Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Filtros adicionais











Intervalo de ano
1.
Sci Rep ; 9(1): 14118, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575964

RESUMO

Chronic hepatitis B virus (HBV) infection may follow four different consecutive phases, which are defined by virology as well as biochemical markers and differ in terms of prognosis and need for antiviral treatment. Currently, host responses reflected by immune markers are not considered in this definition. We aimed to study soluble immune markers and their distribution in different phases of chronic HBV infection. In this cross-sectional retrospective study, we investigated a panel of 14 soluble immune markers (SIM) including CXCL10 in 333 patients with chronic HBV infection. In a small cohort of HBeAg positive patients we analyzed SIM before and after HBeAg seroconversion and compared seroconverters to patients with unknown outcome. Significant differences were documented in the levels of several SIM between the four phases of chronic HBV infection. The most pronounced difference among all investigated SIM was observed for CXCL10 concentrations with highest levels in patients with hepatitis. TGF-ß and IL-17 revealed different levels between HBeAg negative patients. HBeAg positive patients with HBeAg seroconversion presented higher amounts of IL-12 before seroconversion compared to HBeAg positive patients with unknown follow up. SIM such as CXCL10 but also IL-12, TGF-ß and IL-17 may be useful markers to further characterize the phase of chronic HBV infection.

2.
Epigenomics ; 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31536415

RESUMO

Aim: Cigarette smoking influences DNA methylation genome wide, in newborns from pregnancy exposure and in adults from personal smoking. Whether a unique methylation signature exists for in utero exposure in newborns is unknown. Materials & methods: We separately meta-analyzed newborn blood DNA methylation (assessed using Illumina450k Beadchip), in relation to sustained maternal smoking during pregnancy (9 cohorts, 5648 newborns, 897 exposed) and adult blood methylation and personal smoking (16 cohorts, 15907 participants, 2433 current smokers). Results & conclusion: Comparing meta-analyses, we identified numerous signatures specific to newborns along with many shared between newborns and adults. Unique smoking-associated genes in newborns were enriched in xenobiotic metabolism pathways. Our findings may provide insights into specific health impacts of prenatal exposure on offspring.

3.
Environ Health Perspect ; 127(5): 57012, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31148503

RESUMO

BACKGROUND: Prenatal exposure to air pollution has been associated with childhood respiratory disease and other adverse outcomes. Epigenetics is a suggested link between exposures and health outcomes. OBJECTIVES: We aimed to investigate associations between prenatal exposure to particulate matter (PM) with diameter [Formula: see text] ([Formula: see text]) or [Formula: see text] ([Formula: see text]) and DNA methylation in newborns and children. METHODS: We meta-analyzed associations between exposure to [Formula: see text] ([Formula: see text]) and [Formula: see text] ([Formula: see text]) at maternal home addresses during pregnancy and newborn DNA methylation assessed by Illumina Infinium HumanMethylation450K BeadChip in nine European and American studies, with replication in 688 independent newborns and look-up analyses in 2,118 older children. We used two approaches, one focusing on single cytosine-phosphate-guanine (CpG) sites and another on differentially methylated regions (DMRs). We also related PM exposures to blood mRNA expression. RESULTS: Six CpGs were significantly associated [false discovery rate (FDR) [Formula: see text]] with prenatal [Formula: see text] and 14 with [Formula: see text] exposure. Two of the [Formula: see text] CpGs mapped to FAM13A (cg00905156) and NOTCH4 (cg06849931) previously associated with lung function and asthma. Although these associations did not replicate in the smaller newborn sample, both CpGs were significant ([Formula: see text]) in 7- to 9-y-olds. For cg06849931, however, the direction of the association was inconsistent. Concurrent [Formula: see text] exposure was associated with a significantly higher NOTCH4 expression at age 16 y. We also identified several DMRs associated with either prenatal [Formula: see text] and or [Formula: see text] exposure, of which two [Formula: see text] DMRs, including H19 and MARCH11, replicated in newborns. CONCLUSIONS: Several differentially methylated CpGs and DMRs associated with prenatal PM exposure were identified in newborns, with annotation to genes previously implicated in lung-related outcomes. https://doi.org/10.1289/EHP4522.

4.
Nat Commun ; 10(1): 1893, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015461

RESUMO

Birthweight is associated with health outcomes across the life course, DNA methylation may be an underlying mechanism. In this meta-analysis of epigenome-wide association studies of 8,825 neonates from 24 birth cohorts in the Pregnancy And Childhood Epigenetics Consortium, we find that DNA methylation in neonatal blood is associated with birthweight at 914 sites, with a difference in birthweight ranging from -183 to 178 grams per 10% increase in methylation (PBonferroni < 1.06 x 10-7). In additional analyses in 7,278 participants, <1.3% of birthweight-associated differential methylation is also observed in childhood and adolescence, but not adulthood. Birthweight-related CpGs overlap with some Bonferroni-significant CpGs that were previously reported to be related to maternal smoking (55/914, p = 6.12 x 10-74) and BMI in pregnancy (3/914, p = 1.13x10-3), but not with those related to folate levels in pregnancy. Whether the associations that we observe are causal or explained by confounding or fetal growth influencing DNA methylation (i.e. reverse causality) requires further research.


Assuntos
Peso ao Nascer/genética , DNA/metabolismo , Epigênese Genética , Genoma Humano , Adolescente , Adulto , Índice de Massa Corporal , Criança , Ilhas de CpG , DNA/genética , Metilação de DNA , Feminino , Desenvolvimento Fetal/genética , Feto , Ácido Fólico/sangue , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/sangue , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Fumar/efeitos adversos , Fumar/sangue , Fumar/genética
5.
Clin Epigenetics ; 11(1): 37, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30819252

RESUMO

BACKGROUND: Ambient air pollution is associated with numerous adverse health outcomes, but the underlying mechanisms are not well understood; epigenetic effects including altered DNA methylation could play a role. To evaluate associations of long-term air pollution exposure with DNA methylation in blood, we conducted an epigenome-wide association study in a Korean chronic obstructive pulmonary disease cohort (N = 100 including 60 cases) using Illumina's Infinium HumanMethylation450K Beadchip. Annual average concentrations of particulate matter ≤ 10 µm in diameter (PM10) and nitrogen dioxide (NO2) were estimated at participants' residential addresses using exposure prediction models. We used robust linear regression to identify differentially methylated probes (DMPs) and two different approaches, DMRcate and comb-p, to identify differentially methylated regions (DMRs). RESULTS: After multiple testing correction (false discovery rate < 0.05), there were 12 DMPs and 27 DMRs associated with PM10 and 45 DMPs and 57 DMRs related to NO2. DMP cg06992688 (OTUB2) and several DMRs were associated with both exposures. Eleven DMPs in relation to NO2 confirmed previous findings in Europeans; the remainder were novel. Methylation levels of 39 DMPs were associated with expression levels of nearby genes in a separate dataset of 3075 individuals. Enriched networks were related to outcomes associated with air pollution including cardiovascular and respiratory diseases as well as inflammatory and immune responses. CONCLUSIONS: This study provides evidence that long-term ambient air pollution exposure impacts DNA methylation. The differential methylation signals can serve as potential air pollution biomarkers. These results may help better understand the influences of ambient air pollution on human health.


Assuntos
Poluição do Ar/análise , Metilação de DNA , Doença Pulmonar Obstrutiva Crônica/genética , Sequenciamento Completo do Genoma/métodos , Idoso , Idoso de 80 Anos ou mais , Poluição do Ar/efeitos adversos , Estudos de Coortes , Metilação de DNA/efeitos dos fármacos , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Material Particulado/análise , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , República da Coreia
6.
J Allergy Clin Immunol ; 143(6): 2062-2074, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30579849

RESUMO

BACKGROUND: Epigenetic mechanisms, including methylation, can contribute to childhood asthma. Identifying DNA methylation profiles in asthmatic patients can inform disease pathogenesis. OBJECTIVE: We sought to identify differential DNA methylation in newborns and children related to childhood asthma. METHODS: Within the Pregnancy And Childhood Epigenetics consortium, we performed epigenome-wide meta-analyses of school-age asthma in relation to CpG methylation (Illumina450K) in blood measured either in newborns, in prospective analyses, or cross-sectionally in school-aged children. We also identified differentially methylated regions. RESULTS: In newborns (8 cohorts, 668 cases), 9 CpGs (and 35 regions) were differentially methylated (epigenome-wide significance, false discovery rate < 0.05) in relation to asthma development. In a cross-sectional meta-analysis of asthma and methylation in children (9 cohorts, 631 cases), we identified 179 CpGs (false discovery rate < 0.05) and 36 differentially methylated regions. In replication studies of methylation in other tissues, most of the 179 CpGs discovered in blood replicated, despite smaller sample sizes, in studies of nasal respiratory epithelium or eosinophils. Pathway analyses highlighted enrichment for asthma-relevant immune processes and overlap in pathways enriched both in newborns and children. Gene expression correlated with methylation at most loci. Functional annotation supports a regulatory effect on gene expression at many asthma-associated CpGs. Several implicated genes are targets for approved or experimental drugs, including IL5RA and KCNH2. CONCLUSION: Novel loci differentially methylated in newborns represent potential biomarkers of risk of asthma by school age. Cross-sectional associations in children can reflect both risk for and effects of disease. Asthma-related differential methylation in blood in children was substantially replicated in eosinophils and respiratory epithelium.

