Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 18: 518-532, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31671345

RESUMO

Long non-coding RNAs (lncRNAs) have been shown to be crucial regulators in numerous human diseases. However, little is known about their effects on early recurrent miscarriage (RM). Here we aimed to investigate the role of lncRNA EPB41L4A-AS1 on placental trophoblast cell metabolic reprogramming, which might be involved in the pathogenesis of RM. After microarray and GEO database analyses, we found that EPB41L4A-AS1 was significantly increased in early RM placental tissue, and this increase may relate to estradiol-mediated upregulation of PGC-1α. EPB41L4A-AS1 overexpression inhibits glycolysis but increases the dependence on fatty acid oxidation in mitochondrion metabolism and suppresses the Warburg effect, which is necessary for rapid growth of the placental villus, leading to miscarriage. Mechanistic analyses demonstrated that EPB41L4A-AS1 functions as a lncRNA in the regulation of VDAC1 and HIF-1α expression through enhancement of H3K4me3 levels in the promoters of VDAC1 and HIF1A-AS1, a natural antisense transcript (NAT) lncRNA of HIF-1α. Taken together, these findings demonstrate that aberrant expression of EPB41L4A-AS1 is involved in the etiology of early RM, and it may be a candidate diagnostic hallmark and a potential therapeutic target for early RM treatment.

2.
Cell Death Dis ; 10(10): 688, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31534127

RESUMO

CELF6, a member of the CELF family of RNA-binding proteins, regulates muscle-specific alternative splicing and contributes to the pathogenesis of myotonic dystrophy (DM), however the role of CELF6 in cancer cell proliferation is less appreciated. Here, we show that the expression of CELF6 is cell cycle regulated. The cell cycle-dependent expression of CELF6 is mediated through the ubiquitin-proteasome pathway, SCF-ß-TrCP recognizes a nonphospho motif in CELF6 and regulates its proteasomal degradation. Overexpression or depletion of CELF6 modulates p21 gene expression. CELF6 binds to the 3'UTR of p21 transcript and increases its mRNA stability. Depletion of CELF6 promotes cell cycle progression, cell proliferation and colony formation whereas overexpression of CELF6 induces G1 phase arrest. The effect of CELF6 on cell proliferation is p53 and/or p21 dependent. Collectively, these data demonstrate that CELF6 might be a potential tumor suppressor, CELF6 regulates cell proliferation and cell cycle progression via modulating p21 stability.

3.
Front Oncol ; 9: 654, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31380287

RESUMO

The complexity and multi-target feature of natural compounds have made it difficult to elucidate their mechanism of action (MoA), which hindered the development of lead anticancer compounds to some extent. In this study, we applied RNA-Seq and GSEA transcriptome analysis to rapidly and efficiently evaluate the anticancer mechanisms of neobractatin (NBT), a caged prenylxanthone isolated from the Chinese herb Garcinia bracteata. We found that NBT exerted anti-proliferative effect on various cancer cells and caused both G1/S and G2/M arrest in synchronized cancer cells through its effects on the expression of E2F1 and GADD45α. The in vivo animal study further suggested that NBT could reduce tumor burden in HeLa xenograft model with no apparent toxicity. By demonstrating the biological effect of NBT, we provided evidences for further investigations of this novel natural compound with anticancer potential.

4.
Cell Death Dis ; 10(8): 554, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320607

RESUMO

Tumor metastasis is the predominant cause of lethality in cancer. We found that Neobractatin (NBT), a natural compound isolated from Garcinia bracteata, could efficiently inhibit breast and lung cancer cells metastasis. However, the mechanisms of NBT inhibiting cancer metastasis remain unclear. Based on the RNA-sequencing result and transcriptome analysis, Muscleblind-like 2 (MBNL2) was found to be significantly upregulated in the cells treated with NBT. The Cancer Genome Atlas (TCGA) database analysis indicated that the expression of MBNL2 in breast and lung carcinoma tumor tissues was significantly lower compared to normal tissues. We thus conducted to investigate the antimetastatic role of MBNL2. MBNL2 overexpression mimicked the effect of NBT on breast cancer and lung cancer cell motility and metastasis, in addition significantly enhanced the inhibition effect of NBT. MBNL2 knockdown furthermore partially eliminated the inhibitory effect of NBT on metastasis. Mechanistically, we demonstrated that NBT- and MBNL2-mediated antimetastasis regulation significantly correlated with the pAKT/epithelial-mesenchymal transition (EMT) pathway. Subsequent in vivo study showed the same metastasis inhibition effect in NBT and MBNL2 in MDA-MB-231 xenografts mouse model. This study suggest that NBT possesses significant antitumor activity in breast and lung cancer cells that is partly mediated through the MBNL2 expression and enhancement in metastasis via the pAKT/EMT signaling pathway.

5.
Cell Mol Life Sci ; 76(15): 3005-3018, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31006037

RESUMO

The accumulation of intracellular ß-amyloid peptide (Aß) is important pathological characteristic of Alzheimer's disease (AD). However, the exact underlying molecular mechanism remains to be elucidated. Here, we reported that Nuclear Paraspeckle Assembly Transcript 1 (NEAT1), a long n on-coding RNA, exhibits repressed expression in the early stage of AD and its down-regulation declines neuroglial cell mediating Aß clearance via inhibiting expression of endocytosis-related genes. We find that NEAT1 is associated with P300/CBP complex and its inhibition affects H3K27 acetylation (H3K27Ac) and H3K27 crotonylation (H3K27Cro) located nearby to the transcription start site of many genes, including endocytosis-related genes. Interestingly, NEAT1 inhibition down-regulates H3K27Ac but up-regulates H3K27Cro through repression of acetyl-CoA generation. NEAT1 also mediates the binding between STAT3 and H3K27Ac but not H3K27Cro. Therefore, the decrease of H3K27Ac and/or the increase of H3K27Cro declines expression of multiple related genes. Collectively, this study first reveals the different roles of H3K27Ac and H3K27Cro in regulation of gene expression and provides the insight of the epigenetic regulatory mechanism of NEAT1 in gene expression and AD pathology.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , RNA Longo não Codificante/metabolismo , Acetilcoenzima A/metabolismo , Acetilação/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/farmacologia , Animais , Caveolina 2/antagonistas & inibidores , Caveolina 2/genética , Caveolina 2/metabolismo , Modelos Animais de Doenças , Epigênese Genética , Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Camundongos , Camundongos Transgênicos , Neuroglia/citologia , Neuroglia/metabolismo , Fragmentos de Peptídeos/farmacologia , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Crescimento Transformador beta2/antagonistas & inibidores , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
6.
EBioMedicine ; 41: 200-213, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30796006

RESUMO

BACKGROUND: LncRNAs have been found to be involved in various aspects of biological processes. In this study, we aimed to uncover the molecular mechanisms of lncRNA EPB41L4A-AS1 in regulating glycolysis and glutaminolysis in cancer cells. METHODS: The expression of EPB41L4A-AS1 in cancer patients was analyzed in TCGA and GEO datasets. The level of cellular metabolism was determined by extracellular flux analyzer. The relationship between p53 and EPB41L4A-AS1 was explored by qRT-PCR, luciferase assay and ChIP assay. The interactions between EPB41L4A-AS1 and HDAC2 or NPM1 were determined by RNA immunoprecipitation, RNA pull-down assay and RNA-FISH- immunofluorescence. FINDINGS: EPB41L4A-AS1 was a p53-regulated gene. Low expression and deletion of lncRNA EPB41L4A-AS1 were found in a variety of human cancers and associated with poor prognosis of cancer patients. Knock down EPB41L4A-AS1 expression triggered Warburg effect, demonstrated as increased aerobic glycolysis and glutaminolysis. EPB41L4A-AS1 interacted and colocalized with HDAC2 and NPM1 in nucleolus. Silencing EPB41L4A-AS1 reduced the interaction between HDAC2 and NPM1, released HDAC2 from nucleolus and increased its distribution in nucleoplasm, enhanced HDAC2 occupation on VHL and VDAC1 promoter regions, and finally accelerated glycolysis and glutaminolysis. Depletion of EPB41L4A-AS1 increased the sensitivity of tumor to glutaminase inhibitor in tumor therapy. INTERPRETATION: EPB41L4A-AS1 functions as a repressor of the Warburg effect and plays important roles in metabolic reprogramming of cancer.


Assuntos
Núcleo Celular/metabolismo , Glicólise , Histona Desacetilase 2/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Neoplasias/metabolismo , RNA Longo não Codificante/genética , Transporte Ativo do Núcleo Celular , Animais , Glutaminase/metabolismo , Células HeLa , Células Hep G2 , Humanos , Camundongos , Camundongos Nus , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , RNA Longo não Codificante/metabolismo
7.
Sci Rep ; 9(1): 1891, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760805

RESUMO

The process of unwinding and renaturation of DNA has been widely used in studies of nucleotide sequence organization. Compared with traditional methods for DNA unwinding and renaturation, the label-free and non-destruction detection technology is significant and desiderated. We realized an optical system based on optical rotation via weak measurement for detection of single- and double-strand state of DNA. The optical rotation, which was induced by the status change of single and double DNA strands, was exploited to modulate the preselected polarization of a weak measurement system. With this modulation, the optical rotation caused by the separation of DNA strands can be determined through the center wavelength shift of the output spectrum. By monitoring the wavelength shift in real time, the separation processes of the DNAs with different base ratio (25% and 70%) and length (4nt and 40nt), and DNAs with three terminally modified cholesterol molecules were experimentally explored in varied pH and temperature conditions. In addition, the detection limit of the DNA concentration was obtained to be 5 × 10-6 mol/L. Our work based on optical rotation detection of single- and double-strand DNA exhibits the unique advantages of real-time monitoring, label-free, non-destruction and simplicity.

8.
Anal Chim Acta ; 1018: 86-93, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-29605139

RESUMO

In this study, a novel colorimetric aptasensor was prepared by coupling trivalent peroxidase-mimic DNAzyme and magnetic nanoparticles for highly sensitive and selective detection of target proteins. A three G-quadruplex (G4) DNA-hemin complex was employed as the trivalent peroxidase-mimic DNAzyme, in which hemin assisted the G4-DNA to fold into a catalytic conformation and act as an enzyme. The design of the aptasensor includes magnetic nanoparticles (MNPs), complementary DNA (cDNA) modified with biotin, and a label-free single strand DNA (ssDNA) including the aptamer and trivalent peroxidase-mimic DNAzyme. The trivalent DNAzyme, which has the highest catalytic activity among multivalent DNAzymes, catalyzed the H2O2-mediated oxidation of ABTS. The colorless ABTS was oxidized to produce a blue-green product that can be clearly distinguished by the naked eye. The aptamer and trivalent peroxidase-mimic DNAzyme promote the specificity and sensitivity of this detection method, which can be generalized for other targets by simply replacing the corresponding aptamers. To demonstrate the feasible use of the aptasensor for target detection, a well-known tumor biomarker MUC1 was evaluated as the model target. The limits of detection were determined to be 5.08 and 5.60 nM in a linear range of 50-1000 nM in a buffer solution and 10% serum system, respectively. This colorimetric and label-free aptasensor with excellent sensitivity and strong anti-interference ability has potential application in disease diagnoses, prognosis tracking, and therapeutic evaluation.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Biomarcadores Tumorais/análise , Colorimetria , DNA Catalítico/metabolismo , Nanopartículas de Magnetita/química , Mucina-1/análise , Peroxidase/metabolismo , Aptâmeros de Nucleotídeos/química , Biomarcadores Tumorais/metabolismo , Biotina/química , Biotina/metabolismo , Colorimetria/instrumentação , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Quadruplex G , Humanos , Mucina-1/metabolismo
9.
Molecules ; 23(3)2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29495390

RESUMO

Numerous herbal-derived natural products are excellent anti-inflammatory agents. Several studies have reported that aloin, the major anthraquinone glycoside obtained from the Aloe species, exhibits anti-inflammatory activity. However, the molecular mechanism of this activity is not well understood. In this report, we found that aloin suppresses lipopolysaccharide-induced pro-inflammatory cytokine secretion and nitric oxide production, and downregulates the expression of tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Aloin inhibits the phosphorylation and acetylation of the NF-κB p65 subunit by suppressing the upstream kinases p38 and Msk1, preventing LPS-induced p65 translocation to the nucleus. We have also shown that aloin inhibits LPS-induced caspase-3 activation and apoptotic cell death. Collectively, these findings suggest that aloin effectively suppresses the inflammatory response, primarily through the inhibition of NF-κB signaling.


Assuntos
Anti-Inflamatórios/química , Apoptose/efeitos dos fármacos , Emodina/análogos & derivados , Inflamação/etiologia , Inflamação/metabolismo , NF-kappa B/antagonistas & inibidores , Animais , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Emodina/farmacologia , Inflamação/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Modelos Biológicos , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , Transporte Proteico , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo
10.
Biochem Pharmacol ; 152: 45-59, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29551587

RESUMO

Canagliflozin (CAN) regulates intracellular glucose metabolism by targeting sodium-glucose co-transporter 2 (SGLT2) and intracellular glucose metabolism affects inflammation. In this study, we hypothesized that CAN might exert anti-inflammatory effects. The anti-inflammatory effects and action mechanisms of CAN were assayed in lipopolysaccharide (LPS)-induced RAW264.7 and THP-1 cells and NIH mice. Results showed that CAN significantly inhibited the production and release of interleukin (IL)-1, IL-6, or tumor necrosis factor-α (TNF-α) in the LPS-induced RAW264.7 and THP-1 cells, and mice. CAN also significantly inhibited intracellular glucose metabolism and 6-phosphofructo-2-kinase (PFK2) expression. CAN increased the levels of sequestosome-1 (SQSTM1/p62), upregulated the ratios of microtubule-associated protein 1A/1B-light chain 3 (LC3) II to I, promoted the formation of LC3 puncta, and enhanced the activities of lysosome. The inhibition of autophagy by 3-methyladenine (3-MA) reversed the effects of CAN on IL-1α levels. Increased autophagy might be associated with increased AMP-activated protein kinase (AMPK) phosphorylation. Interestingly, p62 demonstrated good co-localization with IL-1α and possibly mediated IL-1α degradation. CAN-induced increase in p62 was dependent on the nuclear factor kappa B (NFκB) signaling pathway. These results indicated that CAN might exert anti-inflammatory effects by inhibiting intracellular glucose metabolism and promoting autophagy. Attenuated glucose metabolism by PFK2, increased autophagy flow by AMPK, and increased p62 levels by NFκB might be responsible for the molecular mechanisms of CAN. This drug might serve as a new promising anti-inflammatory drug for acute or chronic inflammatory diseases via independent hypoglycemic mechanisms. This drug might also be used as an important reference for similar drug research and development by targeting intracellular glucose metabolism and autophagy in immune cells.


Assuntos
Autofagia/efeitos dos fármacos , Canagliflozina/farmacologia , Glucose/metabolismo , Inflamação/induzido quimicamente , Adenilato Quinase/genética , Adenilato Quinase/metabolismo , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Canagliflozina/administração & dosagem , Relação Dose-Resposta a Droga , Humanos , Inflamação/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Células RAW 264.7 , Espécies Reativas de Oxigênio , Células THP-1
11.
Cell Death Dis ; 9(3): 262, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449529

RESUMO

Erlotinib resistance causes a high degree of lethality in non-small-cell lung cancer (NSCLC) patients. The high expression and activation of several receptor tyrosine kinases, such as JAK/STAT3, c-Met, and EGFR, play important roles in drug resistance. The development of tyrosine kinase inhibitors is urgently required in the clinic. Our previous study found that Gambogenic acid (GNA), a small molecule derived from the traditional Chinese medicine herb gamboge, induced cell death in several NSCLC cell lines through JAK/STAT3 inhibition. In this study, we investigated the mechanism of action of GNA in erlotinib-resistant NSCLC and patient-derived cells. The inhibition of GNA on FGFR signaling pathway was examined using biochemical kinase assays. NSCLC cell lines (HCC827, HCC827-Erlotinib-resistant, and H1650) and primary cells from patients with NSCLC with clinical resistance to erlotinib were treated with GNA, erlotinib, or their combination. Both kinase assays and cell- based assays showed that GNA inhibits the phosphorylation of multiple kinases in FGFR signaling pathway in NSCLC. The combination of GNA and erlotinib significantly attenuates the tumor growth of HCC827 and erlotinib-resistant HCC827 xenografts with low toxicity. Importantly, GNA significantly suppresses tumor growth in a lung patient-derived xenograft (PDX) model with FGFR fusion and low EGFR expression. Our findings provide preclinical evidence for using GNA as an FGFR signaling pathway inhibitor to overcome erlotinib resistance in NSCLC treatment or to enhance erlotinib efficacy when used as a combined administration.

12.
Cell Death Discov ; 3: 17037, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29263848

RESUMO

Cytolytic peptides are an emerging class of promising cancer therapeutics shown to overcome drug resistance. They eliminate cancer cells via disruption of the phospholipid bilayer of cell membranes, a mechanism that differentiates it from traditional treatments. However, applications of lytic peptides via systematic administration are hampered by nonspecific toxicity. Here, we describe activatable, masked lytic peptides that are conjugated with anionic peptides via a cleavable linker sensitive to matrix metalloproteinases (Ac-w-ßA-e8-XPLG*LAG-klUklUkklUklUk-NH2; lower case letters in the sequences represent D-amino-acids, U=Aib, α-aminoisobutyric acid, *cleavage site). The peptides were activated upon being introduced into the triple negative breast cancer cell line MDA-MB-231, which overexpresses secreted matrix metalloproteinases, to selectively cleave the peptide linker. Our results indicate that the activatable design could be applied to improve the targeting ability of lytic peptides.

13.
J Med Chem ; 60(21): 8731-8740, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29045135

RESUMO

Direct inhibition of the protein-protein interaction of ERα and its endogenous coactivators with a cell permeable stabilized peptide may offer a novel, promising strategy for combating ERα positive breast cancers. Here, we report the co-crystal structure of a helical peptide stabilized by a N-terminal unnatural cross-linked aspartic acid (TD) in complex with the ERα ligand binding domain (LBD). We designed a series of peptides and peptide 6 that showed direct and high-affinity binding to ERα with selective antiproliferative activity in ERα positive breast cancer cells. The co-crystal structure of the TD-stabilized peptide 6 in complex with ERα LBD further demonstrates that it forms an α helical conformation and directly binds at the coactivator binding site of ERα. Further studies showed that peptide 6W could potently inhibit cellular ERα's transcriptional activity. This approach demonstrates the potential of TD stabilized peptides to modulate various intracellular protein-protein interactions involved in a range of disorders.


Assuntos
Desenho de Drogas , Receptor alfa de Estrogênio/química , Ácido Isoaspártico/química , Peptídeos/química , Sítios de Ligação , Neoplasias da Mama/tratamento farmacológico , Cristalografia por Raios X , Humanos , Ácido Isoaspártico/farmacologia , Peptídeos/farmacologia , Ligação Proteica , Estrutura Secundária de Proteína , Transcrição Genética/efeitos dos fármacos
14.
Sci Rep ; 7(1): 5270, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28706254

RESUMO

Diabetes is an inflammatory disease. Inflammation plays an important role in islet functions. However, the exact mechanisms by which inflammation affects islet functions remain unclear. In this study, we investigated the regulatory effects of miR-30a on inflammation and islet functions. The results indicate that miR-30a serves as an inflammation-resolving buffer factor by targeting interleukin 1a (IL-1α) in immune cells and in islet cells, which might play an important role in inflammation homeostasis. miR-30a ameliorates islet functions in an inflammatory micro-environment by targeting the IL-1α/nuclear factor kappa B (NFKB) p65 subunit (p65)/p62 (SQSTM1)/insulin axis, which can be developed into a novel antidiabetic approach. miR-30a serves as a promising inflammation-response biomarker in inflammatory diseases and is possibly activated by the toll-like receptor 4 (TLR4)/IL-1α/NFKB pathways. However, the exact molecular mechanisms by which miR-30a regulates inflammation and islet functions as well as the potential applications in transitional medicine require further elucidation.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Inflamação/patologia , Células Secretoras de Insulina/patologia , Interleucina-1alfa/metabolismo , Macrófagos/patologia , MicroRNAs/genética , Animais , Células Cultivadas , Citocinas/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Interleucina-1alfa/genética , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais
15.
ACS Appl Mater Interfaces ; 9(12): 10512-10518, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28287688

RESUMO

Dual-functional probes, which not only enable visualization of diseased cells but also induce therapeutic cellular responses, are essential to biological studies. In the current work, a conjugated polyelectrolyte, PPET3-N2, was designed and synthesized as a dual-functional probe. The poly(phenylene ethynylene) terthiophene polymer backbone contributes to the polymer's light-harvesting property to ensure the strong fluorescence as well as photosensitization, whereas quantanary ammonium side chains interact with target organelle for localization. As a fluorescent probe, PPET3-N2 was endocytosed to lysosomes through clathrin-mediated endocytosis (CME) and macropinocytosis (MPC) pathways. Colocalization of the probe with commercial fluorescent lysosome labels confirmed that this probe localized on lysosomes with high specificity and photostability. Real-time monitoring of autolysosome formation in autophagic cells was also demonstrated, providing a viable platform for cell-based screening of autophagy inhibitors. Finally, as a photosensitizer, PPET3-N2 can efficiently generate singlet oxygen in living cells upon irradiation of white light, leading to the destruction of lysosome membrane and release of ROS and lysosomal enzymes in cytoplasma, causing cell death.


Assuntos
Polieletrólitos/química , Antineoplásicos , Autofagia , Corantes Fluorescentes , Lisossomos
16.
Cell Mol Life Sci ; 74(6): 1117-1131, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27783096

RESUMO

Nuclear paraspeckle assembly transcript 1 (NEAT1) is the crucial structural platform of paraspeckles, which is one type of nuclear bodies. As a stress-induced lncRNA, the expression of NEAT1 increases in response to viral infection, but little is known about the role of NEAT1 or paraspeckles in the replication of herpes simplex virus-1 (HSV-1). Here, we demonstrate that HSV-1 infection increases NEAT1 expression and paraspeckle formation in a STAT3-dependent manner. NEAT1 and other paraspeckle protein components, P54nrb and PSPC1, can associate with HSV-1 genomic DNA. By binding with STAT3, PSPC1 is required for the recruitment of STAT3 to paraspeckles and facilitates the interaction between STAT3 and viral gene promoters, finally increasing viral gene expression and viral replication. Furthermore, thermosensitive gel containing NEAT1 siRNA or STAT3 siRNA effectively healed the skin lesions caused by HSV-1 infection in mice. Our results provide insight into the roles of lncRNAs in the epigenetic control of viral genes and into the function of paraspeckles.


Assuntos
Genes Virais , Herpesvirus Humano 1/fisiologia , RNA Longo não Codificante/metabolismo , Transcrição Genética , Replicação Viral/genética , Animais , Sequência de Bases , Regulação Viral da Expressão Gênica , Células HeLa , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Humanos , Corpos de Inclusão Intranuclear/metabolismo , Camundongos , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição de Octâmero/metabolismo , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/metabolismo , Fator de Transcrição STAT3/metabolismo
17.
Angew Chem Int Ed Engl ; 55(39): 12088-93, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27572954

RESUMO

Described is a facile helix-nucleating template based on a tethered aspartic acid at the N-terminus [terminal aspartic acid (TD)]. The nucleating effect of the template is subtly influenced by the substituent at the end of the side-chain-end tether as indicated by circular dichroism, nuclear magnetic resonance, and molecular dynamics simulations. Unlike most nucleating strategies, the N-terminal amine is preserved, thus enabling further modification. Peptidomimetic estrogen receptor modulators (PERMs) constructed using this strategy show improved therapeutic properties. The current strategy can be regarded as a good complement to existing helix-stabilizing methods.

18.
Cancer Biol Ther ; 17(8): 790-8, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27260617

RESUMO

Hypoxia is a general event in solid tumor growth. Therefore, induced cellular responses by hypoxia are important for tumorigenesis and tumor growth. MicroRNAs (miRNAs) have recently emerged as important regulators of hypoxia induced cellular responses. Here we report that miR-147a is a novel and crucial hypoxia induced miRNA. HIF-1α up-regulates the expression of miR-147a, and miR-147a in turn stabilizes and accumulates HIF-1α protein via directly targeting HIF-3α, a dominant negative regulator of HIF-1α. Subsequent studies in xenograft mouse model reveal that miR-147a is capable of inhibiting tumor growth. Collectively, these data demonstrate a positive feedback loop between HIF-1α, miR-147a and HIF-3α, which provide a new insight into the mechanism of miR-147a induced cell proliferation arrest under hypoxia.


Assuntos
Hipóxia Celular/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , MicroRNAs/metabolismo , Sequência de Aminoácidos , Animais , Apoptose/fisiologia , Proliferação de Células/fisiologia , Células HeLa , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/biossíntese , Transfecção , Regulação para Cima
19.
Oncotarget ; 7(27): 42274-42287, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27281615

RESUMO

Damage to mitochondria often results in the activation of both mitophagy and mitochondrial apoptosis. The elimination of dysfunctional mitochondria is necessary for mitochondrial quality maintenance and efficient energy supply. Here we report that miR-181a is a novel inhibitor of mitophagy. miR-181a is downregulated by mitochondrial uncouplers in human neuroblastoma SH-SY5Y cells. Overexpression of miR-181a inhibits mitochondrial uncoupling agents-induced mitophagy by inhibiting the degradation of mitochondrial proteins without affecting global autophagy. Knock down of endogenous miR-181a accelerates the autophagic degradation of damaged mitochondria. miR-181a directly targets Parkin E3 ubiquitin ligase and partially blocks the colocalization of mitochondria and autophagosomes/lysosomes. Re-expression of exogenous Parkin restores the inhibitory effect of miR-181a on mitophagy. Furthermore, miR-181a increases the sensitivity of neuroblastoma cells to mitochondrial uncoupler-induced apoptosis, whereas miR-181a antagomir prevents cell death. Because mitophagy defects are associated with a variety of human disorders, these findings indicate an important link between microRNA and Parkin-mediated mitophagy and highlights a potential therapeutic strategy for human diseases.


Assuntos
Apoptose , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Mitocôndrias/patologia , Neuroblastoma/patologia , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular Tumoral , DNA Mitocondrial/metabolismo , Perfilação da Expressão Gênica , Humanos , Lisossomos/metabolismo , Proteínas de Desacoplamento Mitocondrial/metabolismo , Neuroblastoma/metabolismo
20.
Chem Sci ; 7(5): 3325-3330, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29997825

RESUMO

Peptide stapling emerged as a versatile strategy to recapitulate the bioactive helical conformation of unstructured short peptides in water to improve their therapeutic properties in targeting intracellular "undruggable" targets. Here, we describe the development of photo-induced intramolecular thiol-yne macrocyclization for rapid access to short stapled peptides with enhanced biophysical properties. This new peptide stapling technique provides rapid access to conformationally constrained helices with satisfying functional group tolerance. Notably, the vinyl sulfide linkage shows distinct lipophilicity with reduced membrane toxicity compared to the corresponding all-hydrocarbon analogue. As a proof of principle, we constructed stabilized helices modulating intracellular estrogen receptor (ER)-coactivator interactions with a nanomolar binding affinity, enhanced serum stability, a diffuse cellular distribution and selective cytotoxicity towards ER-positive MCF-7 cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA