Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transbound Emerg Dis ; 2020 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-32037673

RESUMO

Porcine respiratory and reproductive syndrome virus (PRRSV) causes an economically important disease affecting commercial pork production worldwide. NADC34-like PRRSV has had a strong impact on the U.S. and Peruvian pig industries in recent years and also emerged in northeastern China in 2017. However, the endemic status of NADC34-like PRRSV in China is unclear. In this study, we examined 650 tissue samples collected from 16 Provinces in China from 2018 to 2019. Six NADC34-like PRRSV strains were detected in samples from 3 Provinces, and the complete genomes of four of these strains were sequenced. Phylogenetic analysis showed that these novel PRRSV strains belong to sublineage 1.5 (or NADC34-like PRRSV), forming two groups in China. Sequence alignment suggested that these novel strains share the same 100-aa deletion in the Nsp2 protein that was identified in IA/2014/NADC34 isolated from the U.S in 2014. Recombination analysis revealed that five of eight complete genome sequences are derived from recombination between IA/2014/NADC34 and ISU30 or NADC30. The number and distribution of NADC34-like PRRSVs is increasing in China. Importantly, compared with the currently endemic strain NADC30-like PRRSV, NADC34-like PRRSV has the potential to be an endemic strain in China. This study will help us understand the epidemic status of NADC34-like PRRSV in China and provide data for further monitoring this type of PRRSV in China.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31823485

RESUMO

A 2D metal-organic framework (2D-MOF) was formed on a Cu(111) substrate using benzenehexol molecules. By means of a combination of scanning tunneling microscopy and spectroscopy, X-ray photoelectron spectroscopy and density-functional theory, the structure of the 2D-MOF is determined to be Cu3 (C6 O6 ), which is stabilized by O-Cu-O bonding motifs. We find that upon adsorption on Cu(111), the 2D-MOF features a semiconductor band structure with a direct band gap of 1.5 eV. The O-Cu-O bonds offer efficient charge delocalization, which gives rise to a highly dispersive conduction band with an effective mass of 0.45 me at the band bottom, implying a high electron mobility in this material.

3.
Opt Express ; 27(26): 38451-38462, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878612

RESUMO

We investigate circularly polarized photoluminescence (PL) in the MoS2/MoO3 heterostructure, which was fabricated by transferring MoS2 monolayer to cover the MoO3 few layers on the SiO2/Si substrate. It is shown that the PL with the same helicity as the excitation light is dominant due to the inherent chiral optical selectivity, which allows exciting one of the valleys in MoS2 monolayer. The degree of polarization (DP), which characterizes the intensity difference of two chiral components of PL, is unequal for the right-handed and left-handed circularly polarized excitations in the MoS2/MoO3 heterostructure. This effect is different from the one in pristine MoS2. Our Raman spectra results together with ab initio calculations indicate the p-doped features of the MoS2 when it covers the MoO3 layers. Thus the possible explanation of the unequal DP is that the p-doping process generates a built-in voltage and therefore brings the difference of electron-hole overlaps between K and K' valleys. Namely the asymmetric valley polarization may be obtained in the MoS2/MoO3 heterostructure. Consequently, the circularly polarized PL caused by the electron-hole recombination at K and K' valleys manifests unequal DP for the right-handed and left-handed helix excitations. This asymmetric effect is further enhanced by decreasing the temperature in the MoS2/MoO3 heterostructure. Our investigation provides a unique platform for developing novel two-dimensional valleytronic devices.

4.
J Phys Chem Lett ; 10(20): 6061-6066, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31537065

RESUMO

Motivated by fundamental interest and practical applications, the investigations of two-dimensional photocatalysts are fascinating subjects in clean energy. Herein, we propose that two-dimensional Li-based ternary chalcogenides LiXY2 (X = Al, Ga, In; Y = S, Se, Te) have intrinsic polarization and direct band gaps. Our results show that LiXY2 materials possess optical absorption spectra covering the visible and ultraviolet range. We show that these materials possess extremely high electron mobility (∼103 cm2 V-1 s-1), providing great potential in overall water splitting. Furthermore, LiAlS2 and LiGaS2 can facilitate overall water splitting regardless of their energy gaps because of the large differences of surface electronic potentials of LiXY2. Importantly, it is feasible to exfoliate the layered LiAlTe2 from its bulk counterpart in experiments. Our findings open an exotic pathway to realizing promising photocatalytic applications in two-dimensional ternary materials.

