Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35014150

RESUMO

Single-nanoparticle electrochemistry offers electrochemical behaviors of individual entity beyond the ensemble system. An electric double layer (EDL) exists on any charged particle-liquid interface because of counter-ions accumulation, while direct measuring the interfacial ion migration remains a challenge.  Herein, a plasmonic-based transient microscopic method, with a temporal resolution of 1-2 µs, was demonstrated to directly track the ion migration dynamics on single charged nanoparticles. We found that the dynamics of EDL formation might deviate significantly from the prediction of classical resistance-capacitance (RC) model under nanoscale and transient conditions. Under ultrafast charging, due to the limit migration rate of ions in the solution, the actual time scale of the EDL formation could be up to 5 times slower than the predicted value from the RC model. We then proposed a new theoretical model to describe the transient dynamics of EDL formation. These results may expand our current knowledge about nano-electrochemistry and transient electrochemistry.

2.
Chem Commun (Camb) ; 58(3): 447-450, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34904982

RESUMO

A dual-recognition carbon dot-based nanoprobe with controllable G-quadruplex release is developed for ratiometric fluorescence detection of pathogenic bacteria in a fast and precise way, which opens a promising avenue for efficient detection and early warning of pathogenic bacteria in food matrices.

3.
Chemistry ; 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34850460

RESUMO

A label-free and fast approach for positive electrochemiluminescence (ECL) imaging of single cells by bipolar nanoelectrode array is proposed. The reduction of oxygen at a platinized gold nanoelectrode array in a closed bipolar electrochemical system is coupled with an oxidative ECL process at the anodic side. For elevating the ECL imaging contrast of single cells, a driving  voltage of -2.0 V is applied to in situ generate oxygen confined beneath cells that is subsequently used for ECL imaging at 1.1 V. High oxygen concentration in the confined space resulting from steric hindrance generates prominent oxygen reduction current at the cathodic side and higher ECL intensity at the anodic side, allowing positive ECL imaging of the cells adhesion region with excellent contrast. Cell morphology and adhesion strength can be successfully imaged with high image acquisition rate. This approach opens a new avenue for label-free imaging of single cells.

4.
Anal Chim Acta ; 1188: 339180, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34794559

RESUMO

CRISPR-Cas12a system exhibits tremendous potential in accurate recognition and quantitation of nucleic acids and non-nucleic-acid targets thanks to the discovery of its cleavage capability toward single-stranded DNA (ssDNA). In this study, we developed an efficient electrochemiluminescence (ECL) sensing platform based on CRISPR-Cas12a for the analysis of adenosine triphosphate (ATP). In the presence of the target, the successful release of the DNA activator is specially recognized by Cas12a-crRNA duplex and activates the cleavage of ferrocene (Fc) labeled-ssDNA (Fc-ssDNA) modified on the cathode of bipolar electrode (BPE), resulting in a decrease of ECL intensity of [Ru(bpy)3]2+/TPrA in the anodic cell of BPE. By means of the unique combination of Cas12a with ECL technique based on BPE, it can convert the recognition of target ATP into a detectable ECL signal. The detection limit of ATP was determined to be 0.48 nM under the optimal conditions. This work will expand the application of CRISPR-Cas detection system and propose a potential method for the analysis of non-nucleic-acid targets.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Trifosfato de Adenosina , DNA , Eletrodos , Medições Luminescentes
5.
Anal Chem ; 93(44): 14892-14899, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34709789

RESUMO

Lysosomal acidification is essential for its degradative function, and the flux of H+ correlated with that of K+ in lysosomes. However, there is little research on their correlation due to the lack of probes that can simultaneously image these two ions. To deeply understand the role of K+ in lysosomal acidification, here, we designed and fabricated a nanodevice using a K+-aptamer and two pH-triggered nanoswitches incorporated into a DNA triangular prism (DTP) as a dual signal response platform to simultaneously visualize K+ and pH in lysosomes by a fluorescence method. This strategy could conveniently integrate two signal recognition modules into one probe, so as to achieve the goal of sensitive detection of two kinds of signals in the same time and space, which is suitable for the detection of various signals with the correlation of concentration. By co-imaging both K+ and H+ in lysosomes, we found that the efflux of K+ was accompanied by a decrease of pH, which is of great value in understanding lysosomal acidification. Moreover, this strategy also has broad prospects as a versatile optical sensing platform for multiplexed analysis of other biomolecules in living cells.


Assuntos
Corantes Fluorescentes , Lisossomos , DNA , Células HeLa , Humanos , Concentração de Íons de Hidrogênio
6.
J Am Chem Soc ; 143(44): 18511-18518, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34699210

RESUMO

Electrogenerated chemiluminescence microscopy (ECLM) provides a real-time imaging approach to visualize the surface-dependent catalytic activity of nanocatalysts, which helps to rationalize the design of catalysts. In this study, we first propose super-resolution ECLM that could measure the facet- and site-specific activities of a single nanoparticle with nanometer resolution. The stochastic nature of the ECL emission makes the generation of photons obey Poisson statistics, which fits the requirement of super-resolution radial fluctuation (SRRF). By processing an SRRF algorithm, the spatial resolution of ECL images achieved ca. 100 nm, providing more abundant details on electrocatalytic reactivities at the subparticle level. Beyond conventional wide-field ECL imaging, super-resolution ECLM provided the spatial distribution of catalytic activities at a Au nanorod and nanoplate with scales of a few hundred nanometers. It helped uncover the facet- and defect-dependent surface activity, as well as the dynamic fluctuation of reactivity patterns on single nanoparticles. The super-resolution ECLM provides high spatiotemporal resolution, which shows great potential in the field of catalysis, biological imaging, and single-entity analysis.

8.
Angew Chem Int Ed Engl ; 60(49): 25762-25765, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34590767

RESUMO

With reduced background and high sensitivity, photoelectrochemistry (PEC) may be applied as an intracellular nanotool and open a new technological direction of single-cell study. Nevertheless, the present palette of single-cell tools lacks such a PEC-oriented solution. Here a dual-functional photocathodic single-cell nanotool capable of direct electroosmotic intracellular drug delivery and evaluation of oxidative stress is devised by engineering a target-specific organic molecule/NiO/Ni film at the tip of a nanopipette. Specifically, the organic molecule probe serves simultaneously as the biorecognition element and sensitizer to synergize with p-type NiO. Upon intracellular delivery at picoliter level, the oxidative stress effect will cause structural change of the organic probe, switching its optical absorption and altering the cathodic response. This work has revealed the potential of PEC single-cell nanotool and extended the boundary of current single-cell electroanalysis.

9.
Chem Sci ; 12(32): 10848-10854, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34476064

RESUMO

Development of simple and effective synergistic therapy by combination of different therapeutic modalities within one single nanostructure is of great importance for cancer treatment. In this study, by integrating the anticancer drug DOX and plasmonic bimetal heterostructures into zeolitic imidazolate framework-8 (ZIF-8), a stimuli-responsive multifunctional nanoplatform, DOX-Pt-tipped Au@ZIF-8, has been successfully fabricated. Pt nanocrystals with catalase-like activity were selectively grown on the ends of the Au nanorods to form Pt-tipped Au NR heterostructures. Under single 1064 nm laser irradiation, compared with Au NRs and Pt-covered Au NRs, the Pt-tipped Au nanorods exhibit outstanding photothermal and photodynamic properties owing to more efficient plasmon-induced electron-hole separation. The heat generated by laser irradiation can enhance the catalytic activity of Pt and improve the O2 level to relieve tumor hypoxia. Meanwhile, the strong absorption in the NIR-II region and high-Z elements (Au, Pt) of the DOX-Pt-tipped Au@ZIF-8 provide the possibility for photothermal (PT) and computed tomography (CT) imaging. Both in vitro and in vivo experimental results illustrated that the DOX-Pt-tipped Au@ZIF-8 exhibits remarkably synergistic plasmon-enhanced chemo-phototherapy (PTT/PDT) and successfully inhibited tumor growth. Taken together, this work contributes to designing a rational theranostic nanoplatform for PT/CT imaging-guided synergistic chemo-phototherapy under single laser activation.

10.
Anal Chem ; 93(30): 10727-10734, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34297532

RESUMO

In clinical diagnosis, the level of biological enzymes in serum has been generally regarded as markers of human diseases. In this work, a kind of simple and sensitive plasmonic probe (indicated as Au@FeOOH) has been synthesized with the guidance of plasmonic imaging and subsequently developed for the alkaline phosphatase (ALP) level detection under dark-field microscopy (DFM). As a kind of hydrolysis enzyme, ALP can promote the hydrolysis of l-ascorbic acid 2-phosphate to ascorbic acid (AA). AA further acts as a strong reduction reagent for the decomposition of the FeOOH shell, which results in a blue shift of localized surface plasmon resonance spectra and an obvious color change under DFM. RGB analyses show that using a ΔR/G value instead of scattering wavelength or R/G value as the analytical signal, the deviation attributed to the size distribution of the initial Au NPs is greatly suppressed, and a linear range from 0.2 to 6.0 U/L (R2 = 0.99) and a limit of detection of 0.06 U/L are acquired with various concentrations of ALP during the detection. Besides, this approach exhibits excellent selectivity in complex biological serum samples, which is expected to be applied for the early diagnosis of clinical diseases by monitoring various biomarkers in the future.


Assuntos
Fosfatase Alcalina , Nanopartículas Metálicas , Ácido Ascórbico , Bioensaio , Humanos , Limite de Detecção , Microscopia , Ressonância de Plasmônio de Superfície
11.
Anal Chem ; 93(29): 10317-10325, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34270215

RESUMO

A simple process, rich information, and intelligent response are the goals pursued by cancer diagnosis and treatment. Herein, we developed a core-shell plasmonic nanomaterial (Au@MnO2-DNA), which consisted of a AuNP core with an outer shell MnO2 nanosheet decorated with fluorophore modified DNA, to achieve the aforementioned aims. On the basis of the unique optical properties of plasmonic nanoparticles and the oxidability of the shell MnO2, scattering signal and fluorescence (FL) signal changes were both related to the expression level of glutathione (GSH), for which a dual-mode imaging analysis was successfully achieved on single optical microscope equipment with one-key switching. Meanwhile, the product of Mn2+ from the reaction between MnO2 and GSH not only served as a smart chemodynamic agent to initiate Fenton-like reaction for achieving chemodynamic therapy (CDT) of cancer cells but also relieved the side effect of intracellular GSH in cancer therapy. Therefore, the core-shell plasmonic nanomaterials with dual modal switching features and diagnostic properties act as excellent probes for achieving bioanalysis of aberrant levels of intracellular GSH and simultaneously activating the CDT of cancer cells based on the in situ reactions in cancer cells.


Assuntos
Nanopartículas , Nanoestruturas , Glutationa , Humanos , Compostos de Manganês , Óxidos
12.
Angew Chem Int Ed Engl ; 60(34): 18494-18498, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34129259

RESUMO

A novel mass spectrometric method for probing the flash chemistry of electrogenerated reactive intermediates was developed based on rapid collision mixing of electrosprayed microdroplets by using a theta-glass capillary. The two individual microchannels of the theta-glass capillary are asymmetrically or symmetrically fabricated with a carbon bipolar electrode to produce intermediates in situ. Microdroplets containing the newly formed intermediates collide with those of the invoked reactants at sub-10 microsecond level, making it a powerful tool for exploring their ultrafast initial transformations. As a proof-of-concept, we present the identification of the key radical cation intermediate in the oxidative dimerization of 8-methyl-1,2,3,4-tetrahydroquinoline and also the first disclosure of previously hidden nitrenium ion involved reaction pathway in the C-H/N-H cross-coupling between N,N'-dimethylaniline and phenothiazine.

13.
Small ; 17(26): e2100503, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34101356

RESUMO

Though significant advances are made in the arena of single-cell electroanalysis, quantification of intracellular amino acids of human cells remains unsolved. Exemplified by l-histidine (l-His), this issue is addressed by a practical electrochemical nanotool synergizing the highly accessible nanopipette with commercially available synthetic DNAzyme. The fabricated nanotools are screened before operation of a single-use manner, and the l-His-provoked cleavage of the DNA molecules can be sensibly transduced by the ionic current rectification response, the intrinsic property of nanopipette governed by its interior surface charges. Regional distribution of cytosolic l-His level in human cells is electrochemically quantified for the first time, and time-dependent drug treatment effects are further revealed. This work unveils the possibility of electrochemistry for quantification of cytosolic amino acids of a spatial- and time-based manner and ultimately enables a better understanding of amino acid-involved events in living cells.


Assuntos
Aminoácidos , DNA Catalítico , DNA , Histidina , Humanos
14.
Chem Sci ; 12(8): 3017-3024, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34164070

RESUMO

Plasmonic nanoparticles (e.g., gold, silver) have attracted much attention for biological sensing and imaging as promising nanoprobes. Practical biomedical applications demand small gold nanoparticles (Au NPs) with a comparable size to quantum dots and fluorescent proteins. Very small nanoparticles with a size below the Rayleigh limit (usually <30-40 nm) are hard to see by light scattering using a dark-field microscope, especially within a cellular medium. A photothermal microscope is able to detect very small nanoparticles, down to a few nanometers, but the imaging speed is usually too slow (minutes to hours) to image living cell processes. Here an absorption modulated scattering microscopy (AMSM) method is presented, which allows for the imaging of sub-10 nm Au NPs within a cellular medium. The unique physical mechanism of AMSM offers the remarkable ability to remove the light scattering background of the cellular component. In addition to having a sensitivity comparable to that of photothermal microscopy, AMSM has a much higher imaging speed, close to the video rate (20 fps), which allows for the dynamic tracking of small nanoparticles in living cells. This AMSM method might be a valuable tool for living cell imaging, using sub-10 nm Au NPs as biological probes, and thereby unlocking many new applications, such as single molecule labeling and the dynamic tracking of molecular interactions.

15.
Chem Sci ; 12(16): 5720-5736, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-34168801

RESUMO

Electrogenerated chemiluminescence, also known as electrochemiluminescence (ECL), is an electrochemically induced production of light by excited luminophores generated during redox reactions. It can be used to sense the charge transfer and related processes at electrodes via a simple visual readout; hence, ECL is an outstanding tool in analytical sensing. The traditional ECL approach measures averaged electrochemical quantities of a large ensemble of individual entities, including molecules, microstructures and ions. However, as a real system is usually heterogeneous, the study of single entities holds great potential in elucidating new truths of nature which are averaged out in ensemble assays or hidden in complex systems. We would like to review the development of ECL intensity and imaging based single entity detection and place emphasis on the assays of small entities including single molecules, micro/nanoparticles and cells. The current challenges for and perspectives on ECL detection of single entities are also discussed.

16.
ACS Sens ; 6(6): 2339-2347, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34028262

RESUMO

As the cellular roles of RNA abundance continue to increase, there is an urgent need for the corresponding tools to elucidate native RNA functions and dynamics, especially those of short, low-abundance RNAs in live cells. Fluorescent RNA aptamers provide a useful strategy to create the RNA tag and biosensor devices. Corn, which binds with 3,5-difluoro-4-hydroxybenzylidene-imidazolinone-2-oxime (DFHO), is a good candidate for the RNA tag because of its enhanced photostability and red-shifted spectrum. Herein, we report for the first time the utilization of Corn as a split aptamer system, combined with RNA-initiated fluorescence complementation (RIFC), for monitoring RNA self-assembly and sensing microRNA. In this platform, the 28-nt Corn was divided into two nonfunctional halves (named probe I and probe II), and an additional target RNA recognition and stem part was introduced in each probe. The target RNA can trigger the self-assembly reconstitution of the Corn's G-quadruplex scaffold for DFHO binding and turn-on fluorescence. These probes can be transfected stably into mammalian cells and deliver the light-up fluorescent response to microRNA-21 (miR-21). Significantly, the probes have good photostability, with minimal fluorescence loss after continuous irradiation, and can be used for imaging of miR-21 in living mammalian cells. The proposed method is universal and could be applied to the sensing of other tumor-associated RNAs, including messenger RNA and noncoding RNA, as well as for monitoring RNA/RNA interactions. The Corn-based splitting aptamers show promising potential in the real-time visualization and mechanistic analysis of nucleic acids.


Assuntos
Aptâmeros de Nucleotídeos , Quadruplex G , MicroRNAs , Fluorescência , MicroRNAs/genética , RNA Mensageiro
17.
Anal Chim Acta ; 1162: 338503, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33926697

RESUMO

Nanoparticle plasmon scattering can provide real-time imaging information on the formation process of noble metal-based nanomaterials. Due to the synergistic effect of the interface between metal and oxide supporting pores, metal nanoparticles (NPs), especially Au NPs, generally exhibit higher catalytic activity on oxide carriers than single-component NPs. Here, we use the dark field scattering microscope to in situ monitor the growth of Au on Cu2O surface by oxidation-reduction reactions and the nanostructures could be precisely controlled via the scattering signal. The prepared Cu2O/Au nanocomposite has a higher electrocatalytic activity toward Glucose. When being used as a potential biosensor for nonenzyme glucose detection, excellent performance, such as high sensitivity with a detection limit of 4 µM, high selectivity and outstanding stability, was obtained. The scattering imaging strategy is a convenient and universal approach in controllable synthesis of plasmonic heterostructures, and leads to the improvement of electrocatalysts in biosensing.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanoestruturas , Cobre , Glucose , Ouro
18.
Anal Chem ; 93(17): 6857-6864, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33890762

RESUMO

Aggregation-induced emission (AIE) active Pdots are attractive nanomaterials applied in electrochemiluminescence (ECL) fields, while the irreversible redox reaction of these Pdots is a prevailing problem, resulting in instability of ECL emission. Herein, we first designed and synthesized an AIE-active Pdot with reversible redox property, which contains a tetraphenylethene derivate and benzothiadiazole (BT) to achieve stable ECL emission. BT has a good rigid structure with excellent electrochemical behaviors, which is beneficial for avoiding the destruction of the conjugated structure as much as possible during the preparation of Pdots, thus maintaining good redox property. The tetraphenylethene derivate, as a typical AIE-active moiety, provides a channel for highly efficient luminescence in the aggregated states. The Pdots exhibited reversible and quasi-reversible electrochemical behaviors during cathodic and anodic scanning, respectively. The stable annihilation, reductive-oxidative, and oxidative-reductive ECL signals were observed. Subsequently, we constructed an ultrasensitive ECL biosensor based on the oxidative-reductive ECL mode for the detection of miRNA-21 with a detection limit of 32 aM. This work provides some inspiration for the future design of ECL materials featuring AIE-active property and stable ECL emission.

19.
Anal Chem ; 93(15): 6120-6127, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33821629

RESUMO

MicroRNA (miRNA) has emerged as one of the ideal target biomarker analytes for cancer detection because its abnormal expression is closely related to the occurrence of many cancers. In this work, we combined three-dimensional (3D) popcorn-like gold nanofilms as novel surface-enhanced Raman scattering (SERS)-electrochemistry active substrates with toehold-mediated strand displacement reactions (TSDRs) to construct a DNA molecular machine for SERS-electrochemistry dual-mode detection of miRNA. 3D popcorn-like spatial structures generated more active "hot spots" and thus enhanced the sensitivity of SERS and electrochemical signals. Besides, the TSDRs showed high sequence-dependence and high specificity. The addition of target miRNA will trigger the molecular machine to perform two TSDRs in the presence of signal DNA strands modified by R6G (R6G-DNA), thus achieving an enzyme-free amplification detection of miRNA with a low limit of detection of 0.12 fM (for the SERS method) and 2.2 fM (for the electrochemical method). This biosensor can also serve as a universally amplified and sensitive detection platform for monitoring different biomarkers, such as cancer-related DNA, messenger RNA, or miRNA molecules, with high selectivity by changing the corresponding probe sequence.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Técnicas Eletroquímicas , Ouro , Limite de Detecção , MicroRNAs/genética
20.
ACS Sens ; 6(4): 1529-1535, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33847485

RESUMO

Emerging nanopipette tools have demonstrated substantial potential for advanced single-cell analysis, which plays vital roles from fundamental cellular biology to biomedical diagnostics. Highly recyclable nanopipettes with easy and quick regeneration are of special interest for precise and multiple measurements. However, existing recycle strategies are generally plagued by operational complexity and limited efficiency. Light, acting in a noncontact way, should be the ideal external stimulus to address this issue. Herein, we present the photocontrolled nanopipette capable of probing cellular adenosine triphosphate (ATP) gradient at single-cell level with good sensitivity, selectivity, and reversibility, which stems from the use of ATP-specific azobenzene (Azo)-incorporated DNA aptamer strands (AIDAS) and thereby the sensible transduction of variable nanopore size by the ionic currents passing through the aperture. Photoisomerized conformational change of the AIDAS by alternative UV/vis light stimulation ensures its noninvasive regeneration and repeated detection. Inducement and inhibition of the cellular ATP could also be probed by this nanosensor.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanoporos , Trifosfato de Adenosina , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...