Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35514211

RESUMO

BACKGROUND: Downy mildew, a devastating disease of cucurbitaceous crops caused by Pseudoperonospora cubensis. Although a variety of fungicides are used to control downy mildew, choosing an effective product can be challenging. Environmental stimulus-responsive pesticide delivery systems have great potential to improve the effectiveness of disease and pest control and reduce the impact on environmentally beneficial organisms. RESULTS: In this work, a disulfide bond (SS)-modified and chitosan oligosaccharide (COS)-capped hollow mesoporous silica (HMS) pesticide delivery system was synthesized using a hard template method for the control of downy mildew in cucurbit crops. The synthesized nanoparticles were loaded with dimethomorph (DMM), denoted as DMM@HMS-SS-COS, and the developmental toxicity of these nanoparticles to zebrafish embryos were evaluated. The results showed that the prepared DMM@HMS-SS-COS exhibited excellent dual response properties to pH and glutathione (GSH), with an encapsulation rate of up to 24.36%. DMM@HMS-SS-COS has good ultraviolet (UV) radiation stability and adhesion properties. Compared with dimethomorph suspension concentrate (SC), DMM@HMS-SS-COS was more effective against downy mildew for up to 21 days. Toxicity tests showed that DMM@HMS-SS-COS significantly reduced the effect of DMM on the hatching rate and survival rate of zebrafish embryos. CONCLUSIONS: This work not only demonstrates that DMM@HMS-SS-COS could be used as a nanodelivery system for intelligent control of downy mildew but also emphasizes the necessity of increasing the acute toxicity of nanoformulations to nontarget organisms in environmental risk assessment. This article is protected by copyright. All rights reserved.

2.
Anal Bioanal Chem ; 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508646

RESUMO

Appropriate sample preparation is one of the most critical steps in mass spectrometry imaging (MSI), which is closely associated with reproducible and reliable images. Despite that model insects and organisms have been widely used in various research fields, including toxicology, drug discovery, disease models, and neurobiology, a systematic investigation on sample preparation optimization for MSI analysis has been relatively rare. Unlike mammalian tissues with satisfactory homogeneity, freezing sectioning of the whole body of insects is still challenging because some insect tissues are hard on the outside and soft on the inside, especially for some small and fragile insects. Herein, we systematically investigated the sample preparation conditions of various insects and model organisms, including honeybees (Apis cerana), oriental fruit flies (Bactrocera dorsalis), zebrafish (Danio rerio), fall armyworms (Spodoptera frugiperda), and diamondback moths (Plutella xylostella), for MSI. Three cutting temperatures, four embedding agents, and seven thicknesses were comprehensively investigated to achieve optimal sample preparation protocols for MSI analysis. The results presented herein indicated that the optimal cutting temperature and embedding agent were -20 °C and gelatin, respectively, providing better tissue integrity and less mass spectral interference. However, the optimal thickness for different organisms can vary with each individual. Using this optimized protocol, we exploited the potential of MSI for visualizing the tissue-specific distribution of endogenous lipids in four insects and zebrafish. Taken together, this work provides guidelines for the optimized sample preparation of insects and model organisms, facilitating the expansion of the potential of MSI in the life sciences and environmental sciences.

3.
ACS Omega ; 7(17): 14807-14819, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35557677

RESUMO

In this work, an enzyme-responsive nanovehicle for improving captan (CAP) contact fungicide bioactivity and translocation in plant tissues was synthesized (CAP-MSNs-ß-glucan) by attaching ß-glucan to the outer surface of mesoporous silica nanoparticles. CAP-MSNs-ß-glucan properties were tested by FTIR, ζ-potential, DLS, XRD, TGA, FE-SEM, and HR-TEM. Cargo protection ability of CAP-MSNs-ß-glucan from photolysis and hydrolysis was examined in comparison to CAP commercial formulation (CAP-CF). CAP-MSNs-ß-glucan distribution in plant tissues, bioactivity against Fusarium graminearum, and biotoxicity toward zebrafish (Danio rerio) were tested and compared with that of CAP-CF. CAP-MSNs-ß-glucan results showed good loading efficacy reaching 18.39% and enzymatic-release dependency up to 83.8% of the total cargo after 20 days of ß-glucan unsealing. CAP-MSNs-ß-glucan showed significant release protection under pH changes. MSNs-ß-glucan showed excellent CAP protection from UV. CAP-MSNs-ß-glucan showed better distribution in corn tissues and 1.28 more inhibiting potency to Fusarium graminearum than CAP-CF. CAP-MSNs-ß-glucan showed 1.88 times lower toxicity than CAP-CF to zebrafish after 96 h of treatment. We recommend using such formulations to overcome shortcomings of contact fungicides and achieve better and sustainable farming.

4.
J Agric Food Chem ; 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35576451

RESUMO

A thorough understanding of absorption, distribution, metabolism, and excretion (ADME) of insecticide candidates is essential in insecticide development and structural optimization. Here, ADME of pyraquinil, a novel insecticidal GABA receptor antagonist, in Plutella xylostella larvae during the accumulation phase and depuration phase was investigated separately using a combination of UHPLC-Q-Orbitrap, HPLC-MS/MS, and MALDI-MSI. Five new metabolites of pyraquinil were identified, and a metabolic pathway was proposed. The oxidative metabolite (pyraquinil-sulfone) was identified as the main metabolite and confirmed by its standard. Quantitative results showed that pyraquinil was taken up by the larvae rapidly and then undergone a cytochrome P450s-mediated oxidative transformation into pyraquinil-sulfone. Both fecal excretion and oxidative metabolism were demonstrated to be predominant ways to eliminate pyraquinil in P. xylostella larvae during accumulation, while oxidative metabolism followed by fecal excretion was probably the major pathway during depuration. MALDI-MSI revealed that pyraquinil was homogeneously distributed in the larvae, while pyraquinil-sulfone presented a continuous enrichment in the midgut during accumulation. Conversely, pyraquinil-sulfone located in hemolymph can be preferentially eliminated during depuration, suggesting its tissue tropism. It improves the understanding of the fate of pyraquinil in P. xylostella and provides useful information for insecticidal mechanism elucidation and structural optimization of pyraquinil.

5.
Pest Manag Sci ; 2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35365912

RESUMO

BACKGROUND: In a previous study, we showed that two glycosyl-pesticide conjugates with a ß-d-glucoside moiety, N-{3-cyano-1-[2,6-dichloro-4-(trifluoromethyl) phenyl]-4-[(trifluoromethyl)-sulfinyl]-1H-pyrazol-5-yl}-2-aminoethyl-ß-d-glucopyranoside (GOF) and N-{3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl) sulfinyl]-1H-pyrazol-5-yl}-1-(2-triazolethyl-ß-d-glucopyranoside)-1H-1,2,3-triazole-4-methanamine (GOTF), can move in the phloem and be hydrolyzed by ß-glucosidase at different rates. Simulations were carried out to investigate differences in the hydrolysis process in GOF, GOTF and p-nitrophenyl ß-d-glucopyranoside (pNPG). A new series of glycosyl-O-fipronil conjugates was then designed and synthesized based on the simulation results. The phloem mobilities of the new conjugates were examined using a Ricinus model, and their hydrolysis efficiencies based on ß-glucosidase were determined. RESULTS: New glycosyl-O-fipronil conjugates GOE2-6 were designed and synthesized. To reduce steric hindrance, the conjugating site of the glycone moiety was moved to the 4'-sulfonyl group on the pyrrole ring. As a result, the hydrolysis efficiencies of the new conjugates were significantly improved, with GOE4 having the highest hydrolysis efficiency. All five conjugates could be transported in Ricinus phloem sap, consistent with previously studied glycosyl-O-fipronil conjugates. The insecticidal activities of the conjugates were tested against Plutella xylostella. CONCLUSION: A strategy for the development of new phloem-mobile pesticides was proposed: linking a glycosyl group to the existing pesticide structure with a linear alkyl connection approximately four carbons in length. The resultant conjugates feature not only good phloem mobility, but also potential high bioactivity due to the efficient release of active pesticide components under the action of glucosidase. © 2022 Society of Chemical Industry.

6.
Org Lett ; 24(6): 1341-1345, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35129989

RESUMO

Herein we report the first versatile and expeditious method for the site-selective C-H fluoromethylation of aryl iodides via Pd/norbornene cooperative catalysis, which could work as a robust toolbox for the diversity-oriented synthesis (DOS) of fluoromethylated arenes. This methodology features the use of the low-cost industrial raw material CH2IF as the fluoromethyl source, an excellent functional group tolerance, and a broad ipso termination scope and can be expanded to the late-stage modification of biorelevant molecules.

7.
Pest Manag Sci ; 78(2): 758-769, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34689392

RESUMO

BACKGROUND: Plutella xylostella, one of the most destructive and cosmopolitan pests of cruciferous crops, is especially harmful to the young tissues of the flowering cabbage (Brassica campestris L.). Although emamectin benzoate (EB) has high insecticidal activity against P. xylostella, one major reason of low utilization for EB is the lack of internal transport in the young plants. RESULTS: In this study, four kinds of functional EB/polysuccinimide (PSI) with glycine methylester nanoparticles (EB@PGA NPs) were prepared. The obtained EB@PGA NPs could effectively protect EB from photolysis, and the degradation rate of EB@PGA NPs was <30% in 24 h. Simulating the intestinal pH = 9 of P. xylostella, the highest cumulative release rate of EB@PGA NPs could reach 89.61% in 24 h. Furthermore, EB@PGA NPs could delivery EB into the young tissues of the flowering cabbage through the nanocarrier, and the highest transport efficiency of EB@PGA25 reached 1.437%. The bioactivity of EB@PGA25 against P. xylostella larvae (LC50  = 0.34 µg mL-1 ) was 1.6-fold higher than that of EB (LC50  = 0.53 µg mL-1 ). EB@PGA could easily become 'internalized' into the intestinal wall of P. xylostella, thus increasing the penetration of the drug and enhancing the insecticidal activity. CONCLUSION: The accurate delivery of insecticides by PGA nanocarriers into young tissues of plants could be a promising new method for the efficient management of field pests and diseases. © 2021 Society of Chemical Industry.


Assuntos
Brassica , Inseticidas , Lepidópteros , Mariposas , Nanopartículas , Animais , Ácido Aspártico/análogos & derivados , Ivermectina/análogos & derivados , Larva
8.
Sci Total Environ ; 809: 151116, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34688756

RESUMO

Development of stereoisomeric neonicotinoid pesticides with lower toxicity is key to preventing global population declines of honeybees, whereas little is known about the in situ metabolic regulation of honeybees in response to stereoisomeric pesticides. Herein, we demonstrate an integrated mass spectrometry imaging (MSI) and untargeted metabolomics method to disclose disturbed metabolic expression levels and spatial differentiation in honeybees (Apis cerana) associated with stereoisomeric dinotefuran. This method affords a metabolic network mapping capability regarding a wide range of metabolites involved in multiple metabolic pathways in honeybees. Metabolomics results indicate more metabolic pathways of honeybees can be significantly affected by S-(+)-dinotefuran than R-(-)-dinotefuran, such as tricarboxylic acid (TCA) cycle, glyoxylate and dicarboxylate metabolism, and various amino acid metabolisms. MSI results demonstrate the cross-regulation and spatial differentiation of crucial metabolites involved in the TCA cycle, purine, glycolysis, and amino acid metabolisms within honeybees. Taken together, the integrated MSI and metabolomics results indicated the higher toxicity of S-(+)-dinotefuran arises from metabolic pathway disturbance and its inhibitory role in the energy metabolism, resulting in significantly reduced degradation rates of detoxification mechanisms. From the view of spatial metabolomics, our findings provide novel perspectives for the development and applications of pure chiral agrochemicals.


Assuntos
Guanidinas , Nitrocompostos , Animais , Abelhas , Metabolômica , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade
9.
Ecotoxicol Environ Saf ; 229: 113089, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34929506

RESUMO

As a wildly used plant-derived insecticide, azadirachtin (AZA) is commonly reported as harmless to a range of beneficial insects. However, with the research on the effect of AZA against pollinators in recent years, various negative physiological effects on other Apidae species have been demonstrated. Thus to explore the safety of azadirachtin to Apis cerana cerana, the different physiological effects of sublethal concentration of azadirachtin on worker bees A.c.cerana has been studied. With the exposure of 5 mg·L-1 and 10 mg·L-1 azadirachtin for 5 d, the relative expression of Apidaecin, Abaecin and Lysosome genes in workers has decreased significantly at 1, 2,3 and 5 d, and the mRNA levels of Defensin 2 and Hymenoptaecin were also significantly inhibited by 10 mg·L-1 azadirachtin at each check point. Besides, the activity of midgut antioxidant enzymes Superoxide Dismutase (SOD) and Catalase (CAT) which are the first line of defence in antioxidant systems was not affected by AZA, the activity of Peroxidase (POD) showed a fluctuating pattern at 24 h and 48 h, while the activity of polyphenol oxidase (PPO) has significantly inhibited by AZA. However, through 16sRNA analysis it was observed that 5 mg·L-1 AZA did not affect the midgut microbiome colony composition and relative abundance, as well as its main function. Therefore, to a certain extent, azadirachtin is safe for workers, but we should pay more attention to the sublethal effect of AZA that also detrimental to the healthy development of the honeybee colony.


Assuntos
Himenópteros , Limoninas , Microbiota , Animais , Abelhas , Imunidade , Limoninas/toxicidade
10.
Chemosphere ; 287(Pt 1): 131902, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34438209

RESUMO

Understanding the lethal effects of pesticides nano formulations on the targeted organisms (pathogens) and the non-targeted organisms (fish, earthworms, etc) is essential in assessing the probable impact of new technologies on agriculture and environment. Here we evaluated the bioactivity and the biotoxicity of new type of fungicide smart-delivery formulation based on conjugating carboxymethylated-ß-glucans on the mesoporous silica nanoparticles (MSNs) surface after loading chlorothalonil (CHT) fungicide in the MSNs pores. The obtained formulation has been characterized with FE-SEM, and HR-TEM. The CHT loading efficiency has been measured with TGA. The bioactivity of the obtained formulation (CHT@MSNs-ß-glucans) has been tested against four pathogens, fusarium head blight (Fusarium graminearum), sheath rot (Sarocladium oryzae), rice sheath blight (Rhizoctonia solani), and soyabean anthracnose (Colletotrichum truncatum) compared with CHT WP 75% commercial formulation (CHT-WP) and technical CHT. The environmental biotoxicity of CHT@MSNs-ß-glucans compared with CHT-WP has been tested toward earthworm (Eisenia fetida) and zebra fish (Danio rerio). The results showed that CHT@MSNs-ß-glucans has an excellent bioactivity against the subjected pathogens with better inhabiting effects than CHT-WP. CHT@MSNs-ß-glucans toxicity to Eisenia fetida was found 2.25 times lower than CHT-WP toxicity. The LC50 of CHT@MSNs-ß-glucans to zebra fish after the first 24h was 2.93 times higher than CHT-WP. After 96h of treatment, the LC50 of CHT@MSNs-ß-glucans was 2.66 times higher than CHT-WP. This work highlighted the necessity to increase the mandatory bioassays of nano formulations with the major non-target organisms in the environmental risk assessment of new pesticide formulations.


Assuntos
Fungicidas Industriais , Nanopartículas , beta-Glucanas , Animais , Colletotrichum , Portadores de Fármacos , Fungicidas Industriais/toxicidade , Fusarium , Hypocreales , Nanopartículas/toxicidade , Nitrilas , Porosidade , Rhizoctonia , Dióxido de Silício/toxicidade , beta-Glucanas/toxicidade
11.
J Nat Prod ; 84(6): 1806-1815, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34081476

RESUMO

Formicapyridine-type racemates, streptovertidines A (1) and B (2), a 7,24-seco-fasamycin, streptovertidione (3), and the fasamycin-type streptovertimycins I-T (4-15), together with 13 known fasamycin congeners (16-28), were isolated from soil-derived Streptomyces morookaense SC1169. Their structures were elucidated by extensive spectroscopic analysis and theoretical computations of ECD spectra. The fasamycin-type compounds 5, 8-12, 14, and 15 exhibited activity against the drug-resistant bacteria MRSA and VRE (MIC: 1.25-10.0 µg/mL). All isolates, except 3, 4, 10, and 24, displayed cytotoxicity against at least one of the human carcinoma A549, HeLa, HepG2, and MCF-7 cells (IC50 < 10.0 µM), of which some were also cytotoxic to the noncancerous Vero cells. Taken together, the activity data demonstrated that the fasamycin-type compounds were more selective to the tested bacteria over the mammalian cells. Structure-activity relationship analysis suggested that chlorination at C-2 in antibacterial fasamycin-type compounds improves the activity and selectivity to the bacteria. Theoretical simulations of reaction paths and chemical reactions for conversion of 3 to 1 were carried out and supported that the pyridine ring formation in formicapyridines proceeds nonenzymatically via 1,5-dicarbonyl condensation with ammonia.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Policetídeos/farmacologia , Streptomyces/química , Animais , Antibacterianos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , China , Chlorocebus aethiops , Humanos , Estrutura Molecular , Policetídeos/química , Policetídeos/isolamento & purificação , Microbiologia do Solo , Relação Estrutura-Atividade , Células Vero
12.
Nanomaterials (Basel) ; 11(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069856

RESUMO

Food safety issues caused by pesticide residue have exerted far-reaching impacts on human daily life, yet the available detection methods normally focus on surface residue rather than pesticide penetration to the internal area of foods. Herein, we demonstrated gold nanoparticle (AuNP)-immersed paper imprinting mass spectrometry imaging (MSI) for monitoring pesticide migration behaviors in various fruits and vegetables (i.e., apple, cucumber, pepper, plum, carrot, and strawberry). By manually stamping food tissues onto AuNP-immersed paper, this method affords the spatiotemporal visualization of insecticides and fungicides within fruits and vegetables, avoiding tedious and time-consuming sample preparation. Using the established MSI platform, we can track the migration of insecticides and fungicides into the inner region of foods. The results revealed that both the octanol-water partition coefficient of pesticides and water content of garden stuffs could influence the discrepancy in the migration speed of pesticides into food kernels. Taken together, this nanopaper imprinting MSI is poised to be a powerful tool because of its simplicity, rapidity, and easy operation, offering the potential to facilitate further applications in food analysis. Moreover, new perspectives are given to provide guidelines for the rational design of novel pesticide candidates, reducing the risk of food safety issues caused by pesticide residue.

13.
J Agric Food Chem ; 69(21): 5798-5803, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34028259

RESUMO

Sulfur(VI) fluorine exchange click reaction was applied to the highly efficient synthesis of new N,N'-disubstituted sulfamide (R1NH-SO2-NHR2) derivatives as pesticide candidates. Bioassays were conducted to evaluate both insecticidal and fungicidal activities of the target compounds. Preliminary results showed that the target molecules exhibited good bioactivities. In particular, insecticidal activities of compounds D25 and D21 against Plutella xylostella (LC50 = 2.42 and 3.87 µg·mL-1) were superior or adequate to that of commercial insecticide indoxacarb (LC50 = 3.99 µg·mL-1). Moreover, some compounds could also exhibit satisfactory fungicidal activity toward plant pathogens Pyricularia grisea, Botrytis cinerea, and Thanatephorus cucumeris. This work could bring new insights into the application of heterocyclic N,N'-disubstituted sulfamides as novel pesticides.


Assuntos
Inseticidas , Praguicidas , Basidiomycota , Botrytis , Flúor , Enxofre
14.
Carbohydr Polym ; 266: 118150, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34044957

RESUMO

In this study, a pesticide controlled release system with dual response characteristics of pH and enzyme triggering was developed. Indoxacarb (IDC) was loaded into hollow mesoporous silica (HMS) nanoparticles, carboxylated ß-cyclodextrin (ß-CD) acted as a capping molecule to couple with the amino-functionalized HMS, and their well-defined morphological structures were confirmed by scanning electron microscopy and transmission electron microscopy. The results showed that the prepared IDC loaded HMS-CD had high loading efficiency (26.42%, w/w) and showed excellent dual response properties to pH and the α-amylase enzyme. IDC loaded HMS-CD nanoparticles showed better insecticidal activity against Spodoptera frugiperda than applying the same dose of IDC emulsifiable concentrate, and the toxicity of IDC loaded HMS-CD to zebrafish was reduced by more than 5-fold, indicating that insecticide delivery systems based on ß-CD-anchored HMS nanoparticles could potentially be applied for sustainable control of pests and reduce harm to non-target organisms and the environment.


Assuntos
Portadores de Fármacos/química , Inseticidas/farmacologia , Nanopartículas/química , Oxazinas/farmacologia , Dióxido de Silício/química , beta-Ciclodextrinas/química , Animais , Portadores de Fármacos/toxicidade , Nanopartículas/toxicidade , Porosidade , Dióxido de Silício/toxicidade , Spodoptera/efeitos dos fármacos , Peixe-Zebra , beta-Ciclodextrinas/toxicidade
15.
Plants (Basel) ; 10(3)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799776

RESUMO

Functional characterization of plant agrichemical transporters provided an opportunity to discover molecules that have a high mobility in plants and have the potential to increase the amount of pesticides reaching damage sites. Agrobacterium-mediated transient expression in tobacco is simple and fast, and its protein expression efficiency is high; this system is generally used to mediate heterologous gene expression. In this article, transient expression of tobacco nicotine uptake permease (NtNUP1) and rice polyamine uptake transporter 1 (OsPUT1) in Nicotiana benthamiana was performed to investigate whether this system is useful as a platform for studying the interactions between plant transporters and pesticides. The results showed that NtNUP1 increases nicotine uptake in N. benthamiana foliar discs and protoplasts, indicating that this transient gene expression system is feasible for studying gene function. Moreover, yeast expression of OsPUT1 apparently increases methomyl uptake. Overall, this method of constructing a transient gene expression system is useful for improving the efficiency of analyzing the functions of plant heterologous transporter-encoding genes and revealed that this system can be further used to study the functions of transporters and pesticides, especially their interactions.

16.
Pest Manag Sci ; 77(6): 2812-2819, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33538074

RESUMO

BACKGROUND: Inoculation of arbuscular mycorrhizal (AM) fungi in soil can promote the uptake of nutrients and xenobiotics by plants. In this study, the effects of arbuscular mycorrhizal fungi (including Glomus intraradices and Glomus mossea) on the growth of maize, the uptake of carbosulfan and the control efficacy on Spodoptera frugiperda were investigated through maize seed coating. RESULTS: Results from the pot experiment showed that carbofuran reduced the mycorrhizal colonization of AM fungi in the early stage of the experiment. The inhibiting effect disappeared in 21-49 DAP, whereas the mycorrhizal colonization rate under the G. intraradices treatment was maintained at ≈90%. Compared with noninoculated treatment, the fresh weights of roots in G. intraradices and G. mosseae treatments increased by 20-41% and 10-23%, respectively. Mycorrhizal treatment could significantly increase the transmission rates (root/soil and leaf/stem) and the carbosulfan accumulation in maize. During the harvest period, the control efficacy against S. frugiperda in mycorrhizal treatment was significantly higher than that in noninoculated treatments (P < 0.05) in both Guangzhou and Nanning. CONCLUSIONS: Inoculation with AM could accelerate the degradation process of carbofuran in soil and the propagation of carbofuran from soil to plants. Glomus intraradices showed more pronounced effects than G. mosseae on both plant growth and carbosulfan content in plants and soil. The experimental results showed that inoculation of AM fungi increased the accumulation of carbofuran in plants, improved the effective utilization rate and enhanced the control efficacy against S. frugiperda. © 2021 Society of Chemical Industry.


Assuntos
Micorrizas , Animais , Carbamatos , Fungos , Raízes de Plantas , Spodoptera , Zea mays
17.
J Agric Food Chem ; 69(9): 2668-2678, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33629581

RESUMO

Fusarium wilt disease poses a serious threat to the global production of bananas. The targeted delivery of fungicides to banana phloem tissues may offer new hope for controlling this hard-to-treat vascular disease. In this study, fludioxonil (FLU)-loaded glycine methyl ester-conjugated polysuccinimide nanoparticles (PGA) were prepared with a loading efficiency (LE) of 27.9%. The obtained nanoparticles (FLU@PGA) exhibited pH-sensitive controlled release, specifically under an alkaline pH in plant phloem. In vivo experiments in potted bananas demonstrated that FLU@PGA can achieve the downward delivery of FLU to banana rhizomes and roots after foliar application, reducing disease severity by 50.4%. The phloem transport studies showed that the phloem loading of FLU@PGA was involved in an active transport mechanism at the organ level (castor bean seedlings). The observation of fluorescein-5-isothiocyanate cadaverine-labeled PGA nanocarriers showed that they could be absorbed by mesophyll cells and loaded into vascular tissues through the symplastic pathway. Furthermore, the interaction of FLU@PGA with the plant amino acid transporter AtLHT1 was observed to enhance transmembrane uptake at the cellular level (Xenopus oocytes). These results suggested that the phloem-targeted delivery of fungicide by transporter-mediated nanocarriers could be a promising new strategy for the management of Fusarium wilt in bananas.


Assuntos
Fusarium , Musa , Sistemas de Transporte de Aminoácidos , Ácido Aspártico/análogos & derivados , Dioxóis , Floema , Doenças das Plantas , Pirróis
18.
Sci Total Environ ; 774: 145170, 2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-33607427

RESUMO

Honeybees are essential for the pollination of a wide variety of crops and flowering plants, whereas they are confronting decline around the world due to the overuse of pesticides, especially neonicotinoids. The mechanism behind the negative impacts of neonicotinoids on honeybees has attracted considerable interest, yet it remains unknown due to the limited insights into the spatiotemporal distribution of pesticides in honeybees. Herein, we demonstrated the use of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) for the spatiotemporal visualization of neonicotinoids, such as N-nitroguanidine (dinotefuran) and N-cyanoamidine (acetamiprid) compounds, administered by oral application or direct contact, in the whole-body section of honeybees. The MSI results revealed that both dinotefuran and acetamiprid can quickly penetrate various biological barriers and distribute within the whole-body section of honeybees, but acetamiprid can be degraded much faster than dinotefuran. The degradation rate of acetamiprid is significantly decreased when piperonyl butoxide (PBO) is applied, whereas that of dinotefuran remains almost unchanged. These two factors might contribute to the fact that dinotefuran affords a higher toxicity to honeybees than acetamiprid. Moreover, the toxicity and degradation rate of acetamiprid can be affected by co-application with tebuconazole. Taken together, the results presented here indicate that the discrepant toxicity between dinotefuran and acetamiprid does not lie in the difference in their penetration of various biological barriers of honeybees, but in the degradation rate of neonicotinoid pesticides within honeybee tissues. Moreover, new perspectives are given to better understand the causes of the current decline in honeybee populations posed by insecticides, providing guidelines for the precise use of conventional agrochemicals and the rational design of novel pesticide candidates.


Assuntos
Inseticidas , Praguicidas , Animais , Abelhas , Inseticidas/toxicidade , Espectrometria de Massas , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Praguicidas/análise , Praguicidas/toxicidade
19.
Insect Sci ; 28(6): 1721-1733, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33442958

RESUMO

The phenylpyrazole insecticide fipronil blocks resistance to dieldrin (RDL) γ-aminobutyric acid (GABA) receptors in insects, thereby impairing inhibitory neurotransmission. Some insect species, such as the diamondback moth (Plutella xylostella), possess more than one Rdl gene. The involvement of multiple Rdls in fipronil toxicity and resistance remains largely unknown. In this study, we investigated the roles of two Rdl genes, PxRdl1 and PxRdl2, in P. xylostella fipronil action. In Xenopus oocytes, PxRDL2 receptors were 40 times less sensitive to fipronil than PxRDL1. PxRDL2 receptors were also less sensitive to GABA compared with PxRDL1. Knockout of the fipronil-sensitive PxRdl1 reduced the fipronil potency 10-fold, whereas knockout of the fipronil-resistant PxRdl2 enhanced the fipronil potency 4.4-fold. Furthermore, in two fipronil-resistant diamondback moth field populations, PxRdl2 expression was elevated 3.7- and 4.1-fold compared with a susceptible strain, whereas PxRdl1 expression was comparable among the resistant and susceptible strains. Collectively, our results indicate antagonistic effects of PxRDL1 and PxRDL2 on fipronil action in vivo and suggest that enhanced expression of fipronil-resistant PxRdl2 is potentially a new mechanism of fipronil resistance in insects.


Assuntos
Inseticidas , Mariposas , Pirazóis , Receptores de GABA , Animais , Resistência a Inseticidas/genética , Mariposas/efeitos dos fármacos , Mariposas/genética , Receptores de GABA/genética
20.
Pest Manag Sci ; 77(5): 2584-2590, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33491844

RESUMO

BACKGROUND: Chemical control is the most used and effective method to control Diaphorina citri, the vector of the phloem-limited bacteria associated with citrus huanglongbing (HLB) disease. The objectives of this study were to determine the effectiveness of flupyradifurone applied via dripping irrigation systems on D. citri. Bioassays were conducted using leaves harvested on various dates post treatment, and insecticide residue in leaf tissue was quantified. RESULTS: The drip application of flupyradifurone on citrus trees provided high-level and long-term control against D. citri adult, and the median lethal concentration (LC50 ) for ingestion of flupyradifurone in D. citri was 22.22 mg kg-1 (fresh leaf). Flupyradifurone residue was detected in leaf tissue within 3 days after treatment. The measured level of flupyradifurone peaked on day 40 day after application, and then showed a steady decline in subsequent days for all three applied dosages. The amounts of flupyradifurone in upper, middle, and lower leaves were similar, and trends in the change in concentration of flupyradifurone were consistent. CONCLUSIONS: The results demonstrate that flupyradifurone can be a valuable new tool for D. citri management programs, and drip-applied flupyradifurone provides an extended period of control efficacy. This paper could provide a reference to reduce the dependence on foliar-applied insecticides, with associated benefits for non-target exposure to workers and pollinators. © 2021 Society of Chemical Industry.


Assuntos
Citrus , Hemípteros , Inseticidas , 4-Butirolactona/análogos & derivados , Animais , Humanos , Piridinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...