7.
Lancet Respir Med ; 7(4): 336-346, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30584054

RESUMO

BACKGROUND: Epigenetic mechanisms could alter the airway epithelial barrier and ultimately lead to atopic diseases such as asthma. We aimed to identify DNA methylation profiles that are associated with-and could accurately classify-atopy and atopic asthma in school-aged children. METHODS: We did a genome-wide study of DNA methylation in nasal epithelium and atopy or atopic asthma in 483 Puerto Rican children aged 9-20 years, recruited using multistage probability sampling. Atopy was defined as at least one positive IgE (≥0·35 IU/mL) to common aeroallergens, and asthma was defined as a physician's diagnosis plus wheeze in the previous year. Significant (false discovery rate p<0·01) methylation signals were correlated with gene expression, and top CpGs were validated by pyrosequencing. We then replicated our top methylation findings in a cohort of 72 predominantly African American children, and in 432 children from a European birth cohort. Next, we tested classification models based on nasal methylation for atopy or atopic asthma in all cohorts. FINDINGS: DNA methylation profiles were markedly different between children with (n=312) and without (n=171) atopy in the Puerto Rico discovery cohort, recruited from Feb 12, 2014, until May 8, 2017. After adjustment for covariates and multiple testing, we found 8664 differentially methylated CpGs by atopy, with false discovery rate-adjusted p values ranging from 9·58 × 10-17 to 2·18 × 10-22 for the top 30 CpGs. These CpGs were in or near genes relevant to epithelial barrier function, including CDHR3 and CDH26, and in other genes related to airway epithelial integrity and immune regulation, such as FBXL7, NTRK1, and SLC9A3. Moreover, 28 of the top 30 CpGs replicated in the same direction in both independent cohorts. Classification models of atopy based on nasal methylation performed well in the Puerto Rico cohort (area under the curve [AUC] 0·93-0·94 and accuracy 85-88%) and in both replication cohorts (AUC 0·74-0·92, accuracy 68-82%). The models also performed well for atopic asthma in the Puerto Rico cohort (AUC 0·95-1·00, accuracy 88%) and the replication cohorts (AUC 0·82-0·88, accuracy 86%). INTERPRETATION: We identified specific methylation profiles in airway epithelium that are associated with atopy and atopic asthma in children, and a nasal methylation panel that could classify children by atopy or atopic asthma. Our findings support the feasibility of using the nasal methylome for future clinical applications, such as predicting the development of asthma among wheezing infants. FUNDING: US National Institutes of Health.

8.
Eur Respir J ; 52(2)2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29946002

RESUMO

Chronic mucus hypersecretion (CMH) contributes to the morbidity and mortality of asthma, and remains uncontrolled by current therapies in the subset of patients with severe, steroid-resistant disease. Altered cross-talk between airway epithelium and airway smooth muscle cells (ASMCs), driven by pro-inflammatory cytokines such as interleukin (IL)-1ß, provides a potential mechanism that influences CMH. This study investigated mechanisms underlying CMH by comparing IL-1ß-induced gene expression profiles between asthma and control-derived ASMCs and the subsequent paracrine influence on airway epithelial mucus production in vitroIL-1ß-treated ASMCs from asthmatic patients and healthy donors were profiled using microarray analysis and ELISA. Air-liquid interface (ALI)-cultured CALU-3 and primary airway epithelial cells were treated with identified candidates and mucus production assessed.The IL-1ß-induced CCL20 expression and protein release was increased in ASMCs from moderate compared with mild asthmatic patients and healthy controls. IL-1ß induced lower MIR146A expression in asthma-derived ASMCs compared with controls. Decreased MIR146A expression was validated in vivo in bronchial biopsies from 16 asthmatic patients versus 39 healthy donors. miR-146a-5p overexpression abrogated CCL20 release in ASMCs. CCL20 treatment of ALI-cultured CALU-3 and primary airway epithelial cells induced mucus production, while CCL20 levels in sputum were associated with increased levels of CMH in asthmatic patients.Elevated CCL20 production by ASMCs, possibly resulting from dysregulated expression of the anti-inflammatory miR-146a-5p, may contribute to enhanced mucus production in asthma.

9.
Lancet Respir Med ; 6(5): 379-388, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29496485

RESUMO

BACKGROUND: DNA methylation profiles associated with childhood asthma might provide novel insights into disease pathogenesis. We did an epigenome-wide association study to assess methylation profiles associated with childhood asthma. METHODS: We did a large-scale epigenome-wide association study (EWAS) within the Mechanisms of the Development of ALLergy (MeDALL) project. We examined epigenome-wide methylation using Illumina Infinium Human Methylation450 BeadChips (450K) in whole blood in 207 children with asthma and 610 controls at age 4-5 years, and 185 children with asthma and 546 controls at age 8 years using a cross-sectional case-control design. After identification of differentially methylated CpG sites in the discovery analysis, we did a validation study in children (4-16 years; 247 cases and 2949 controls) from six additional European cohorts and meta-analysed the results. We next investigated whether replicated CpG sites in cord blood predict later asthma in 1316 children. We subsequently investigated cell-type-specific methylation of the identified CpG sites in eosinophils and respiratory epithelial cells and their related gene-expression signatures. We studied cell-type specificity of the asthma association of the replicated CpG sites in 455 respiratory epithelial cell samples, collected by nasal brushing of 16-year-old children as well as in DNA isolated from blood eosinophils (16 with asthma, eight controls [age 2-56 years]) and compared this with whole-blood DNA samples of 74 individuals with asthma and 93 controls (age 1-79 years). Whole-blood transcriptional profiles associated with replicated CpG sites were annotated using RNA-seq data of subsets of peripheral blood mononuclear cells sorted by fluorescence-activated cell sorting. FINDINGS: 27 methylated CpG sites were identified in the discovery analysis. 14 of these CpG sites were replicated and passed genome-wide significance (p<1·14 × 10-7) after meta-analysis. Consistently lower methylation levels were observed at all associated loci across childhood from age 4 to 16 years in participants with asthma, but not in cord blood at birth. All 14 CpG sites were significantly associated with asthma in the second replication study using whole-blood DNA, and were strongly associated with asthma in purified eosinophils. Whole-blood transcriptional signatures associated with these CpG sites indicated increased activation of eosinophils, effector and memory CD8 T cells and natural killer cells, and reduced number of naive T cells. Five of the 14 CpG sites were associated with asthma in respiratory epithelial cells, indicating cross-tissue epigenetic effects. INTERPRETATION: Reduced whole-blood DNA methylation at 14 CpG sites acquired after birth was strongly associated with childhood asthma. These CpG sites and their associated transcriptional profiles indicate activation of eosinophils and cytotoxic T cells in childhood asthma. Our findings merit further investigations of the role of epigenetics in a clinical context. FUNDING: EU and the Seventh Framework Programme (the MeDALL project).


Assuntos
Asma/genética , Ilhas de CpG , Metilação de DNA , Eosinófilos/imunologia , Epigênese Genética , Asma/sangue , Criança , Pré-Escolar , DNA/sangue , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Linfócitos T Citotóxicos
10.
J Allergy Clin Immunol ; 141(3): 1105-1114, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28739286

RESUMO

BACKGROUND: Circulating levels of the chitinase-like protein YKL-40 are influenced by genetic variation in its encoding gene (chitinase 3-like 1 [CHI3L1]) and are increased in patients with several diseases, including asthma. Epigenetic regulation of circulating YKL-40 early in life is unknown. OBJECTIVE: We sought to determine (1) whether methylation levels at CHI3L1 CpG sites mediate the association of CHI3L1 single nucleotide polymorphisms (SNPs) with YKL-40 levels in the blood and (2) whether these biomarkers (CHI3L1 SNPs, methylation profiles, and YKL-40 levels) are associated with asthma in early childhood. METHODS: We used data from up to 2405 participants from the Spanish Infancia y Medio Ambiente; the Swedish Barn/Children, Allergy, Milieu, Stockholm, Epidemiological survey; and the Dutch Prevention and Incidence of Asthma and Mite Allergy birth cohorts. Associations between 68 CHI3L1 SNPs, methylation levels at 14 CHI3L1 CpG sites in whole-blood DNA, and circulating YKL-40 levels at 4 years of age were tested by using correlation analysis, multivariable regression, and mediation analysis. Each of these biomarkers was also tested for association with asthma at 4 years of age by using multivariable logistic regression. RESULTS: YKL-40 levels were significantly associated with 7 SNPs and with methylation at 5 CpG sites. Consistent associations between these 7 SNPs (particularly rs10399931 and rs4950928) and 5 CpG sites were observed. Alleles linked to lower YKL-40 levels were associated with higher methylation levels. Participants with high YKL-40 levels (defined as the highest YKL-40 tertile) had increased odds for asthma compared with subjects with low YKL-40 levels (meta-analyzed adjusted odds ratio, 1.90 [95% CI, 1.08-3.36]). In contrast, neither SNPs nor methylation levels at CpG sites in CHI3L1 were associated with asthma. CONCLUSIONS: The effects of CHI3L1 genetic variation on circulating YKL-40 levels are partly mediated by methylation profiles. In our study YKL-40 levels, but not CHI3L1 SNPs or methylation levels, were associated with childhood asthma.

11.
Hum Mol Genet ; 26(20): 4067-4085, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29016858

RESUMO

Pre-pregnancy maternal obesity is associated with adverse offspring outcomes at birth and later in life. Individual studies have shown that epigenetic modifications such as DNA methylation could contribute. Within the Pregnancy and Childhood Epigenetics (PACE) Consortium, we meta-analysed the association between pre-pregnancy maternal BMI and methylation at over 450,000 sites in newborn blood DNA, across 19 cohorts (9,340 mother-newborn pairs). We attempted to infer causality by comparing the effects of maternal versus paternal BMI and incorporating genetic variation. In four additional cohorts (1,817 mother-child pairs), we meta-analysed the association between maternal BMI at the start of pregnancy and blood methylation in adolescents. In newborns, maternal BMI was associated with small (<0.2% per BMI unit (1 kg/m2), P < 1.06 × 10-7) methylation variation at 9,044 sites throughout the genome. Adjustment for estimated cell proportions greatly attenuated the number of significant CpGs to 104, including 86 sites common to the unadjusted model. At 72/86 sites, the direction of the association was the same in newborns and adolescents, suggesting persistence of signals. However, we found evidence for acausal intrauterine effect of maternal BMI on newborn methylation at just 8/86 sites. In conclusion, this well-powered analysis identified robust associations between maternal adiposity and variations in newborn blood DNA methylation, but these small effects may be better explained by genetic or lifestyle factors than a causal intrauterine mechanism. This highlights the need for large-scale collaborative approaches and the application of causal inference techniques in epigenetic epidemiology.


Assuntos
Herança Materna/genética , Obesidade/complicações , Resultado da Gravidez/genética , Adulto , Índice de Massa Corporal , Estudos de Coortes , Metilação de DNA/genética , Epigênese Genética/genética , Epigenômica/métodos , Feminino , Humanos , Recém-Nascido , Masculino , Herança Materna/fisiologia , Mães , Gravidez/fisiologia , Resultado da Gravidez/epidemiologia , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo
12.
Environ Sci Pollut Res Int ; 24(26): 20825-20830, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28803394

RESUMO

With the increasing adoption of EVs (electric vehicles), a large number of waste EV LIBs (electric vehicle lithium-ion batteries) were generated in China. Statistics showed generation of waste EV LIBs in 2016 reached approximately 10,000 tons, and the amount of them would be growing rapidly in the future. In view of the deleterious effects of waste EV LIBs on the environment and the valuable energy storage capacity or materials that can be reused in them, China has started emphasizing the management, reuse, and recycling of them. This paper presented the generation trend of waste EV LIBs and focused on interrelated management development and experience in China. Based on the situation of waste EV LIBs management in China, existing problems were analyzed and summarized. Some recommendations were made for decision-making organs to use as valuable references to improve the management of waste EV LIBs and promote the sustainable development of EVs.


Assuntos
Fontes de Energia Elétrica , Gerenciamento de Resíduos , China , Íons , Lítio , Reciclagem , Gerenciamento de Resíduos/legislação & jurisprudência
13.
BMC Genomics ; 18(1): 25, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056824

RESUMO

BACKGROUND: DNA methylation has been found to associate with disease, aging and environmental exposure, but it is unknown how genome, environment and disease influence DNA methylation dynamics in childhood. RESULTS: By analysing 538 paired DNA blood samples from children at birth and at 4-5 years old and 726 paired samples from children at 4 and 8 years old from four European birth cohorts using the Illumina Infinium Human Methylation 450 k chip, we have identified 14,150 consistent age-differential methylation sites (a-DMSs) at epigenome-wide significance of p < 1.14 × 10-7. Genes with an increase in age-differential methylation were enriched in pathways related to 'development', and were more often located in bivalent transcription start site (TSS) regions, which can silence or activate expression of developmental genes. Genes with a decrease in age-differential methylation were involved in cell signalling, and enriched on H3K27ac, which can predict developmental state. Maternal smoking tended to decrease methylation levels at the identified da-DMSs. We also found 101 a-DMSs (0.71%) that were regulated by genetic variants using cis-differential Methylation Quantitative Trait Locus (cis-dMeQTL) mapping. Moreover, a-DMS-associated genes during early development were significantly more likely to be linked with disease. CONCLUSION: Our study provides new insights into the dynamic epigenetic landscape of the first 8 years of life.


Assuntos
Desenvolvimento Infantil , Metilação de DNA , Epigênese Genética , Epigenômica , Criança , Pré-Escolar , Ilhas de CpG , Epigenômica/métodos , Feminino , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Lactente , Recém-Nascido , Exposição Materna/efeitos adversos , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Locos de Características Quantitativas , Fumar/efeitos adversos
14.
Am J Respir Crit Care Med ; 195(10): 1373-1383, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27901618

RESUMO

RATIONALE: The evidence supporting an association between traffic-related air pollution exposure and incident childhood asthma is inconsistent and may depend on genetic factors. OBJECTIVES: To identify gene-environment interaction effects on childhood asthma using genome-wide single-nucleotide polymorphism (SNP) data and air pollution exposure. Identified loci were further analyzed at epigenetic and transcriptomic levels. METHODS: We used land use regression models to estimate individual air pollution exposure (represented by outdoor NO2 levels) at the birth address and performed a genome-wide interaction study for doctors' diagnoses of asthma up to 8 years in three European birth cohorts (n = 1,534) with look-up for interaction in two separate North American cohorts, CHS (Children's Health Study) and CAPPS/SAGE (Canadian Asthma Primary Prevention Study/Study of Asthma, Genetics and Environment) (n = 1,602 and 186 subjects, respectively). We assessed expression quantitative trait locus effects in human lung specimens and blood, as well as associations among air pollution exposure, methylation, and transcriptomic patterns. MEASUREMENTS AND MAIN RESULTS: In the European cohorts, 186 SNPs had an interaction P < 1 × 10-4 and a look-up evaluation of these disclosed 8 SNPs in 4 loci, with an interaction P < 0.05 in the large CHS study, but not in CAPPS/SAGE. Three SNPs within adenylate cyclase 2 (ADCY2) showed the same direction of the interaction effect and were found to influence ADCY2 gene expression in peripheral blood (P = 4.50 × 10-4). One other SNP with P < 0.05 for interaction in CHS, rs686237, strongly influenced UDP-Gal:betaGlcNAc ß-1,4-galactosyltransferase, polypeptide 5 (B4GALT5) expression in lung tissue (P = 1.18 × 10-17). Air pollution exposure was associated with differential discs, large homolog 2 (DLG2) methylation and expression. CONCLUSIONS: Our results indicated that gene-environment interactions are important for asthma development and provided supportive evidence for interaction with air pollution for ADCY2, B4GALT5, and DLG2.


Assuntos
Poluição do Ar/estatística & dados numéricos , Asma/epidemiologia , Interação Gene-Ambiente , Emissões de Veículos , Asma/genética , Criança , Europa (Continente)/epidemiologia , Feminino , Seguimentos , Humanos , Masculino , América do Norte/epidemiologia , Polimorfismo de Nucleotídeo Único
15.
Guang Pu Xue Yu Guang Pu Fen Xi ; 37(3): 847-52, 2017 Mar.
Artigo em Chinês, Inglês | MEDLINE | ID: mdl-30160397

RESUMO

In the process of spectral modeling, spectral extraction of characteristic bands with different variable screening algorithms is an important step for improving the model effects. Total viable count of cooling mutton under vacuum packing condition was chosen as the research index in this paper, while the influence of 2 variable screening algorithms on its hyperspectral PLS model effects was compared. Mutton muscle spectra of Regions of interest (ROIs) were extracted and preprocessed. Subsequently, Genetic Algorithm (GA) and Competitive Adaptive Reweighted Sampling (CARS) were applied to extract characteristic bands from preprocessed spectra at full band range of 473~1 000 nm. Model effects of GA-PLS, CARS-PLS and W-PLS with corresponding bands selection were contrasted and analyzed. The results indicated that both model effects of GA-PLS, CARS-PLS were better than that of W-PLS, and CARS-PLS model effect was optimal. As for the CARS-PLS model, the determination coefficient (R2c) and root mean square error (RMSEC) of calibration set was 0.96 and 0.29, and the determination coefficient (R2cv) and root mean square error (RMSECV) of leave-one-out cross validation was 0.92 and 0.46, respectively. Meanwhile, the determination coefficient (R2p), root mean square error of prediction (RMSEP) and the ratio of standard deviation to standard error of prediction (RPD) of prediction set was 0.92 and 0.47 and 3.58, respectively. Therefore, hyperspectral imaging (HSI) technology combined with CARS-PLS can achieve quick, non-destructive and accurate detection of mutton total viable count.

16.
Environ Health Perspect ; 125(1): 104-110, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27448387

RESUMO

BACKGROUND: Prenatal exposure to air pollution is considered to be associated with adverse effects on child health. This may partly be mediated by mechanisms related to DNA methylation. OBJECTIVES: We investigated associations between exposure to air pollution, using nitrogen dioxide (NO2) as marker, and epigenome-wide cord blood DNA methylation. METHODS: We meta-analyzed the associations between NO2 exposure at residential addresses during pregnancy and cord blood DNA methylation (Illumina 450K) in four European and North American studies (n = 1,508) with subsequent look-up analyses in children ages 4 (n = 733) and 8 (n = 786) years. Additionally, we applied a literature-based candidate approach for antioxidant and anti-inflammatory genes. To assess influence of exposure at the transcriptomics level, we related mRNA expression in blood cells to NO2 exposure in 4- (n = 111) and 16-year-olds (n = 239). RESULTS: We found epigenome-wide significant associations [false discovery rate (FDR) p < 0.05] between maternal NO2 exposure during pregnancy and DNA methylation in newborns for 3 CpG sites in mitochondria-related genes: cg12283362 (LONP1), cg24172570 (3.8 kbp upstream of HIBADH), and cg08973675 (SLC25A28). The associations with cg08973675 methylation were also significant in the older children. Further analysis of antioxidant and anti-inflammatory genes revealed differentially methylated CpGs in CAT and TPO in newborns (FDR p < 0.05). NO2 exposure at the time of biosampling in childhood had a significant impact on CAT and TPO expression. CONCLUSIONS: NO2 exposure during pregnancy was associated with differential offspring DNA methylation in mitochondria-related genes. Exposure to NO2 was also linked to differential methylation as well as expression of genes involved in antioxidant defense pathways. Citation: Gruzieva O, Xu CJ, Breton CV, Annesi-Maesano I, Antó JM, Auffray C, Ballereau S, Bellander T, Bousquet J, Bustamante M, Charles MA, de Kluizenaar Y, den Dekker HT, Duijts L, Felix JF, Gehring U, Guxens M, Jaddoe VV, Jankipersadsing SA, Merid SK, Kere J, Kumar A, Lemonnier N, Lepeule J, Nystad W, Page CM, Panasevich S, Postma D, Slama R, Sunyer J, Söderhäll C, Yao J, London SJ, Pershagen G, Koppelman GH, Melén E. 2017. Epigenome-wide meta-analysis of methylation in children related to prenatal NO2 air pollution exposure. Environ Health Perspect 125:104-110; http://dx.doi.org/10.1289/EHP36.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Metilação de DNA , Exposição Materna/estatística & dados numéricos , Dióxido de Nitrogênio/análise , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Criança , Feminino , Humanos , Recém-Nascido , Londres , Gravidez
17.
Am J Hum Genet ; 98(4): 680-96, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27040690

RESUMO

Epigenetic modifications, including DNA methylation, represent a potential mechanism for environmental impacts on human disease. Maternal smoking in pregnancy remains an important public health problem that impacts child health in a myriad of ways and has potential lifelong consequences. The mechanisms are largely unknown, but epigenetics most likely plays a role. We formed the Pregnancy And Childhood Epigenetics (PACE) consortium and meta-analyzed, across 13 cohorts (n = 6,685), the association between maternal smoking in pregnancy and newborn blood DNA methylation at over 450,000 CpG sites (CpGs) by using the Illumina 450K BeadChip. Over 6,000 CpGs were differentially methylated in relation to maternal smoking at genome-wide statistical significance (false discovery rate, 5%), including 2,965 CpGs corresponding to 2,017 genes not previously related to smoking and methylation in either newborns or adults. Several genes are relevant to diseases that can be caused by maternal smoking (e.g., orofacial clefts and asthma) or adult smoking (e.g., certain cancers). A number of differentially methylated CpGs were associated with gene expression. We observed enrichment in pathways and processes critical to development. In older children (5 cohorts, n = 3,187), 100% of CpGs gave at least nominal levels of significance, far more than expected by chance (p value < 2.2 × 10(-16)). Results were robust to different normalization methods used across studies and cell type adjustment. In this large scale meta-analysis of methylation data, we identified numerous loci involved in response to maternal smoking in pregnancy with persistence into later childhood and provide insights into mechanisms underlying effects of this important exposure.


Assuntos
Metilação de DNA , Epigênese Genética , Fumar/efeitos adversos , Asma/etiologia , Asma/genética , Criança , Pré-Escolar , Mapeamento Cromossômico , Fenda Labial/etiologia , Fenda Labial/genética , Fissura Palatina/etiologia , Fissura Palatina/genética , Grupo com Ancestrais do Continente Europeu/genética , Feminino , Estudos de Associação Genética , Humanos , Lactente , Recém-Nascido , Gravidez
18.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(9): 2925-9, 2016 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-30084627

RESUMO

Characteristic bands method selection and subsequent spectral extraction has a great influence on the hyperspectral model performance. For rapid and accurate detection of mutton pH value, the effects of 2 band-selection methods on PLS models of mutton pH based on HSI technique were carried out and discussed. Initially, the preprocessing method of second derivative (2D), multiplicative scatter correction (MSC) and mean-centering together was implemented on the representative spectra of mutton muscle portion. Then, 2 methods of synergy interval partial least square (siPLS) and the combination of synergy interval partial least squares with genetic algorithm (siPLS-GA) were used to extract the characteristic bands in the spectral range of 473~1 000 nm. Finally, 2 PLS models of lamb pH value were established with the corresponding characteristic bands, and were also compared with the effect of full-band PLS model. The results indicated that the effect of siPLS-GA-PLS model was the best. As for the siPLS-GA-PLS model, 56 characteristic wavelength points were chosen, the correlation coefficient(Rcal) and root mean square error(RMSEC) of calibration set was 0.96 and 0.043 respectively, and the correlation coefficient(Rp) and root mean square error(RMSEP) of prediction set was 0.96 and 0.048 respectively. Spectral variables were reduced and model accuracy was improved. It can be concluded that characteristic bands selection and rapid and accurate detection of lamb pH can be achieved using hyperspectral imaging technique combined with siPLS-GA method.

19.
Nat Genet ; 47(12): 1449-1456, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26482879

RESUMO

Genetic association studies have identified 21 loci associated with atopic dermatitis risk predominantly in populations of European ancestry. To identify further susceptibility loci for this common, complex skin disease, we performed a meta-analysis of >15 million genetic variants in 21,399 cases and 95,464 controls from populations of European, African, Japanese and Latino ancestry, followed by replication in 32,059 cases and 228,628 controls from 18 studies. We identified ten new risk loci, bringing the total number of known atopic dermatitis risk loci to 31 (with new secondary signals at four of these loci). Notably, the new loci include candidate genes with roles in the regulation of innate host defenses and T cell function, underscoring the important contribution of (auto)immune mechanisms to atopic dermatitis pathogenesis.


Assuntos
Dermatite Atópica/etnologia , Dermatite Atópica/genética , Grupos Étnicos/genética , Loci Gênicos , Marcadores Genéticos/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Estudos de Casos e Controles , Dermatite Atópica/patologia , Humanos , Imunidade Inata/genética , Fatores de Risco , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
20.
Pak J Pharm Sci ; 27(4 Suppl): 983-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25016256

RESUMO

Lectins are the tools for the determination of sugar chain structure. Recently, lectin arrays have become a popular new technology; therefore, lectins with specific sugar-binding properties are required. The objective of the study was to isolate a novel lectin from Pleurotus ferulae mushrooms and characterize its various biological activities. A novel lectin was extracted with deionized water, precipitated from the aqueous extract using 75% saturated (NH4)2SO4, and subjected on DEAE-cellulose followed by affinity chromatography on sepharose-6B. The activity was tested using hemagglutination assays, and carbohydrate-binding specificity was determined by glycan microarray analysis. Its effects on the mitogenic activity of mouse splenocytes were determined by MTT assay. The novel lectin was adsorbed on ion-exchange chromatography DEAE-cellulose and shown as a band with the molecular mass of 17.5 kDa on a SDS-PAGE and as a single 35.0-kDa peak in gel filtration on Superdex G-75. The hemagglutinating activity of the lectin was inhibited by D-glucose, lactose, D-galactose, and galactosamine. The lectin was stable on 60°C. The hemagglutinating activity of lectin was reduced by 50% at 70°C. At 80°C, it was further reduced to 6.25% of its original activity. The hemagglutinating activity was the highest at pH 6-9. Moreover, its hemagglutinating activity was inhibited by Mg2+ and Ca2+ ions. The lectin isolated from P. ferulae in the current study possessed highly potent hemagglutinating and proliferative activities toward mouse splenocytes.


Assuntos
Lectinas/isolamento & purificação , Pleurotus/química , Animais , Feminino , Testes de Hemaglutinação , Lectinas/química , Lectinas/farmacologia , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA