Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 339
Filtrar
1.
Mater Sci Eng C Mater Biol Appl ; 122: 111877, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33641893

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) have been presented to regulate the migration and osteogenic differentiation of bone mesenchymal stem cells (BMSCs) under magnetic field (MF). However, the toxicity and short residence for the massively exposed SPIONs at bone defects compromises their practical application. Herein, SPIONs were encapsulated into PLGA microspheres to overcome these shortcomings. Three types of PLGA microspheres (PFe-I, PFe-II and PFe-III) were prepared by adjusting the feeding amount of SPIONs, in which the practical SPIONs loading amounts was 1.83%, 1.38% and 1.16%, respectively. The average diameter of the fabricated microspheres ranged from 160 µm to 200 µm, having the porous and rough surfaces displayed by SEM. Moreover, they displayed the magnetic property with a saturation magnetization of 0.16 emu/g. In vitro cell studies showed that most of BMSCs were adhered on the surface of PFe-II microspheres after 2 days of co-culture. Moreover, the osteoblasts differentiation of BMSCs was significantly promoted by PFe-II microspheres after 2 weeks of co-culture, as shown by detecting osteogenesis-related proteins expressions of ALP, COLI, OPN and OCN. Afterward, PFe-II microspheres were surgically implanted into the defect zone of rat femoral bone, followed by exposure to an external MF, to evaluate their bone repairing effect in vivo. At 6th week after treatment with PFe-II + MF, the bone mineral density (BMD, 263.97 ± 25.99 mg/cm3), trabecular thickness (TB.TH, 0.58 ± 0.08 mm), and bone tissue volume/total tissue volume (BV/TV, 78.28 ± 5.01%) at the defect zone were markedly higher than that of the PFe-II microspheres alone (BMD, 194.34 ± 26.71 mg/cm3; TB.TH, 0.41 ± 0.07 mm; BV/TV, 50.49 ± 6.41%). Moreover, the higher expressions of ALP, COLI, OPN and OCN in PFe-II + MF group were displayed in the repairing bone. Collectively, magnetic PLGA microspheres together with MF may be a promising strategy for repairing bone defects.

2.
Commun Biol ; 4(1): 195, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33580208

RESUMO

The dysregulation of gene dosage due to duplication or haploinsufficiency is a major cause of autosomal dominant diseases such as Alzheimer's disease. However, there is currently no rapid and efficient method for manipulating gene dosage in a human model system such as human induced pluripotent stem cells (iPSCs). Here, we demonstrate a simple and precise method to simultaneously generate iPSC lines with different gene dosages using paired Cas9 nickases. We first generate a Cas9 nickase variant with broader protospacer-adjacent motif specificity to expand the targetability of double-nicking-mediated genome editing. As a proof-of-concept study, we examine the gene dosage effects on an Alzheimer's disease patient-derived iPSC line that carries three copies of APP (amyloid precursor protein). This method enables the rapid and simultaneous generation of iPSC lines with monoallelic, biallelic, or triallelic knockout of APP. The cortical neurons generated from isogenically corrected iPSCs exhibit gene dosage-dependent correction of disease-associated phenotypes of amyloid-beta secretion and Tau hyperphosphorylation. Thus, the rapid generation of iPSCs with different gene dosages using our method described herein can be a useful model system for investigating disease mechanisms and therapeutic development.

3.
J Med Chem ; 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33631934

RESUMO

SUMOylation is a reversible post-translational modification that regulates protein function through covalent attachment of small ubiquitin-like modifier (SUMO) proteins. The process of SUMOylating proteins involves an enzymatic cascade, the first step of which entails the activation of a SUMO protein through an ATP-dependent process catalyzed by SUMO-activating enzyme (SAE). Here, we describe the identification of TAK-981, a mechanism-based inhibitor of SAE which forms a SUMO-TAK-981 adduct as the inhibitory species within the enzyme catalytic site. Optimization of selectivity against related enzymes as well as enhancement of mean residence time of the adduct were critical to the identification of compounds with potent cellular pathway inhibition and ultimately a prolonged pharmacodynamic effect and efficacy in preclinical tumor models, culminating in the identification of the clinical molecule TAK-981.

4.
J Mater Chem B ; 9(4): 1107-1122, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33427267

RESUMO

Bone repair and regeneration processes are markedly impaired in diabetes mellitus (DM). Intervening approaches similar to those developed for normal healing conditions have been adopted to combat DM-associated bone regeneration. However, limited outcomes were achieved for these approaches. Hence, together with osteoconductive hydroxyapatite (HA) nanocrystals, osteoinductive magnesium oxide (MgO) nanocrystals were uniformly mounted into the network matrix of an organic hydrogel composed of cysteine-modified γ-polyglutamic acid (PGA-Cys) to construct a hybrid and rough hydrogel scaffold. It was hypothesized that the HA/MgO nanocrystal hybrid hydrogel (HA/MgO-H) scaffold can significantly promote bone repair in DM rats via the controlled release of Mg2+. The HA/MgO-H scaffold exhibited a sponge-like morphology with porous 3D networks inside it and displayed higher mechanical strength than a PGA-Cys scaffold. Meanwhile, the HA/MgO-H scaffold gradually formed a tough hydrogel with G' of more than 1000 Pa after hydration, and its high hydration swelling ratio was still retained. Moreover, after the chemical degradation of the dispersed MgO nanocrystals, slow release of Mg2+ from the hydrogel matrix was achieved for up to 8 weeks because of the chelation between Mg2+ and the carboxyl groups of PGA-Cys. In vitro cell studies showed that the HA/MgO-H scaffold could not only effectively promote the migration and proliferation of BMSCs but could also induce osteogenic differentiation. Moreover, in the 8th week after implanting the HA/MgO-H scaffold into femur bone defect zones of DM rats, more effective bone repair was presented by micro-CT imaging. The bone mineral density (397.22 ± 16.36 mg cm-3), trabecular thickness (0.48 ± 0.07 mm), and bone tissue volume/total tissue volume (79.37 ± 7.96%) in the HA/MgO-H group were significantly higher than those in the other groups. Moreover, higher expression of COL-I and OCN after treatment with HA/MgO-H was also displayed. The bone repair mechanism of the HA/MgO-H scaffold was highly associated with reduced infiltration of pro-inflammatory macrophages (CD80+) and higher angiogenesis (CD31+). Collectively, the HA/MgO-H scaffold without the usage of bioactive factors may be a promising biomaterial to accelerate bone defect healing under diabetes mellitus.

5.
Int J Biol Sci ; 17(1): 328-338, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390853

RESUMO

Mediator complex subunit 13 (MED13, previously known as THRAP1 and TRAP240) is a subunit of the cyclin-dependent kinase 8 (CDK8) kinase module in the eukaryotic mediator complex. MED13 has been known to play critical roles in cell cycle, development, and growth. The purpose of this review is to comprehensively discuss its newly identified potential roles in myocardial energy metabolism and non-metabolic cardiovascular diseases. Evidence indicates that cardiac MED13 mainly participates in the regulation of nuclear receptor signaling, which drives the transcription of genes involved in modulating cardiac and systemic energy homeostasis. MED13 is also associated with several pathological conditions, such as metabolic syndrome and thyroid disease-associated heart failure. Therefore, MED13 constitutes a potential therapeutic target for the regulation of metabolic disorders and other cardiovascular diseases.

6.
J Transl Med ; 19(1): 29, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413480

RESUMO

BACKGROUND: Limited data was available for rapid and accurate detection of COVID-19 using CT-based machine learning model. This study aimed to investigate the value of chest CT radiomics for diagnosing COVID-19 pneumonia compared with clinical model and COVID-19 reporting and data system (CO-RADS), and develop an open-source diagnostic tool with the constructed radiomics model. METHODS: This study enrolled 115 laboratory-confirmed COVID-19 and 435 non-COVID-19 pneumonia patients (training dataset, n = 379; validation dataset, n = 131; testing dataset, n = 40). Key radiomics features extracted from chest CT images were selected to build a radiomics signature using least absolute shrinkage and selection operator (LASSO) regression. Clinical and clinico-radiomics combined models were constructed. The combined model was further validated in the viral pneumonia cohort, and compared with performance of two radiologists using CO-RADS. The diagnostic performance was assessed by receiver operating characteristics curve (ROC) analysis, calibration curve, and decision curve analysis (DCA). RESULTS: Eight radiomics features and 5 clinical variables were selected to construct the combined radiomics model, which outperformed the clinical model in diagnosing COVID-19 pneumonia with an area under the ROC (AUC) of 0.98 and good calibration in the validation cohort. The combined model also performed better in distinguishing COVID-19 from other viral pneumonia with an AUC of 0.93 compared with 0.75 (P = 0.03) for clinical model, and 0.69 (P = 0.008) or 0.82 (P = 0.15) for two trained radiologists using CO-RADS. The sensitivity and specificity of the combined model can be achieved to 0.85 and 0.90. The DCA confirmed the clinical utility of the combined model. An easy-to-use open-source diagnostic tool was developed using the combined model. CONCLUSIONS: The combined radiomics model outperformed clinical model and CO-RADS for diagnosing COVID-19 pneumonia, which can facilitate more rapid and accurate detection.


Assuntos
/métodos , /diagnóstico , Pneumonia Viral/diagnóstico por imagem , Pneumonia Viral/diagnóstico , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , /estatística & dados numéricos , China/epidemiologia , Feminino , Ensaios de Triagem em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/estatística & dados numéricos , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Nomogramas , Pandemias , Pneumonia Viral/epidemiologia , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/estatística & dados numéricos , Estudos Retrospectivos , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/estatística & dados numéricos , Pesquisa Médica Translacional
7.
Acta Biomater ; 122: 172-185, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33387663

RESUMO

Macrophage polarization is one of the main factors contributing to the proinflammatory milieu of transplanted islets. It causes significant islet loss. Bilirubin exhibits protective effects during the islet transplantation process, but the mode of delivering drugs along with the islet graft has not yet been developed. In addition, it remains unclear whether bilirubin or its derivatives can modulate macrophage polarization during islet transplantation. Therefore, this study aimed to develop an ε-polylysine-bilirubin conjugate (PLL-BR) to encapsulate the islets for protection and to explore its macrophage modulation activities. In in vitro studies, the PLL-BR was shown to tightly adhere to the islet surface. It also exhibited enhanced cytoprotective effects against oxidative and inflammatory conditions by promoting M2-type macrophage polarization. In in vivo studies, the PLL-BR-protected islets successfully prolonged the euglycemia period in diabetic mice and accelerated the blood glucose clearance rate by maintaining the insulin secretion function. Compared to the untreated islets, the PLL-BR-encapsulated islets induced anti-inflammatory responses that were characterized by elevated levels of M2 macrophage markers and local vascularization. In conclusion, PLL-BR can be used as a tool for reprograming macrophage polarization while providing a more efficient immune protection for transplanted islets. STATEMENT OF SIGNIFICANCE: Macrophage polarization is one main factor that caused significant loss of transplanted islets. Bilirubin possesses protective effects toward pancreatic islet, but how to deliver the drug along with the islet graft has not yet been harnessed. More importantly, whether bilirubin or its derivatives could modulate macrophage polarization during the host rejections has also not been answered. In this study, we developed an ε-polylysine-bilirubin conjugate (PLL-BR) to encapsulate the islets and explore its role in macrophage modulation activities. PLL-BR could attach to the surface of islets and exerted high oxidation resistance and anti-inflammatory effect. For the first time, we demonstrate that bilirubin and its derivatives effectively promoted the M2-type macrophage polarization, and optimize the immune microenvironment for islets survival and function.

8.
Acta Biomater ; 122: 111-132, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33444802

RESUMO

Diabetic nephropathy (DN) is one of the most serious complications of diabetes mellitus. The combination of insulin (Ins) with liraglutide (Lir) has a greater potential for preventing DN than monotherapy. However, the renal protective effect of the combined Ins/Lir therapy is largely compromised due to their short half-lives after subcutaneous injection. Herein, a glucose-responsive hydrogel was designed in situ forming the dynamic boronic esters bonds between phenylboronic acid-grafted γ-Polyglutamic acid (PBA-PGA) and konjac glucomannan (KGM). It was hypothesized that the KGM/PBA-PGA hydrogel as the delivery vehicle of Ins/Lir would enhance the combinational effect of the latter on preventing the DN progress. Scan electronic microscopy and rheological studies showed that KGM/PBA-PGA hydrogel displayed good glucose-responsive property. Besides, the glucose-sensitive release profile of either Ins or Lir from KGM/PBA-PGA hydrogel was uniformly displayed at hyperglycemic level. Furthermore, the preventive efficacy of KGM/PBA-PGA hydrogel incorporating insulin and liraglutide (Ins/Lir-H) on DN progress was evaluated on streptozotocin-induced rats with diabetic mellitus (DM). At 6 weeks after subcutaneous injection of Ins/Lir-H, not only the morphology of kidneys was obviously recovered as shown by ultrasonography, but also the renal hemodynamics was significantly improved. Meanwhile, the 24-h urinary protein and albumin/creatinine ratio were well modulated. Inflammation and fibrosis were also largely inhibited. Besides, the glomerular NPHS-2 was obviously elevated after treatment with Ins/Lir-H. The therapeutic mechanism of Ins/Lir-H was highly associated with the alleviation of oxidative stress and activation of autophagy. Conclusively, the better preventive effect of the combined Ins/Lir via KGM/PBA-PGA hydrogel on DN progress was demonstrated as compared with their mixed solution, suggesting KGM/PBA-PGA hydrogel might be a potential vehicle of Ins/Lir to combat the progression of DN.

9.
Clin Sci (Lond) ; 135(4): 613-627, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33491733

RESUMO

The high disability, mortality and morbidity of diabetic ulcers make it urgent to explore effective strategies for diabetic wound repair. TrxR1 plays a vital role in regulating redox homeostasis in various pathologies. In the present study, the effect of berberine (BBR) on diabetic wounds was investigated in streptozotocin (STZ)-induced diabetic rats and a high glucose (HG)-induced cell model, and the mechanism of BBR on TrxR1 was elucidated. BBR treatment remarkably accelerated wound healing and enhanced extracellular matrix (ECM) synthesis and significantly inhibited HG-induced HaCaT cell damage. Further analysis indicated that BBR activated TrxR1, suppressed its downstream JNK signaling, thereby inhibiting oxidative stress and apoptosis, promoted cell proliferation, down-regulated matrix metalloproteinase (MMP) 9 (MMP9) and up-regulated transforming growth factor-ß1 (TGF-ß1) and tissue inhibitors of MMP 1 (TIMP1), resulting in accelerated wound healing. Importantly, the enhancement of BBR on wound repair was further abolished by TrxR1 inhibitor. Moreover, in diabetic wounds induced by a combination of STZ injection and high-fat diet, BBR significantly increased wound closure rate and TrxR1 expression, and this was reversed by TrxR1 inhibitor. These data indicated that topical BBR treatment accelerated diabetic wound healing by activating TrxR1. Targeting TrxR1 may be a novel, effective strategy for restoring redox homeostasis and promoting diabetic wound healing.

10.
Artigo em Inglês | MEDLINE | ID: mdl-33496950

RESUMO

Cities are usually the final destination for consumable goods and services produced along supply chains and the most appropriate scale to implement policy. Consumption-based policies could complement current carbon emissions mitigation actions, but such studies at the city level are relatively rare. We used a demand-driven input-output model to explore a historical time series (1987-2012) of consumption-based emissions in Tianjin for the first time, a typical industrial city which has the largest carbon footprint in China. The results reveal the differences between consumption- and production-based emissions, and Tianjin has transformed from a producer city into a typical consumer city since 2000s, mainly due to infrastructure construction. There is more capital investment in industrial infrastructures than in real estate in Tianjin, causing the largest carbon footprint. The trade deficit and different carbon intensity have substantial influences on consumption-based emissions. Finally, population, income, and urbanization could enable a more accurate interpretation of urban carbon footprint growth. Demand-driven policy implications for addressing these emissions in booming industrial cities are discussed and provide a new perspective on carbon emissions mitigation. Our results offer valuable lessons on industrial cities' strategies and initiatives for climate change mitigation worldwide, particularly in developing countries.

11.
J Med Virol ; 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33448453

RESUMO

The CRF01_AE and CRF07_BC clades dominate the human immunodeficiency virus (HIV) epidemics in China. Both clades have been identified in the men who have sex with men (MSM) population in Guangdong province, raising a serious concern of possible complex recombination events ahead. Here, we report the first case of CRF01_AE/CRF07_BC recombinant sampled from a MSM patient in southern China. The genomic structure of this case is a mosaic with some regions resembling the CRF01_AE and CRF07_BC clades. Our phylogenetic analyses show that the two parental lineages of this recombinant virus were mainly found in the MSM population. This case has a different genomic composition compared with other recombinants descended from the same parental clades CRF01_AE and CRF07_BC. Our finding suggests that the MSM populations have become a hotspot for expanding viral diversity through the viral recombination mechanism. Therefore, further epidemiologic surveillance and monitoring should be conducted within the MSM populations to help advance our knowledge of viral transmission mechanisms. Additionally, these measures will serve to enhance the control and prevention of HIV/acquired immunodeficiency syndrome in China.

12.
Waste Manag ; 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33162288

RESUMO

The application of laboratory-generated biochar and activated carbon adsorbents in gold iodized solution for the recycling of waste mobile phone printed circuit boards (WMPCBs) is investigated. This research aims to solve problems associated with the existing gold recovery technologies of WMPCBs. Currently, the disposal of WMPCBs is expensive, involves complex processes, and contributes to secondary pollution. In this study, laboratory-generated biochar is produced from corn straw, wheat straw, and wood chips by pyrolysis. The effects of factors on the adsorption efficiency are investigated, and the optimal operating conditions for biochar and activated carbon adsorption are determined. The following optimal parameters were found for activated carbon: temperature = 25 °C, particle size = 40-60 mesh, dosage = 0.05 g/10 mL, pH = 7, reaction time = 2 h, and oscillation frequency = 200 r/min. The adsorption efficiency reached 98.6%. For biochar, optimization involved: raw material from corn straw at a pyrolysis temperature = 700 °C, reaction time = 5 h, oscillation frequency = 200 r/min, pH = 3, dosage = 0.15 g/10 mL, and temperature = 50 °C. An adsorption efficiency of 98% was achieved. The two adsorbents were compared, and results demonstrated that the adsorption properties of the laboratory-generated biochar were slightly inferior to those of the activated carbon; however, they were similar. Biochar adsorption can reuse waste, which may not only solve the current problems related to WMPCB recycling, but can help to achieve a "win-win" situation of increased environmental protection and sustainable utilization of resources.

13.
Theranostics ; 10(25): 11719-11736, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33052243

RESUMO

Rationale: Photothermal therapy employs the photoabsorbers to generate heat under the near-infrared (NIR) irradiation for thermal tumor ablation. However, NIR irradiation might damage the adjacent tissue due to the leakage of the photoabsorbers and the residual materials after treatment might hinder the local healing process. A bifunctional hydrogel that holds both photothermal property and potent pro-healing ability provides a viable option to resolve this issue. Methods: In this study, we developed a bioinspired green hydrogel (BVSF) with the integration of bioproduct biliverdin into natural derived silk fibroin matrix for antiglioma photothermal therapy and wound healing. Results: The BVSF hydrogel possessed excellent and controllable photothermal activity under NIR irradiation and resulted in effective tumor ablation both in vitro and in vivo. Additionally, the BVSF hydrogel exerted anti-inflammatory effects both in vitro and in vivo, and stimulated angiogenesis and wound healing in a full-thickness defect rat model. Conclusion: Overall, this proof-of-concept study was aimed to determine the feasibility and reliability of using an all-natural green formulation for photothermal therapy and post-treatment care.

14.
Int J Cardiol ; 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33098952

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic. The ability to predict cardiac injury and analyze lymphocyte immunity and inflammation of cardiac damage in patients with COVID-19 is limited. We aimed to determine the risk factors and predictive markers of cardiac injury in these patients. METHODS: Data from 124 consecutive hospitalized patients with confirmed COVID-19 were collected. We compared the proportion of cardiovascular disease history in moderate, severe, and critical cases. We obtained high-sensitivity cardiac troponin I (hs-cTn I) results from 68 patients. Patients were divided into two groups based on positive hs-cTn I result: those with cardiac injury (n = 19) and those without cardiac injury (n = 49). RESULTS: Compared with the group with moderate disease, hypertension, coronary heart disease, and smoking were more common in severe and critical cases. Diabetes mellitus was most common in the critical group. Age older than 65 years, presence of chronic kidney disease, and lower blood lymphocyte percentage were independent risk factors of cardiac injury. The total T- and B-lymphocyte counts and CD4+ and CD8+ T-cell counts were significantly lower in those with cardiac injury. A minimal lymphocyte percentage < 7.8% may predict cardiac injury. The interleukin (IL) 6 level in plasma was elevated in the group with cardiac injury. CONCLUSIONS: The lymphocyte percentage in blood may become a predictive marker of cardiac injury in COVID-19 patients. The total T and B cells and CD4+ and CD8+ cell counts decreased and the IL-6 level increased in COVID-19 patients with cardiac injury.

15.
PLoS One ; 15(10): e0239070, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33091004

RESUMO

The running of high-speed electrically driven feed pump has a direct impact on the safety of personnel equipment and economic benefits of power plant, as the result, intelligent condition monitoring and fault diagnosis of electrically driven feed pump becomes an urgent need. In the practical process of electrically driven feed pump fault diagnosis, the running of the equipment is in normal state for a long time, occasionally, with faults, which makes the fault data very rare in a large number of monitoring data, and makes it difficult to extract the internal fault features behind the original time series data, When the deep learning theory is used in practice, the imbalance between the fault data and the normal data occurs in the operation data set. In order to solve the problem of data imbalance, this paper proposes a fault diagnosis method of GAN-SAE. This method first makes compensation for the imbalance of sample data based on the Generative Adversarial Network (GAN), and then uses the Stacked Auto Encoder (SAE) method to extract the signal features. By designing the fault diagnosis program, compared with only using SAE, back propagation neural networks (BP) and multi-hidden layer neural networks(MNN) method, the GAN-SAE method can offer better capability of extracting features, and the accuracy of fault diagnosis of electrically driven feed pump could be improved to 98.89%.


Assuntos
Análise de Falha de Equipamento/métodos , Centrais Elétricas , China , Aprendizado Profundo , Eletricidade , Desenho de Equipamento , Análise de Falha de Equipamento/estatística & dados numéricos , Humanos , Redes Neurais de Computação , Centrais Elétricas/estatística & dados numéricos
16.
Opt Express ; 28(20): 30015-30034, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33114888

RESUMO

As the reference radiometric calibration standard of sensors on the Haiyang-1C (HY-1C) satellite platform, the satellite calibration spectrometer (SCS) is equipped with an onboard calibration system composed of double solar diffusers and an erbium-doped diffuser to monitor the postlaunch radiometric response change. Herein, through onboard calibration data analysis, the calibration diffuser performance remains stable without degradation, and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra is adopted as a reference to repeatedly verify onboard radiometric calibration results by selecting different dates and reflectance scenes. The SCS equivalent reflectance is obtained by combining the mean digital number (DN) of the SCS crossing area image with the radiometric calibration coefficient. The spectral reflectance is obtained via interpolation and iteration, which is adopted as the actual MODIS incident pupil spectral reflectance because the small imaging time interval can be ignored and almost vertically observed, and it is convoluted with the MODIS spectral response function to obtain the predicted equivalent reflectance. Validation is completed by comparing the predicted MODIS equivalent reflectance to the measured value based on the onboard calibration coefficient. The results show that (1) the difference between the measured and predicted MODIS band equivalent reflectance is between -0.00466 and 0.0039, and (2) the percentage difference between the measured and predicted MODIS band equivalent reflectance ranges from 4.17% and 1.24%, indicating that the calibration system carried on HY-1C can perform high-precision SCS radiometric calibration, meeting the cross-calibration accuracy requirements of other loads on the same platform.

17.
Sci Rep ; 10(1): 16959, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046787

RESUMO

This study aimed to evaluate the efficacy and safety of the intravitreal injection of conbercept in the treatment of macular neovascularization (MNV) secondary to high myopia and to observe the application of optical coherence tomography angiography (OCTA) in the treatment follow-up. We reviewed the medical records of 20 patients (21 eyes) with MNV secondary to high myopia who were enrolled in the Department of Ophthalmology of the First Hospital of China Medical University between May 2018 and January 2020. Each patient received one or more intravitreal injections of conbercept (0.5 mg/0.05 mL). The treatment was conducted according to a 1 + PRN (pro re nata) regimen. The changes of best corrected visual acuity (BCVA), central macular thickness (CMT), and selected MNV and flow areas measured by OCTA were observed over a 6-month follow-up period. The mean logarithm of the minimum angle of resolution (logMAR) BCVA was 1.03 ± 0.61 before treatment and improved to 0.83 ± 0.59 (P = 0.007), 0.78 ± 0.62 (P = 0.001), 0.81 ± 0.73 (P = 0.027), and 0.79 ± 0.72 (P = 0.023) at 1 month, 2 months, 3 months, and 6 months after treatment, respectively. The mean CMT was 358.16 ± 206.11 µm before treatment and decreased to 295.38 ± 178.70 µm (P = 0.003), 288.34 ± 165.60 µm (P = 0.004), 284.36 ± 163.07 µm (P = 0.005), and 283.00 ± 160.32 µm (P = 0.004) at 1 month, 2 months, 3 months, and 6 months after treatment, respectively. Nineteen eyes (90.5%) had stable or improved vision at 6 months of follow-up. One month after conbercept injection, in OCTA images, the small-diameter blood vessels of the MNV decreased, the intertwined small blood vessels decreased or even disappeared, and the main or larger-diameter blood vessels were still present. The mean selected MNV and blood flow areas were 0.62 ± 0.81 and 0.22 ± 0.27 mm2, respectively, before treatment and decreased to 0.23 ± 0.33 and 0.07 ± 0.08 mm2 (P = 0.04 for both), respectively, 1 month after treatment. No drug-related systemic or ocular adverse effects were observed. Our results suggest that conbercept can effectively and safely improve BCVA and reduce CMT in patients with myopic MVN (mMNV). OCTA can be used to observe MNV area, blood flow area, and MNV morphological changes after treatment with conbercept, thus providing a reference for treatment follow-up.

18.
Front Oncol ; 10: 1365, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014777

RESUMO

Purpose: To evaluate the accuracy of 68Ga-PSMA positron emission tomography/computerized tomography (PET/CT) for preoperative lymph node staging using histopathological results of pelvic lymph node dissection (PLND) as reference standard in patients with intermediate/high risk of prostate cancer. Material and Methods: A systematic search of PubMed, Embase, and the Cochrane Library was completed up to May 2020. We included studies investigating accuracy of 68Ga-PSMA PET/CT in primary lymph node staging before radical prostatectomy and PLND. The pooled sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), diagnostic odds ratio (DOR), and the summary receiver operating characteristic (SROC) curve with an area under the curve (AUC) were synthesized. Results: Eleven studies comprising 904 patients were identified. Based on per-patient analysis, the pooled sensitivity and specificity reached 0.63 (95% CI: 0.46-0.78) and 0.93 (95% CI: 0.88-0.96), respectively, with the DOR of 22 (95% CI: 10-47). An overall accuracy was revealed by the SROC curve with AUC of 0.91 (95% CI: 0.88-0.93). Using the lymph node as unit, the pooled sensitivity and specificity were 0.70 (95% CI: 0.49-0.85) and 0.99 (95% CI: 0.96-1.00), respectively. And the DOR reached 167 (95% CI: 40-695) with an AUC of 0.96 (95% CI: 0.94-0.98). The pooled PPV and NPV all reached above 0.8 on basis of per-patient or per-node analysis. Conclusions: 68Ga-PSMA PET/CT represented as a promising test for preoperative lymph node staging and patients without lymph node metastatic status can rarely be misdiagnosed. However, its sensitivity ought to be improved before forgoing PLND.

19.
Sensors (Basel) ; 20(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867181

RESUMO

The Internet of Things (IoT) has been integrated into legacy healthcare systems for the purpose of improving healthcare processes. As one of the key technologies of IoT, radio frequency identification (RFID) technology has been applied to offer services like patient monitoring, drug administration, and medical asset tracking. However, people have concerns about the security and privacy of RFID-based healthcare systems, which require a proper solution. To solve the problem, recently in 2019, Fan et al. proposed a lightweight RFID authentication scheme in the IEEE Network. They claimed that their scheme can resist various attacks in RFID systems with low implementation cost, and thus is suitable for RFID-based healthcare systems. In this article, our contributions mainly consist of two parts. First, we analyze the security of Fan et al.'s scheme and find out its security vulnerabilities. Second, we propose a novel lightweight authentication scheme to overcome these security weaknesses. The security analysis shows that our scheme can satisfy the necessary security requirements. Besides, the performance evaluation demonstrates that our scheme is of low cost. Thus, our scheme is well-suited for practical RFID-based healthcare systems.

20.
Antioxidants (Basel) ; 9(10)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992843

RESUMO

Co-enzyme nicotinamide adenine dinucleotide (NAD(H)) redox plays a key role in macrophage function. Surfactant protein (SP-) A modulates the functions of alveolar macrophages (AM) and ozone (O3) exposure in the presence or absence of SP-A and reduces mouse survival in a sex-dependent manner. It is unclear whether and how NAD(H) redox status plays a role in the innate immune response in a sex-dependent manner. We investigated the NAD(H) redox status of AM from SP-A2 and SP-A knockout (KO) mice in response to O3 or filtered air (control) exposure using optical redox imaging technique. We found: (i) In SP-A2 mice, the redox alteration of AM in response to O3 showed sex-dependence with AM from males being significantly more oxidized and having a higher level of mitochondrial reactive oxygen species than females; (ii) AM from KO mice were more oxidized after O3 exposure and showed no sex differences; (iii) AM from female KO mice were more oxidized than female SP-A2 mice; and (iv) Two distinct subpopulations characterized by size and redox status were observed in a mouse AM sample. In conclusions, the NAD(H) redox balance in AM responds to O3 in a sex-dependent manner and the innate immune molecule, SP-A2, contributes to this observed sex-specific redox response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...