Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 186: 338-349, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391563

RESUMO

Emotion regulation deficits are commonly observed in social anxiety disorder (SAD). We used manifold-learning to learn the phase-space connectome manifold of EEG brain dynamics in twenty SAD participants and twenty healthy controls. The purpose of the present study was to utilize manifold-learning to understand EEG brain dynamics associated with emotion regulation processes. Our emotion regulation task (ERT) contains three conditions: Neutral, Maintain and Reappraise. For all conditions and subjects, EEG connectivity data was converted into series of temporally-consecutive connectomes and aggregated to yield this phase-space manifold. As manifold geodesic distances encode intrinsic geometry, we visualized this space using its geodesic-informed minimum spanning tree and compared neurophysiological dynamics across conditions and groups using the corresponding trajectory length. Results showed that SAD participants had significantly longer trajectory lengths during Neutral and Maintain. Further, trajectory lengths during Reappraise were significantly associated with the habitual use of reappraisal strategies, while Maintain trajectory lengths were significantly associated with the negative affective state during Maintain. In sum, an unsupervised connectome manifold-learning approach can reveal emotion regulation associated phase-space features of brain dynamics.


Assuntos
Encéfalo/fisiopatologia , Conectoma/métodos , Eletroencefalografia , Emoções/fisiologia , Fobia Social/fisiopatologia , Adulto , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Aprendizado de Máquina não Supervisionado , Adulto Jovem
2.
Front Psychiatry ; 9: 365, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30150944

RESUMO

Connectomics is a framework that models brain structure and function interconnectivity as a network, rather than narrowly focusing on select regions-of-interest. MRI-derived connectomes can be structural, usually based on diffusion-weighted MR imaging, or functional, usually formed by examining fMRI blood-oxygen-level-dependent (BOLD) signal correlations. Recently, we developed a novel method for assessing the hierarchical modularity of functional brain networks-the probability associated community estimation (PACE). PACE uniquely permits a dual formulation, thus yielding equivalent connectome modular structure regardless of whether positive or negative edges are considered. This method was rigorously validated using the 1,000 functional connectomes project data set (F1000, RRID:SCR_005361) (1) and the Human Connectome Project (HCP, RRID:SCR_006942) (2, 3) and we reported novel sex differences in resting-state connectivity not previously reported. (4) This study further examines sex differences in regard to hierarchical modularity as a function of age and clinical correlates, with findings supporting a basal configuration framework as a more nuanced and dynamic way of conceptualizing the resting-state connectome that is modulated by both age and sex. Our results showed that differences in connectivity between men and women in the 22-25 age range were not significantly different. However, these same non-significant differences attained significance in both the 26-30 age group (p = 0.003) and the 31-35 age group (p < 0.001). At the most global level, areas of diverging sex difference include parts of the prefrontal cortex and the temporal lobe, amygdala, hippocampus, inferior parietal lobule, posterior cingulate, and precuneus. Further, we identified statistically different self-reported summary scores of inattention, hyperactivity, and anxiety problems between men and women. These self-reports additionally divergently interact with age and the basal configuration between sexes.

3.
Brain Inform ; 5(2): 7, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30022317

RESUMO

The Nash embedding theorem demonstrates that any compact manifold can be isometrically embedded in a Euclidean space. Assuming the complex brain states form a high-dimensional manifold in a topological space, we propose a manifold learning framework, termed Thought Chart, to reconstruct and visualize the manifold in a low-dimensional space. Furthermore, it serves as a data-driven approach to discover the underlying dynamics when the brain is engaged in a series of emotion and cognitive regulation tasks. EEG-based temporal dynamic functional connectomes are created based on 20 psychiatrically healthy participants' EEG recordings during resting state and an emotion regulation task. Graph dissimilarity space embedding was applied to all the dynamic EEG connectomes. In order to visualize the learned manifold in a lower dimensional space, local neighborhood information is reconstructed via k-nearest neighbor-based nonlinear dimensionality reduction (NDR) and epsilon distance-based NDR. We showed that two neighborhood constructing approaches of NDR embed the manifold in a two-dimensional space, which we named Thought Chart. In Thought Chart, different task conditions represent distinct trajectories. Properties such as the distribution or average length in the 2-D space may serve as useful parameters to explore the underlying cognitive load and emotion processing during the complex task. In sum, this framework is a novel data-driven approach to the learning and visualization of underlying neurophysiological dynamics of complex functional brain data.

4.
Neuroimage Clin ; 13: 24-32, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27920976

RESUMO

BACKGROUND: Functional magnetic resonance imaging (fMRI) resting-state studies show generalized social anxiety disorder (gSAD) is associated with disturbances in networks involved in emotion regulation, emotion processing, and perceptual functions, suggesting a network framework is integral to elucidating the pathophysiology of gSAD. However, fMRI does not measure the fast dynamic interconnections of functional networks. Therefore, we examined whole-brain functional connectomics with electroencephalogram (EEG) during resting-state. METHODS: Resting-state EEG data was recorded for 32 patients with gSAD and 32 demographically-matched healthy controls (HC). Sensor-level connectivity analysis was applied on EEG data by using Weighted Phase Lag Index (WPLI) and graph analysis based on WPLI was used to determine clustering coefficient and characteristic path length to estimate local integration and global segregation of networks. RESULTS: WPLI results showed increased oscillatory midline coherence in the theta frequency band indicating higher connectivity in the gSAD relative to HC group during rest. Additionally, WPLI values positively correlated with state anxiety levels within the gSAD group but not the HC group. Our graph theory based connectomics analysis demonstrated increased clustering coefficient and decreased characteristic path length in theta-based whole brain functional organization in subjects with gSAD compared to HC. CONCLUSIONS: Theta-dependent interconnectivity was associated with state anxiety in gSAD and an increase in information processing efficiency in gSAD (compared to controls). Results may represent enhanced baseline self-focused attention, which is consistent with cognitive models of gSAD and fMRI studies implicating emotion dysregulation and disturbances in task negative networks (e.g., default mode network) in gSAD.


Assuntos
Conectoma/métodos , Eletroencefalografia/métodos , Fobia Social/fisiopatologia , Ritmo Teta/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA