Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
J Hazard Mater ; 378: 120720, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31302477


For both fuel cycle design and safety evolution of tritium (T) in fusion reactor, it is important to study irradiation-induced reactions between T2 and various molecular species produced from nuclear-fusion fuel cleanup systems. The radiochemical reactions between deuterium-tritium/tritium and carbon monoxide of different concentrations under 1.0 MPa were elucidated in this work. The products and the process of radiochemical reactions of T2/CO and D2-T2/CO mixed system with different tritium concentrations were analyzed by mass spectrometry and gas chromatography. The evolution of the product composition in 300 min. was monitored at room temperature with a rapid decrease of tritium concentration and pressure. It was found that, in T2/CO and D2-T2/CO mixed system, only tritium was involved in the reaction of CO. Under the ß irradiation of tritium, the reaction products were mainly composed of tritiated formaldehyde (CT2O) and tiny amount of CO2, C(DT)4, C3(DT)8. The concentration of products rose with the increase of CO concentration in reaction system.

ACS Appl Mater Interfaces ; 8(13): 8436-44, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26938272


A highly efficient noble-metal-free catalyst for the oxygen reduction reaction (ORR) is derived from a composite of polyaniline (PANI) and Prussian blue analogue (PBA, Co3[Fe(CN)6]2) by pyrolysis. The composite consists of 2-5 nm PBA nanocrystals homogeneously dispersed in PANI. During the pyrolysis, the PBA nanocrystals serve as both the template for the pore formation and the precursor for the ORR active sites, which results in a nanoporous structure strongly coupled with the ORR active sites. The catalyst exhibits superior ORR performance in both alkaline and acidic electrolyte, comparable to that of the commercial Pt/C with 20 wt % Pt loading.