responsible for promoting fucoxanthin accumulation. Transcriptomic analysis and qRT-PCR results showed that genes related to Fx formation were generally up- regulated. The study demonstrated that LPH addition was a feasible and efficient strategy to enhance production of fucoxanthin, facilitating the scale-up production of Fx in autotrophic culture.


Assuntos
Diatomáceas , Laminaria , Biomassa , Diatomáceas/genética , Xantofilas
13.
Acta Crystallogr D Struct Biol ; 77(Pt 12): 1614-1623, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866616

RESUMO

Akkermansia muciniphila, an anaerobic Gram-negative bacterium, is a major intestinal commensal bacterium that can modulate the host immune response. It colonizes the mucosal layer and produces nutrients for the gut mucosa and other commensal bacteria. It is believed that mucin desulfation is the rate-limiting step in the mucin-degradation process, and bacterial sulfatases that carry out mucin desulfation have been well studied. However, little is known about the structural characteristics of A. muciniphila sulfatases. Here, the crystal structure of the premature form of the A. muciniphila sulfatase AmAS was determined. Structural analysis combined with docking experiments defined the critical active-site residues that are responsible for catalysis. The loop regions I-V were proposed to be essential for substrate binding. Structure-based sequence alignment and structural superposition allow further elucidation of how different subclasses of formylglycine-dependent sulfatases (FGly sulfatases) adopt the same catalytic mechanism but exhibit diverse substrate specificities. These results advance the understanding of the substrate-recognition mechanisms of A. muciniphila FGly-type sulfatases. Structural variations around the active sites account for the different substrate-binding properties. These results will enhance the understanding of the roles of bacterial sulfatases in the metabolism of glycans and host-microbe interactions in the human gut environment.

14.
J Nanobiotechnology ; 19(1): 451, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34961540

RESUMO

BACKGROUND: Hypoxia is a major contributor to global kidney diseases. Targeting hypoxia is a promising therapeutic option against both acute kidney injury and chronic kidney disease; however, an effective strategy that can achieve simultaneous targeted kidney hypoxia imaging and therapy has yet to be established. Herein, we fabricated a unique nano-sized hypoxia-sensitive coassembly (Pc/C5A@EVs) via molecular recognition and self-assembly, which is composed of the macrocyclic amphiphile C5A, the commercial dye sulfonated aluminum phthalocyanine (Pc) and mesenchymal stem cell-excreted extracellular vesicles (MSC-EVs). RESULTS: In murine models of unilateral or bilateral ischemia/reperfusion injury, MSC-EVs protected the Pc/C5A complex from immune metabolism, prolonged the circulation time of the complex, and specifically led Pc/C5A to hypoxic kidneys via surface integrin receptor α4ß1 and αLß2, where Pc/C5A released the near-infrared fluorescence of Pc and achieved enhanced hypoxia-sensitive imaging. Meanwhile, the coassembly significantly recovered kidney function by attenuating cell apoptosis, inhibiting the progression of renal fibrosis and reducing tubulointerstitial inflammation. Mechanistically, the Pc/C5A coassembly induced M1-to-M2 macrophage transition by inhibiting the HIF-1α expression in hypoxic renal tubular epithelial cells (TECs) and downstream NF-κB signaling pathway to exert their regenerative effects. CONCLUSION: This synergetic nanoscale coassembly with great translational potential provides a novel strategy for precise kidney hypoxia diagnosis and efficient kidney injury treatment. Furthermore, our strategy of coassembling exogenous macrocyclic receptors with endogenous cell-derived membranous structures may offer a functional platform to address multiple clinical needs.

16.
Crit Rev Anal Chem ; : 1-30, 2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-34955065

RESUMO

Nicotine is a significant evaluation index of tobacco and its related products' quality, but nicotine overdose can pose serious health hazards and cause addiction and dependence, thus it can be seen that it is necessary to find suitable and efficient detection methods to precisely detect nicotine in diverse samples and complex matrices. In this review, an updated summary of the latest trends in pretreatment and analytical techniques for nicotine is provided. We reviewed various sample pretreatment methods, such as solid phase extraction, solid phase microextraction, liquid phase microextraction, QuEChERS, etc., and diverse nicotine assay methods including liquid chromatography, gas chromatography, electrochemical sensors, etc., focusing on the developments since 2015. Furthermore, the recent progress in the applications and applicability of these techniques as well as our prospects for future developments are discussed. HighlightsUpdated pretreatment and analysis methods of nicotine were systematically summarized.Microextraction and automation were main development trends of nicotine pretreatment.The introduction of novel materials added luster to nicotine pretreatment.The evolutions of ion source and mass analyzer were emphasized.

17.
Front Cardiovasc Med ; 8: 773314, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957257

RESUMO

Various stresses, including pressure overload and myocardial stretch, can trigger cardiac remodeling and result in heart diseases. The disorders are associated with high risk of morbidity and mortality and are among the major health problems in the world. MicroRNAs, a class of ~22nt-long small non-coding RNAs, have been found to participate in regulating heart development and function. One of them, miR-208a, a cardiac-specific microRNA, plays key role(s) in modulating gene expression in the heart, and is involved in a broad array of processes in cardiac pathogenesis. Genetic deletion or pharmacological inhibition of miR-208a in rodents attenuated stress-induced cardiac hypertrophy and remodeling. Transgenic expression of miR-208a in the heart was sufficient to cause hypertrophic growth of cardiomyocytes. miR-208a is also a key regulator of cardiac conduction system, either deletion or transgenic expression of miR-208a disturbed heart electrophysiology and could induce arrhythmias. In addition, miR-208a appeared to assist in regulating the expression of fast- and slow-twitch myofiber genes in the heart. Notably, this heart-specific miRNA could also modulate the "endocrine" function of cardiac muscle and govern the systemic energy homeostasis in the whole body. Despite of the critical roles, the underlying regulatory networks involving miR-208a are still elusive. Here, we summarize the progress made in understanding the function and mechanisms of this important miRNA in the heart, and propose several topics to be resolved as well as the hypothetical answers. We speculate that miR-208a may play diverse and even opposite roles by being involved in distinct molecular networks depending on the contexts. A deeper understanding of the precise mechanisms of its action under the conditions of cardiac homeostasis and diseases is needed. The clinical implications of miR-208a are also discussed.

18.
Front Immunol ; 12: 777502, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925350

RESUMO

Background: Immune-mediated necrotizing myopathy (IMNM) is characterized by markedly elevated creatinine kinase and histologically scattered necrotic muscle fibers and generally associated with autoantibodies against signal recognition particle (SRP) or 3-hydroxy-3-methylglutaryl-coA-reductase (HMGCR). Poor clinical response to conventional therapies and relapses commonly occur in severe cases. Anti-B-cell therapies have been used in refractory/relapsing cases. Methods: The characteristics of a patient with IMNM associated with anti-SRP antibodies including physical examination, laboratory tests, and disease activity assessment were evaluated. Conventional therapy, belimumab treatment schedule, and follow-up data were recorded. Medical records of IMNM patients treated in our department from September 2014 to June 2021 were reviewed to evaluate the efficacy and safety of anti-B-cell therapy for anti-SRP IMNM. A literature review of patients with anti-SRP IMNM treated with anti-B-cell therapies was performed. Results: We describe a case of a 47-year-old woman with IMNM associated with anti-SRP antibodies who relapsed twice after conventional therapy but showed good response and tolerance to belimumab at 28 weeks follow-up. In this review, three patients from our department were treated with rituximab. Two of the three patients rapidly improved after treatment. Twenty patients and five retrospective studies were included in the literature review. All patients were administered rituximab as an anti-B-cell drug. Conclusion: Despite a lack of rigorous clinical trials, considerable experience demonstrated that anti-B-cell therapy might be effective for patients with IMNM associated with anti-SRP antibodies. Belimumab in association with steroids might be an encouraging option for refractory/relapsing cases.

19.
Artigo em Inglês | MEDLINE | ID: mdl-34922017

RESUMO

Vibrio mimicus (V. mimicus) is a pathogen causing serious vibriosis in aquatic animals. Hepcidin and ß-Defensin1 are two important antibacterial peptides (AMPs) with broad-spectrum antibacterial activity in fish. In mammals, some evidences demonstrated that interleukin-1ß (IL-1ß) primarily promote AMPs expression via activating classical NF-κB pathway, but it still remains unclear in fish. Here, the temporal and spatial expression patterns of grass carp IL-1ß (gcIL-1ß) gene and two AMPs genes (gchepcidin and gcß-defensin1) in tissues post-V. mimicus infection and anti-V. mimicus activity of these two AMPs in vitro were detected, showing that V. mimicus infection significantly elevated the mRNA levels of these three genes in the immune-related tissues although their expression patterns were not entirely consistent, and both gcHepcidin and gcß-Defensin1 possessed anti-V. mimicus activity in vitro. Subsequently, the recombinant gcIL-1ß (rgcIL-1ß) was expressed prokaryotically in an inclusion body, which could promote proliferation of grass carp head kidney leukocytes (gcHKLs) and enhance respiratory burst activity and phagocytic activity of head kidney macrophages. Stimulation with rgcIL-1ß was able to significantly regulate the mRNA expression of key regulatory genes (il-1RI, traf6, tak1, ikkß, iκBα and p65) involved in the activation of classical NF-κB pathway, and then induce gcTAK1 phosphorylation, promote gcp65 nuclear translocation and enhance endogenous gcIL-1ß expression at both mRNA and protein levels, implying NF-κB pathway was activated. More importantly, exogenous rgcIL-1ß stimulation also significantly up-regulated both gcHepcidin and gcß-Defensin1 mRNA levels against V. mimicus, and the regulatory effect was blocked or inhibited by NF-κB inhibitor PDTC. Taken together, our results demonstrated for the first time that grass carp IL-1ß stimulation could significantly enhance the expression of these two anti-V.mimicus AMPs via activating classical NF-κB pathway.

20.
Biomater Sci ; 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34904598

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial joint hyperplasia, joint inflammation, cartilage erosion and bone destruction. Macrophages play an essential role in the pathogenesis of RA, and folate receptor ß (FR-ß) is highly expressed on the surface of activated synovial macrophages in RA patients. Triptolide (TP) has anti-inflammatory properties, and it can protect the cartilage matrix, but its clinical application has been limited due to poor solubility, low bioavailability and systemic toxicity. Therefore, we constructed folate-modified triptolide liposomes (FA-TP-Lips) to target macrophages, thereby treating RA in a safe and effective way. The experiments indicated that FA-TP-Lips had properties of small particle size, uniform particle size distribution, high drug encapsulation and long circulation. Furthermore, FA-TP-Lips showed reduced cytotoxicity, increased cellular uptake and significant anti-inflammatory effects in vitro. It also inhibited osteoclastogenesis. In vivo experiments revealed that liposomes could prolong the circulation of TP in the body, as well as exhibit significant cartilage-protective and anti-inflammatory effects with lower toxicity compared with the free TP group, thereby providing a promising new approach for the treatment of RA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...