5.
Phys Rev Lett ; 123(9): 096401, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31524481

RESUMO

As a paradigmatic phenomenon in condensed matter physics, the quantum anomalous Hall effect (QAHE) in stoichiometric Chern insulators has drawn great interest for years. Using model Hamiltonian analysis and first-principles calculations, we establish a topological phase diagram and map different 2D configurations to it, which are taken from the recently grown magnetic topological insulators MnBi_{4}Te_{7} and MnBi_{6}Te_{10} with superlatticelike stacking patterns. These configurations manifest various topological phases, including the quantum spin Hall effect with and without time-reversal symmetry and QAHE. We then provide design principles to trigger the QAHE by tuning experimentally accessible knobs, such as the slab thickness and magnetization. Our work reveals that superlatticelike magnetic topological insulators with tunable exchange interactions are an ideal platform to realize the long-sought QAHE in pristine compounds, paving a new path within the area of topological materials.

6.
World J Clin Cases ; 7(17): 2587-2596, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31559297

RESUMO

BACKGROUND: The history of allogenic tooth transplantation can be traced back to the 16th century. Although there have been many successful cases, much needs to be better understood and researched prior to the technique being translated to everyday clinical practice. CASE SUMMARY: In the present report, we describe a case of allogenic tooth transplantation between a mother and her daughter. The first left maxillary molar of the mother was diagnosed with residual root resorption and needed to be extracted. The 3rd molar of the daughter was used as a donor tooth. Prior to transplantation, a 3D printing system was introduced to fabricate an individualized reamer drill specifically designed utilizing the donor's tooth as a template. The specific design of our 3D printed bur allowed for the recipient site to better match the donor tooth. With the ability to 3D print in layers, even the protuberance of the root can be matched and 3D printed, thereby minimizing unnecessary bone loss. CONCLUSION: Our study is a pioneering case combining 3D printing with allogenic tooth transplantation, which could be able to minimize unnecessary bone loss and improve the implant stability. This article aims to enhance our understanding of allogenic tooth transplantation and 3D printing, and may potentially lead to tooth transplantation being utilized more frequently - especially since transplantations are so commonly utilized in many other fields of medicine with high success rates.

7.
Angew Chem Int Ed Engl ; 58(46): 16485-16489, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31486256

RESUMO

We investigate the on-surface [2+2] cycloaddition reaction of 2,3,6,7,10,11-hexabromotriphenylene (HBTP) on Ag(111), Cu(111), Au(111), and Cu-dosed Au(111) surfaces using STM and DFT simulation focusing on the organometallic intermediates. The fully debrominated HBTP molecules form an organo-silver framework on Ag(111) and an organo-copper framework on Cu(111), both incorporating multinuclear metal adatom clusters. The organo-silver framework is converted into porous covalent networks via [2+2] cycloaddition above 240 °C. In contrast, the organo-copper framework is very stable and does not undergo [2+2] cycloaddition even at 300 °C. On Au(111), no organo-gold intermediate of [2+2] cycloaddition is observed. After loading Cu onto Au(111), the partially debrominated HBTP molecules bind to Cu adatom dimers to form multinuclear organo-copper complexes at 100 °C which undergo [2+2] cycloaddition at 140 °C. This study shows that the choice of surface can direct the reaction pathway.

8.
Anal Chim Acta ; 1080: 196-205, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31409470

RESUMO

Since inorganic phosphate ion (PO43-) plays very important roles in environment or living organisms, developing a selective and sensitive detection method for PO43- is highly desired. Owing to the superior optical properties, graphene quantum dots (GQDs) have been developed as a promising emitting material in fluorescence analysis. Herein, we reported the first example of negatively charged molybdate-mediated nitrogen doped graphene quantum dots (Mo7O246--mediated N-GQDs) as a fluorescence "off-on" probe for PO43-via "anion ion-mediated" strategy. The N-GQDs was firstly modified with Mo7O246- through a complex bonding system containing ionic and hydrogen bonds. The formation of N-GQDs/Mo7O246- complex leaded to photoluminescence (PL) quenching of N-GQDs. In the presence of PO43-, strong affinity between PO43- and Mo7O246- produced ammonium phosphomolybdate, which destroyed the pre-formed N-GQDs/Mo7O246- structure and detached Mo7O246- from N-GQDs surface. Thus, the PL of N-GQDS was in turn switched on. Under optimal conditions, this probe exhibited a good linear relationship between PL response and PO43- concentration in the range from 7.0 to 30.0 µM with a limit of detection of 50 nM. Also this probe with high selectivity and sensitivity has been successfully used to sense PO43- in natural water, biological fluid, and living cells.


Assuntos
Corantes Fluorescentes/química , Grafite/química , Molibdênio/química , Fosfatos/sangue , Pontos Quânticos/química , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Limite de Detecção , Microscopia de Fluorescência/métodos , Nanocompostos/química , Nitrogênio/química , Rios/química , Espectrometria de Fluorescência/métodos , Poluentes Químicos da Água/análise
9.
Transbound Emerg Dis ; 66(6): 2592-2600, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31379138

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is an agent of porcine reproductive and respiratory syndrome (PRRS), which causes substantial economic losses to the swine industry. PRRSV displays rapid variation, and five lineages coexist in mainland China. Lineage 3 PRRSVs emerged in mainland China in 2005 and prevailed in southern China after 2010. In the present study, two lineage 3 PRRSV strains, which are named SD110-1608 and SDWH27-1710, were isolated from northern China in 2017. To explore the characteristics and origins of the two strains, we divided lineage 3 into five sublineages (3.1-3.5) based on 146 open reading frame (ORF) 5 sequences. Both strains and the strains isolated from mainland China were classified into sublineage 3.5. Lineage 3 PRRSVs isolated from Taiwan and Hong Kong were classified into sublineages 3.1-3.3 and sublineage 3.4, respectively. Recombination analysis revealed that SD110-1608 and SDWH27-1710 were derived from recombination of QYYZ (major parent strain) and JXA1 (minor parent strain). Sequence alignment showed that SD110-1608 and SDWH27-1710 shared a 36-aa insertion in Nsp2 with QYYZ isolated from Guangdong Province in 2010. Based on the evolutionary relationship among GP2a, GP3, GP4, GP5 and N proteins between sublineages 3.2 (FJ-1) and 3.5 (FJFS), we speculated that sublineage 3.5 (mainland China) originated from sublineage 3.2 (Taiwan, China). This study provides important information regarding the classification and transmission of lineage 3 PRRSVs.

10.
Biosci Rep ; 39(7)2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31278126

RESUMO

The wide application of oncolytic adenovirus presents a novel therapeutic strategy for breast cancer gene therapy. Application of adenovirus alone achieves little curative effects on breast cancer. In addition, it is worth exploring the synergistic anti-tumor effect by inserting immunomodulatory factor in oncolytic adenovirus genome. By taking the advantage of the highly proliferative property of breast cancer, a novel recombinant adenovirus which could selectively kill tumor cells is established under an E2F-1 promoter. Also by carrying human Interleukin-15 (IL-15) gene, the oncolytic adenovirus exhibits an immunomodulatory effect. The present study proved that the novel oncolytic virus (SG400-E2F/IL-15) exhibits an enhanced anti-tumor activity both in vitro and in vivo, representing an experimental basis for breast cancer "virus-gene" therapy.

11.
ACS Appl Mater Interfaces ; 11(28): 25108-25114, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31268649

RESUMO

The booming frontier of electrochemistry is radically transforming the landscape of global chemical and energy industry. Most recent advancements in electrocatalysts have been built on trial and error, lacking model experiments to illuminate the fundamental factors hidden behind, such as phase, conductivity, and surface coordination environment. Here, we use phase-controllable, highly oriented two-dimensional MoTe2 as the model catalysts. The 2H phase MoTe2's conductivity can be engineered both extrinsically and intrinsically by single-layer graphene and lithiation, bringing down the sheet resistance from 0.95 MΩ/□ to 0.8 kΩ/□ and 0.6 kΩ/□. The corresponding electrocatalytic performance was unlocked from a silent state, catching up to its 1T' counterpart, with a parallel Tafel slope of 141 mV/dec. A focused ion beam further exposed the edge atoms, which exhibited a hydrogen evolution turnover frequency 104 times superior to that of basal plane atoms.

12.
Int J Biol Macromol ; 135: 1028-1033, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31163244

RESUMO

Laccase (LAC) belongs to the blue multi­copper lignolytic oxidase enzymes, and has been regarded as an important tool to produce some important dimers in the application of biotechnology. In this study, sixteen coumarins 1-16 were screened to investigate the catalytic ability of LAC, and three coumarins 6, 7, and 16 could be catalyzed to produce three coumarin derivative coupling with acetone 6a, 7a, and 16a. The potential interaction mechanisms of three coumarins 6, 7, and 16 with LAC were analyzed by molecular docking. The kinetic analyses of catalytic reactions for coumarins 6, 7, and 16 with LAC were performed by using the transformed products 6a, 7a, and 16a as standard substances. Km values of coumarins 6, 7, and 16 were ranged from 0.87 ±â€¯0.07 µM to 2.74 ±â€¯0.29 µM, respectively. This finding suggested that LAC was a reliable method to catalyze oxidative coupling.


Assuntos
Cumarínicos/química , Lacase/química , Acoplamento Oxidativo , Biotransformação , Catálise , Cinética , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Análise Espectral , Relação Estrutura-Atividade
13.
PLoS Pathog ; 15(6): e1007879, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31199852

RESUMO

Burkholderia pseudomallei is a gram-negative, facultative intracellular bacterium, which causes a disease known as melioidosis. Professional phagocytes represent a crucial first line of innate defense against invading pathogens. Uptake of pathogens by these cells involves the formation of a phagosome that matures by fusing with early and late endocytic vesicles, resulting in killing of ingested microbes. Host Rab GTPases are central regulators of vesicular trafficking following pathogen phagocytosis. However, it is unclear how Rab GTPases interact with B. pseudomallei to regulate the transport and maturation of bacterial-containing phagosomes. Here, we showed that the host Rab32 plays an important role in mediating antimicrobial activity by promoting phagosome maturation at an early phase of infection with B. pseudomallei. And we demonstrated that the expression level of Rab32 is increased through the downregulation of the synthesis of miR-30b/30c in B. pseudomallei infected macrophages. Subsequently, we showed that B. pseudomallei resides temporarily in Rab32-positive compartments with late endocytic features. And Rab32 enhances phagosome acidification and promotes the fusion of B. pseudomallei-containing phagosomes with lysosomes to activate cathepsin D, resulting in restricted intracellular growth of B. pseudomallei. Additionally, Rab32 mediates phagosome maturation depending on its guanosine triphosphate/guanosine diphosphate (GTP/GDP) binding state. Finally, we report the previously unrecognized role of miR-30b/30c in regulating B. pseudomallei-containing phagosome maturation by targeting Rab32 in macrophages. Altogether, we provide a novel insight into the host immune-regulated cellular pathway against B. pseudomallei infection is partially dependent on Rab32 trafficking pathway, which regulates phagosome maturation and enhances the killing of this bacterium in macrophages.


Assuntos
Burkholderia pseudomallei/imunologia , Melioidose/imunologia , MicroRNAs/imunologia , Fagossomos/imunologia , Proteínas rab de Ligação ao GTP/imunologia , Animais , Burkholderia pseudomallei/patogenicidade , Melioidose/patologia , Camundongos , Viabilidade Microbiana/imunologia , Fagossomos/microbiologia , Fagossomos/patologia , Células RAW 264.7
14.
Chemphyschem ; 20(18): 2292-2296, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31050084

RESUMO

We synthesize four- and six-member cyclic products via sequential multi-step aryl-aryl coupling reactions of 2,3,6,7,10,11-hexabromotriphenylene molecules on a Au(111) surface. The final products as well as the organo-gold intermediate structures are identified using scanning tunneling microscopy and density-functional theory simulation. By adjusting reaction temperature and post-annealing temperature, we enhance/suppress the yields of the four-member and six-member cyclic products. We propose an underlying mechanism which is associated with different reaction kinetics of the first-order and second-order reactions. This work exemplifies intricate kinetically-controlled on-surface synthesis when multiple reactions of different reaction order are involved.

15.
Sheng Li Xue Bao ; 71(2): 361-370, 2019 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-31008497

RESUMO

Prostaglandin E2 (PGE2) is a cyclooxygenase metabolite of arachidonic acid. It acts as a bioactive lipid and plays an important role in regulating many biological processes. PGE2 binds to 4 different G protein-coupled receptors including prostaglandin E2 receptor subtypes EP1, EP2, EP3 and EP4. The EP4 receptor is widely expressed in most of human organs and tissues. Increasing evidence demonstrates that EP4 is essential for cardiovascular homeostasis and participates in the pathogenesis of many cardiovascular diseases. Here we summarize the role of EP4 in the regulation of cardiovascular function and discuss potential mechanisms by which EP4 is involved in the development of cardiovascular disorders with a focus on its effect on inflammation.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Dinoprostona/fisiologia , Receptores de Prostaglandina E Subtipo EP4/fisiologia , Ciclo-Oxigenase 2 , Humanos
16.
Adv Mater ; 31(23): e1900613, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30993785

RESUMO

White organic light-emitting diode (WOLED) technology has attracted considerable attention because of its potential use as a next-generation solid-state lighting source. However, most of the reported WOLEDs that employ the combination of multi-emissive materials to generate white emission may suffer from color instability, high material cost, and a complex fabrication procedure which can be diminished by the single-emitter-based WOLED. Herein, a color-tunable material, tris(4-(phenylethynyl)phenyl)amine (TPEPA), is reported, whose photoluminescence (PL) spectrum is altered by adjusting the thermal annealing temperature nearly encompassing the entire visible spectra. Density functional theory calculations and transmission electron microscopy results offer mechanistic understanding of the PL redshift resulting from thermally activated rotation of benzene rings and rotation of 4-(phenylethynyl) phenyl)amine connected to the central nitrogen atom that lead to formation of ordered molecular packing which improves the π-π stacking degree and increases electronic coupling. Further, by precisely controlling the annealing time and temperature, a white-light OLED is fabricated with the maximum external quantum efficiency of 3.4% with TPEPA as the only emissive molecule. As far as it is known, thus far, this is the best performance achieved for single small organic molecule based WOLED devices.

17.
Chem Sci ; 10(11): 3340-3345, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30996921

RESUMO

The development of a universal activity descriptor like the d-band model for transition metal catalysts is of great importance to catalyst design. However, due to the complicated electronic structures of metal oxides, the correlation of the binding energies of reaction intermediates (*OH, *O, and *OOH) in the oxygen evolution reaction (OER) with experimentally controllable properties of metal oxides has not been well established. Here we demonstrate that excess electrons are the essential factor that governs the binding properties of intermediates on the surfaces of reducible metal oxides. We propose that the number of excess electrons (NEE) is an essential activity descriptor toward the OER activities of these oxides, which perfectly reproduces the volcano curve plotted using the descriptor ΔG O - ΔG OH, so that tuning NEE can effectively tailor the OER activities of reducible metal oxide based catalysts. Guided by this descriptor, we predict a novel non-precious catalyst with an overpotential of 0.54 eV, which could be a potential alternative to current Ru or Ir based catalysts.

18.
Proc Natl Acad Sci U S A ; 116(17): 8457-8462, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30948641

RESUMO

Prostaglandin E2 (PGE2) plays an important role in vascular homeostasis. Its receptor, E-prostanoid receptor 4 (EP4) is essential for physiological remodeling of the ductus arteriosus (DA). However, the role of EP4 in pathological vascular remodeling remains largely unknown. We found that chronic angiotensin II (AngII) infusion of mice with vascular smooth muscle cell (VSMC)-specific EP4 gene knockout (VSMC-EP4-/-) frequently developed aortic dissection (AD) with severe elastic fiber degradation and VSMC dedifferentiation. AngII-infused VSMC-EP4-/- mice also displayed more profound vascular inflammation with increased monocyte chemoattractant protein-1 (MCP-1) expression, macrophage infiltration, matrix metalloproteinase-2 and -9 (MMP2/9) levels, NADPH oxidase 1 (NOX1) activity, and reactive oxygen species production. In addition, VSMC-EP4-/- mice exhibited higher blood pressure under basal and AngII-infused conditions. Ex vivo and in vitro studies further revealed that VSMC-specific EP4 gene deficiency significantly increased AngII-elicited vasoconstriction of the mesenteric artery, likely by stimulating intracellular calcium release in VSMCs. Furthermore, EP4 gene ablation and EP4 blockade in cultured VSMCs were associated with a significant increase in MCP-1 and NOX1 expression and a marked reduction in α-SM actin (α-SMA), SM22α, and SM differentiation marker genes myosin heavy chain (SMMHC) levels and serum response factor (SRF) transcriptional activity. To summarize, the present study demonstrates that VSMC EP4 is critical for vascular homeostasis, and its dysfunction exacerbates AngII-induced pathological vascular remodeling. EP4 may therefore represent a potential therapeutic target for the treatment of AD.

19.
Angew Chem Int Ed Engl ; 58(25): 8356-8361, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31018023

RESUMO

Surface-confined covalent coupling reactions of the linear compound 4-(but-3-en-1-ynyl)-4'-ethynyl-1,1'-biphenyl (1), which contains one alkyne and one enyne group on opposing ends, have been investigated using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The reactions show a surface-dependent chemoselectivity: on Au(111), compound 1 preferentially yields cyclotrimerization products, while on Cu(111), a selective coupling between the enyne and alkyne groups is observed. Linear, V-shaped string formations combined with Y-shaped bifurcation motifs result in a random reticulation on the entire surface. DFT calculations show that the C-H⋅⋅⋅πδ- transition state of the reaction between the deprotonated alkyne group and a nearby H-donor of the alkene group plays a key role in the mechanism and high chemoselectivity. This study highlights a concept that opens new avenues to the surface-confined synthesis of covalent carbon-based sp-sp2 polymers.

20.
Hypertens Res ; 42(8): 1152-1161, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30962520

RESUMO

As an effective medicine for jaundice in traditional Chinese medicine, Cucumis melo L. has been widely used in China. However, its effect on vascular function is still unclear. In this study, we extracted the compounds of Cucumis melo L., and the major ingredients were identified as cucurbitacins (CuEC, cucurbitacins extracted from Cucumis melo L.), especially cucurbitacin B. We replicated the toxicity in mice by intraperitoneal injection of a high dose of CuEC (2 mg/kg) and demonstrated that the cause of death was CuEC-induced impairment of the endothelial barrier and, thus, increased vascular permeability via decreasing VE-cadherin conjunction. The administration of low doses of CuEC (1 mg/kg) led to a decline in systolic blood pressure (SBP) without causing toxicity in mice. More importantly, CuEC dramatically suppressed angiotensin II (Ang II)-induced SBP increase. Further studies demonstrated that CuEC facilitated acetylcholine-mediated vasodilation in mesenteric arteries of mice. In vitro studies showed that CuEC induced vasodilation in a dose-dependent manner in mesenteric arteries of both mice and rats. Pretreatment with CuEC inhibited phenylephrine-mediated vasoconstriction. In summary, a moderate dose of CuEC reduced SBP by improving blood vessel tension. Therefore, our study provides new experimental evidence for developing new antihypertensive drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA