Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.153
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-32227555

RESUMO

Decarboxylative C-H functionalization reactions are highly attractive methods for forging carbon-carbon bonds considering their inherent step- and atom-economical features and the pervasiveness of carboxylic acids and C-H bonds. An ideal approach to achieve these dehydrogenative transformations is through hydrogen evolution without using any chemical oxidants. However, effective coupling of decarboxylative carbon-carbon bond formation with proton reduction remains an unsolved challenge. Herein, we report an electrophotocatalytic approach that merges organic electrochemistry with photocatalysis to achieve efficient direct decarboxylative C-H alkylation and carbamoylation of heteroaromatic compounds through hydrogen evolution. The electrophotocatalytic method, which combines the high efficiency and selectivity of photocatalysis in promoting decarboxylation and electrochemistry in effecting proton reduction, allows efficient coupling of a wide range of heteroaromatic bases with a variety of carboxylic acids and oxamic acids. Advantageously, this method is scalable to decagram scale and applicable to the late-stage functionalization of drug molecules.

2.
Stat Med ; 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32232863

RESUMO

Dengue has been as an endemic with year-round presence in Singapore. In the recent years 2013, 2014, and 2016, there were several severe dengue outbreaks, posing serious threat to the public health. To proactively control and mitigate the disease spread, early warnings of dengue outbreaks, at which there are rapid and large-scale spread of dengue incidences, are extremely helpful. In this study, a two-step framework is proposed to predict dengue outbreaks and it is evaluated based on the dengue incidences in Singapore during 2012 to 2017. First, a generalized additive model (GAM) is trained based on the weekly dengue incidence data during 2006 to 2011. The proposed GAM is a one-week-ahead forecasting model, and it inherently accounts for the possible correlation among the historical incidence data, making the residuals approximately normally distributed. Then, an exponentially weighted moving average (EWMA) control chart is proposed to sequentially monitor the weekly residuals during 2012 to 2017. Our investigation shows that the proposed two-step framework is able to give persistent signals at the early stage of the outbreaks in 2013, 2014, and 2016, which provides early alerts of outbreaks and wins time for the early interventions and the preparation of necessary public health resources. In addition, extensive simulations show that the proposed method is comparable to other potential outbreak detection methods and it is robust to the underlying data-generating mechanisms.

3.
Zhongguo Zhong Yao Za Zhi ; 45(1): 149-156, 2020 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-32237424

RESUMO

In this research, high-throughput sequencing was used to investigate the mechanism of Naoxintong Capsules(NXTC) in prevention of post-ischemic inflammation. First, microglia BV-2 inflammatory model was induced by 1.0 µg·mL~(-1) LPS to investigate the effect of intestinal absorption solution of NXTC(NXTCIA) at different concentrations(62.5, 31.25, 15.63, 7.81 µg·mL~(-1)) on LPS-induced BV-2 inflammatory factors in microglia. Then, an RNA-Seq high-throughput sequencing method was performed to identify the differentially expressed mRNAs in microglia BV-2 after pre-treatment with NXTC. GO and KEGG enrichment analysis was used to screen the potential biological processes and related signaling pathways of NXTC in inhibiting inflammation. The results showed that four NXTCIA concentrations could significantly inhibit the release of LPS-induced inflammatory mediators in BV-2 in a dose-dependent manner. Furthermore, high-throughput sequencing results showed that 392 mRNA transcripts were reversed following pre-treatment with NXTC. GO enrichment analysis showed that the transcripts reversed by NXTC were mainly involved in Toll-like receptor signaling pathway, chemokine signaling pathway, and TNF signaling pathway. Taken together, our findings showed that NXTC treatment could provide protective effects against inflammatory response and the mechanism might be related to the regulation of Toll-like receptor signaling pathway, chemokine signaling pathway, and TNF signaling pathway.

4.
Phys Rev Lett ; 124(7): 070501, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32142314

RESUMO

Twin-field (TF) quantum key distribution (QKD) promises high key rates over long distances to beat the rate-distance limit. Here, applying the sending-or-not-sending TF QKD protocol, we experimentally demonstrate a secure key distribution that breaks the absolute key-rate limit of repeaterless QKD over a 509-km-long ultralow loss optical fiber. Two independent lasers are used as sources with remote-frequency-locking technique over the 500-km fiber distance. Practical optical fibers are used as the optical path with appropriate noise filtering; and finite-key effects are considered in the key-rate analysis. The secure key rate obtained at 509 km is more than seven times higher than the relative bound of repeaterless QKD for the same detection loss. The achieved secure key rate is also higher than that of a traditional QKD protocol running with a perfect repeaterless QKD device, even for an infinite number of sent pulses. Our result shows that the protocol and technologies applied in this experiment enable TF QKD to achieve a high secure key rate over a long distribution distance, and is therefore practically useful for field implementation of intercity QKD.

5.
Artigo em Inglês | MEDLINE | ID: mdl-32157542

RESUMO

Triclosan (TCS), an antimicrobial agent, has been a pollutant of increasing concern owing to its potential health risk on humans and aquatic animals. The present study seeks to test the hypothesis that TCS could alter the oxidative stress-related parameters in the brain and liver, as well as eliciting DNA damage in hepatocytes of adult zebrafish. On the basis of the 96 h LC50 (398.9 µg/L), adult zebrafish were separately exposed to 50, 100, and 150 µg/L TCS for 30 days. The brain and liver tissues from adult zebrafish were excised and assayed for a suite of antioxidant parameters and oxidative stress biomarkers including DNA damage in the liver. The induced effect by TCS on the activity of acetylcholinesterase (AChE) was also analyzed in the brain. Results showed a significant decrease in superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in the brain and liver of adult zebrafish. Also, the contents of the glutathione system (GSH and GSSH), as well as the activity of the glutathione reductase (GR), assayed in the liver, were reduced while the contents of malondialdehyde (MDA) were elevated in the liver. A comet assay revealed dose-dependent DNA damage in zebrafish hepatocytes. The 8-hydroxy-2'-deoxyguanosine (8-OHdG), MDA, and carbonyl protein contents in brain tissues significantly increased. Moreover, the AChE in the zebrafish brain was induced. Apparently, no obvious histological changes in brain tissues of zebrafish were observed compared with those of the control whereas atrophy and necrosis of hepatocytes and increased hepatic plate gap were observed in zebrafish hepatocytes after TCS exposure. The obtained results highlight that sublethal concentrations of TCS may be deleterious to the liver and brain of adult zebrafish upon subchronic exposure.

6.
Int J Mol Med ; 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32186754

RESUMO

Prostaglandin E receptor subtype 4 (EP4) is widely distributed in the heart, but its role in hepatic ischemia/reperfusion (I/R), particularly in mitochondrial permeability transition pore (MPTP) modulation, is yet to be elucidated. In the present study, an EP4 agonist (CAY10598) was used in a rat model to evaluate the effects of EP4 activation on liver I/R and the mechanisms underlying this. I/R insult upregulated hepatic EP4 expression during early reperfusion. In addition, subcutaneous CAY10598 injection prior to the onset of reperfusion significantly increased hepatocyte cAMP concentrations and decreased serum ALT and AST levels and necrotic and apoptotic cell percentages, after 6 h of reperfusion. Moreover, CAY10598 protected mitochondrial morphology, markedly inhibited mitochondrial permeability transition pore (MPTP) opening and decreased liver reactive oxygen species levels. This occurred via activation of the ERK1/2­GSK3ß pathway rather than the janus kinase (JAK)2­signal transducers and activators of transcription (STAT)3 pathway, and resulted in prevention of mitochondria­associated cell injury. The MPTP opener carboxyatractyloside (CATR) and the ERK1/2 inhibitor PD98059 also partially reversed the protective effects of CAY10598 on the liver and mitochondria. The current findings indicate that EP4 activation induces ERK1/2­GSK3ß signaling and subsequent MPTP inhibition to provide hepatoprotection, and these observations are informative for developing new molecular targets and preventative therapies for I/R in a clinical setting.

7.
Sci Total Environ ; 722: 137660, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32179296

RESUMO

High salinity and low temperature are generally considered to have negative effects on the formation, stability and performance of aerobic granular sludge (AGS). This study investigated whether and how salinity acclimation strategies can enhance aerobic granulation at low temperature (12 °C) in three sequencing batch reactors (SBRs). Stepwise increased concentrations of NaCl (2-10 and 4-20 g/L) were added to the influent of R1 and R2 with steps of 1 and 2 g/L per week respectively, while R0 was set as a control (salt-free). The granulation processes in R1 and R2 were rapidly started up within 9 days, and were completed within 21 and 18 days, respectively. By contrast, R0 took 25 days and 49 days to start and complete granulation. The salinity acclimation strategies improved sludge hydrophobicity, reduced repulsion barrier between cells, and stimulated EPS production during granulation processes, which simultaneously promoted the formation of AGS. When the influent salinity reached 14 g/L on day 35, granule hydrophobicity, density and size in R2 sharply decreased and granules began to disintegrate afterwards. When operated under salt-free condition, sludge bulking occurred in R0 since day 60. The treatment performance was thus impaired in these two reactors, especially in R2 with significant biomass loss. Conversely, the AGS developed in R1 maintained stable structure with high biomass concentration (8.0 gSS/L) and excellent treatment performance for COD (90%), ammonium (95%) and total nitrogen (70%). Genera Thauera, Azoarcus, and Nitrosomonas were more enriched, while Flavobacterium and Meganema were more suppressed in R1, which would have contributed to granule stability and treatment performance. In conclusion, great care has to be taken for cultivating and operating AGS at low temperature for treating saline wastewater. Increasing salinity with a lower salt gradient provides a possibility for rapid granulation of AGS with excellent treatment performance under such conditions.

8.
Sci Total Environ ; 723: 137952, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32213405

RESUMO

Epidemiological and animal studies indicate that increased exposure to bisphenol A (BPA) induces various human cardiovascular diseases (CVDs), including myocardial infarction, arrhythmias, dilated cardiomyopathy, atherosclerosis, and hypertension. Bisphenol S (BPS), an alternative to BPA, is increasingly present in various consumer products and human bodies worldwide. Recently, emerging evidence has shown that BPS might be related to cardiovascular disorders. In this review, we present striking evidence of the correlation between BPA exposure and various CVDs, and show that a nonmonotonic dose-response curve (NMDRC) was common in studies of the CV effects of BPA in vivo. The CV impairment induced by low doses of BPA should be highlighted, especially during developmental exposure or during coexposure with other risk factors. Furthermore, we explored the possible underlying mechanisms of these effects-particularly nuclear receptor signaling, ion channels, and epigenetic mechanisms-and the possible participation of lipid metabolism, oxidative stress and cell signaling. As the potential risks of BPA exposure in humans are still noteworthy, studies of BPA in CVDs should be strengthened, especially with respect to the mechanisms, prevention and treatment. Moreover, the potential CV risk of BPS reported by in vivo studies calls for immediate epidemiological investigations and animal studies to reveal the relationships of BPS and other BPA alternatives with human CVDs.

10.
Langmuir ; 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32183512

RESUMO

In this article, the interaction between a designed antimicrobial peptide (AMP) G(IIKK)3I-NH2 (G3) and four typical conventional surfactants (sodium dodecyl sulfonate (SDS), hexadecyl trimethyl ammonium bromide (C16TAB), polyoxyethylene (23) lauryl ether (C12EO23), and tetradecyldimethylamine oxide (C14DMAO)) has been studied through surface tension measurement and circular dichroism (CD) spectroscopy. The antimicrobial activities of AMP/surfactant mixtures have also been studied with Gram-negative Escherichia coli, Gram-positive Staphylococcus aureus, and the fungus Candida albicans. The cytotoxicity of the AMP/surfactant mixtures has also been assessed with NIH 3T3 and human skin fibroblast (HSF) cells. The surface tension data showed that the AMP/SDS mixture was much more surface-active than SDS alone. CD results showed that G3 conformation changed from random coil, to ß-sheet, and then to α-helix with increasing SDS concentration, showing a range of structural transformation driven by the different interactions with SDS. The antimicrobial activity of G3 to Gram-negative and Gram-positive bacteria decreased in the presence of SDS due to the strong interaction of electrostatic attraction between the peptide and the surfactant. The interactions between G3 and C16TAB, C12EO23, and C14DMAO were much weaker than SDS. As a result, the surface tension of surfactants with G3 did not change much, neither did the secondary structures of G3. The antimicrobial activities of G3 were little affected in the presence of C12EO23, slightly improved by C14DMAO, and clearly enhanced by cationic surfactant C16TAB due to its strong cationic and antimicrobial nature, consistent with their surface physical activities as binary mixtures. Although AMP G3 did not show activity to fungus, the mixtures of AMP/C16TAB and AMP/C14DMAO could kill C. albicans at high surfactant concentrations. The mixtures had rather high cytotoxicity to NIH 3T3 and HSF cells although G3 is nontoxic to cells. Cationic AMPs can be formulated with nonionic, cationic, and zwitterionic surfactants during product development, but care must be taken when AMPs are formulated with anionic surfactants, as the strong electrostatic interaction may undermine their antimicrobial activity.

11.
Med Phys ; 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32017124

RESUMO

PURPOSE: Adenoid hypertrophy is a pathological hyperplasia of adenoids and may cause snoring, apnea, and impede breathing during sleep. In clinical practice, radiologists diagnose the severity of adenoid hypertrophy by measuring the ratio of adenoid width (A) to nasopharyngeal width (N) according to the lateral cephalogram, which indicates the locations of four keypoints. The entire diagnostic process is tedious and time-consuming due to the acquisition of A and N. Thus, there is an urgent need to develop computer-aided diagnostic tools for adenoid hypertrophy. METHODS: In this paper, we first propose the use of deep learning to solve the problem of adenoid hypertrophy classification. Deep learning driven by big data has developed greatly in the image processing field. However, obtaining a large amount of training data is hard, making the application of deep learning to medical images more difficult. This paper proposes a keypoint localization method to incorporate more prior information to improve the performance of the model under limited data. Furthermore, we design a novel regularized term called VerticalLoss to capture the vertical relationship between keypoints to provide prior information to strengthen the network performance. RESULTS: To evaluate the performance of our proposed method, we conducted experiments with a clinical dataset from the First Affiliated Hospital of Anhui Medical University consisting of a total of 688 patients. As our results show, we obtained a classification accuracy of 95.6%, a macro F1-score of 0.957, and an average AN ratio error of 0.026. Furthermore, we obtained a macro F1-score of 0.89, a classification accuracy of 94%, and an average AN ratio error of 0.027 while using only half of the data for training. CONCLUSIONS: The study shows that our proposed method can achieve satisfactory results in the task of adenoid hypertrophy classification. Our approach incorporates more prior information, which is especially important in the field of medical imaging, where it is difficult to obtain large amounts of training data.

12.
J Am Chem Soc ; 142(10): 4932-4943, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32079395

RESUMO

Covalent organic frameworks are an emerging class of porous crystalline organic materials that can be designed and synthesized from the bottom up. Despite progress made in synthesizing COFs of diverse topologies, the synthesis methods are often tedious and unscalable, hampering practical applications. Herein, we demonstrate a scalable, robust method of producing highly crystalline acylhydrazone two-dimensional (2D) COFs with diversified structures (six examples) under open and stirred conditions, with growth typically completed in only 30 min. Our strategy involves selecting molecular building blocks that have bond dipole moments with spatial orientations that favor antiparallel stacking and whose structure allows the restriction of intramolecular bond rotation (RIR) via intra- and interlayer hydrogen bonding. This method is widely applicable for hydrazide linkers containing various side-chain functionalities and topicities. By this strategy, the gram-scale synthesis of two highly crystalline COFs (up to 1.4 g yield) was obtained in a one-pot reaction within 30 min.

13.
Gene ; 737: 144446, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32035241

RESUMO

The homeotic complex (Hox) gene Ultrabithorax (Ubx) plays pivotal roles in modifying specific morphological differences among the second (T2), the third thoracic (T3), and the first abdomen (A1) segment in several insects. Whether Ubx regulates wing dimorphism and other morphological traits in the delphacid family (order Hemiptera) remains elusive. In this study, we cloned a full-length Ubx ortholog (NlUbx) from the wing-dimorphic planthopper Nilaparvata lugens, and identified two NlUbx isoforms. RNA-interference (RNAi)-mediated silencing of NlUbx in short-winged BPH nymphs significantly induced the development of wing-like appendages from T3 wingbuds, and this effect is likely mediated by the insulin/insulin-like signaling pathway. RNAi knockdown of NlUbx in long-winged BPH nymphs led to a transformation from hindwings to forewings. Additionally, silencing of NlUbx not only dramatically changed the T3 morphology, but also led to jumping defect of T3 legs. First-instar nymphs derived from parental RNAi had an additional leg-like appendages on A1. These results suggest that Ubx plays a role in determining some morphological traits in delphacid planthoppers, and thus help in understanding evolution of morphological characteristics in arthropods.

14.
Langmuir ; 36(7): 1737-1744, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32009405

RESUMO

The function and properties of peptide-based materials depend not only on the amino acid sequence but also on the molecular conformations. In this paper, we chose a series of peptides Gm(XXKK)nX-NH2 (m = 0, 3; n = 2, 3; X = I, L, and V) as the model molecules and studied the conformation regulation through N-terminus lipidation and their formulation with surfactants. The structural and morphological transition of peptide self-assemblies have also been investigated via transmission electron microscopy, atomic force microscopy, circular dichroism spectroscopy, and small-angle neutron scattering. With the terminal alkylation, the molecular conformation changed from random coil to ß-sheet or α-helix. The antimicrobial activities of alkylated peptide were different. C16-G3(IIKK)3I-NH2 showed antimicrobial activity against Streptococcus mutans, while C16-(IIKK)2I-NH2 and C16-G3(IIKK)2I-NH2 did not kill the bacteria. The surfactant sodium dodecyl sulfonate could rapidly induce the self-assemblies of alkylated peptides (C16-(IIKK)2I-NH2, C16-G3(IIKK)2I-NH2, C16-G3(VVKK)2V-NH2) from nanofibers to micelles, along with the conformation changing from ß-sheet to α-helix. The cationic surfactant hexadecyl trimethyl ammonium bromide made the lipopeptide nanofibers thinner, and nonionic surfactant polyoxyethylene (23) lauryl ether (C12EO23) induced the nanofibers much more intensively. Both the activity and the conformation of the α-helical peptide could be modulated by lipidation. Then, the self-assembled morphologies of alkylated peptides could also be further regulated with surfactants through hydrophobic, electrostatic, and hydrogen-bonding interactions. These results provided useful strategies to regulate the molecular conformations in peptide-based material functionalization.

15.
J Environ Manage ; 260: 109923, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32090794

RESUMO

Eutrophication and associated algal blooms are principal environmental challenges confronting lakes in China, particularly in the Eastern Plains ecoregion. The empirical relationships between nutrient and chlorophyll a (Chla) level and Secchi depth (SD) are widely used as a theoretical basis for lake eutrophication management. However, these relationships are largely influenced by hydromorphological conditions and biogeochemical processes. Thus, there is a need to establish a type-specific understanding of these interactions. In the current study, lakes in the Chinese Eastern Plains ecoregion were subdivided into four lake types according to water retention time (LRT), water depth, and water area. Regression analyses indicated that the impacts of nutrient (total nitrogen, TN; total phosphorus, TP) concentrations on summer Chla were significantly reduced in lakes with high inorganic suspended solids (ISS) (P<0.05). Meanwhile, the decrease in SD in these lakes were found to relate mainly to non-algal turbidity. In lakes characterized by both short LRT and high ISS content, the Chla exhibited limited response to nutrients. In contrast, in lakes with low ISS content and long LRT, the observed slopes of both Chla=f(TP) and SD=f(Chla) were significantly steeper (P < 0.05). The factors limiting summer algal growth and the development of type-specific nutrient criteria (TN and TP) of all four investigated lake types in the Eastern Plains ecoregion are discussed in the context of specific nutrients. Based on these results, we establish type-specific eutrophication assessment equations of TN, TP, Chla, and SD in our study lakes. Our results may provide essential information for achieving the cost-effective eutrophication management of lakes both in the Eastern Plains ecoregion and elsewhere with similar climatic and hydromorphological conditions. Moreover, we believe that the subdivision of lakes to allow type-specific eutrophication management framework may prove valuable for other ecoregions where the interpretation of empirical nutrient-Chla and SD relationships suffer from similar serious limitations.


Assuntos
Clorofila A , Lagos , China , Clorofila , Monitoramento Ambiental , Eutrofização , Nitrogênio , Nutrientes , Fósforo
16.
Plant Physiol ; 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024697

RESUMO

Maintaining the structural integrity of the photosynthetic apparatus during dehydration is critical for effective recovery of photosynthetic activity upon rehydration in a variety of desiccation-tolerant plants, but the underlying molecular mechanism is largely unclear. The subaerial cyanobacterium Nostoc flagelliforme can survive extreme dehydration conditions and quickly recovers its photosynthetic activity upon rehydration. In this study, we found that the expression of the molecular chaperone NfDnaK2 was substantially induced by dehydration, and NfDnaK2 proteins were primarily localized in the thylakoid membrane. NfDnaJ9 was identified to be the co-chaperone partner of NfDnaK2, and their encoding genes shared similar transcriptional responses to dehydration. NfDnaJ9 interacted with the NfFtsH2 protease involved in the degradation of damaged D1 protein. Heterologous expression of NfdnaK2 enhanced PSII repair and drought tolerance in transgenic Nostoc sp. PCC 7120. Furthermore, the nitrate reduction (NarL) / nitrogen fixation (FixJ) family transcription factors, response regulator (NfRre1) and photosynthetic electron transport-dependent regulator (NfPedR) were identified as putative positive regulators capable of binding to the promoter region of NfdnaK2 and they may mediate dehydration-induced expression of NfdnaK2 in N. flagelliforme. Our findings provide novel insights into the molecular mechanism of desiccation tolerance in some xerotolerant microorganisms, which could facilitate future synthetic approaches to the creation of extremophiles in microorganisms and plants.

17.
Mil Med Res ; 7(1): 4, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029004

RESUMO

In December 2019, a new type viral pneumonia cases occurred in Wuhan, Hubei Province; and then named "2019 novel coronavirus (2019-nCoV)" by the World Health Organization (WHO) on 12 January 2020. For it is a never been experienced respiratory disease before and with infection ability widely and quickly, it attracted the world's attention but without treatment and control manual. For the request from frontline clinicians and public health professionals of 2019-nCoV infected pneumonia management, an evidence-based guideline urgently needs to be developed. Therefore, we drafted this guideline according to the rapid advice guidelines methodology and general rules of WHO guideline development; we also added the first-hand management data of Zhongnan Hospital of Wuhan University. This guideline includes the guideline methodology, epidemiological characteristics, disease screening and population prevention, diagnosis, treatment and control (including traditional Chinese Medicine), nosocomial infection prevention and control, and disease nursing of the 2019-nCoV. Moreover, we also provide a whole process of a successful treatment case of the severe 2019-nCoV infected pneumonia and experience and lessons of hospital rescue for 2019-nCoV infections. This rapid advice guideline is suitable for the first frontline doctors and nurses, managers of hospitals and healthcare sections, community residents, public health persons, relevant researchers, and all person who are interested in the 2019-nCoV.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Infecção Hospitalar , Controle de Infecções , Programas de Rastreamento , Equipamento de Proteção Individual , Pneumonia Viral , Antibacterianos/uso terapêutico , Antivirais/uso terapêutico , Betacoronavirus/isolamento & purificação , Betacoronavirus/patogenicidade , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/terapia , Infecções por Coronavirus/transmissão , Infecção Hospitalar/prevenção & controle , Diagnóstico Diferencial , Medicamentos de Ervas Chinesas , Medicina Baseada em Evidências , Hidratação , Humanos , Controle de Infecções/normas , Pulmão/diagnóstico por imagem , Epidemiologia Molecular , Cuidados de Enfermagem , Pneumonia Viral/diagnóstico , Pneumonia Viral/epidemiologia , Pneumonia Viral/etiologia , Pneumonia Viral/terapia , Pneumonia Viral/transmissão
18.
ACS Appl Mater Interfaces ; 12(10): 12155-12164, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053344

RESUMO

Wearable strain sensors are emerging rapidly for their promising applications in human motion detection for diagnosis, healthcare, training instruction, and rehabilitation exercise assessment. However, it remains a bottleneck in gaining comfortable and breathable devices with the features of high sensitivity, linear response, and tunable detection range. Textiles possess fascinating advantages of good breathability, aesthetic property, tailorability, and excellent mechanical compliance to conformably attach to human body. As the meandering loops in a textile can be extended in different directions, it provides plenty of room for exploring ideal sensors by tuning a twisting structure with rationally selected yarn materials. Herein, textile sensors with twisting architecture are designed via a solution-based process by using a stable water-based conductive ink that is composed of polypyrrole/polyvinyl alcohol nanoparticles with a mean diameter of 50 nm. Depending on the predesigned twisting models, the thus-fabricated textile sensors show adjustable performances, exhibiting a high sensitivity of 38.9 with good linearity and a broad detection range of 200%. Such sensors can be integrated into fabrics and conformably attached to skin for monitoring subtle (facial expressions, breathing, and speaking) and large (stretching, jumping, running and jogging, and sign language) human motions. As a proof-of-concept application, by integrating with a wireless transmitter, the signals detected by our sensors during exercise (e.g., running) can be remotely received and displayed on a smartphone. It is believed that the integration of our textile sensors with selected twisting models into a cloth promises full-range motion detection for wearable electronics and human-machine interfaces.

19.
Orthop Surg ; 12(1): 50-57, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31894655

RESUMO

OBJECTIVE: The aim of this meta-analysis was to systematically evaluate the efficacy of augmentative plating (AP) and exchange nailing (EN) in the treatment of nonunion of femoral shaft fracture. METHODS: For the present meta-analysis, PubMed, EMBASE, and the Cochrane Library were searched to identify relevant articles up to April 2019. Two investigators independently evaluated the quality of original publications following the guidelines proposed by the Cochrane Handbook. Data were extracted from the studies and analyzed using Review Manager 5.3. RESULTS: Five studies were included in this meta-analysis, with a total of 506 patients. There were 232 patients in the AP group and 276 patients in the EN group. The AP group was associated with higher union rate (OR, 11.66; 95% CI, 4.31-31.50; P < 0.01), shorter union time (SMD, -1.10; 95% CI, -2.09 to -0.11; P = 0.03), shorter operation time (SMD, -0.55; 95% CI, -0.88 to -0.21; P < 0.01), less blood loss (SMD, -1.72; 95% CI, -3.33 to -0.11; P < 0.01), and fewer complications (OR, -0.11; 95% CI, -0.16 to -0.07; P < 0.01) than the EN group. CONCLUSION: The results of the meta-analysis showed that AP is found to be superior for nonunion of femoral shaft fractures in both intraoperatively (ie, shorter operation time and less blood loss) and postoperatively (ie, higher union rate, shorter union time, and lower complication rate). Overall, AP was superior to EN in the treatment of nonunion of femoral shaft fractures after intramedullary nailing (IMN).

20.
Nutrients ; 12(2)2020 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-31991934

RESUMO

This study aimed to investigate the effect of sesamol (SEM) on the protein kinase A (PKA) pathway in obesity-related hepatic steatosis treatment by using high-fat diet (HFD)-induced obese mice and a palmitic acid (PA)-treated HepG2 cell line. SEM reduced the body weight gain of obese mice and alleviated related metabolic disorders such as insulin resistance, hyperlipidemia, and systemic inflammation. Furthermore, lipid accumulation in the liver and HepG2 cells was reduced by SEM. SEM downregulated the gene and protein levels of lipogenic regulator factors, and upregulated the gene and protein levels of the regulator factors responsible for lipolysis and fatty acid ß-oxidation. Meanwhile, SEM activated AMP-activated protein kinase (AMPK), which might explain the regulatory effect of SEM on fatty acid ß-oxidation and lipogenesis. Additionally, the PKA-C and phospho-PKA substrate levels were higher after SEM treatment. Further research found that after pretreatment with the PKA inhibitor, H89, lipid accumulation was increased even with SEM administration in HepG2 cells, and the effect of SEM on lipid metabolism-related regulator factors was abolished by H89. In conclusion, SEM has a positive therapeutic effect on obesity and obesity-related hepatic steatosis by regulating the hepatic lipid metabolism mediated by the PKA pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA