Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(28): 12747-12755, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35815841

RESUMO

The short exciton diffusion length (LD) associated with most classical organic photocatalysts (5-10 nm) imposes severe limits on photocatalytic hydrogen evolution efficiency. Here, a photovoltaic molecule (F1) without electron-deficient units at the central building block was designed and synthesized to improve the photoluminescence quantum yield (PLQY). With the enhanced PLQY of 9.3% and a large integral spectral overlap of 3.32 × 1016 nm4 M-1 cm-1, the average LD of F1 film increases to 20 nm, nearly twice the length of the control photovoltaic molecule (Y6). Then, the single-component organic nanoparticles (SC-NPs) based on F1 show an optimized average hydrogen evolution rate (HER) of 152.60 mmol h-1 g-1 under AM 1.5G sunlight (100 mW cm-2) illumination for 10 h, which is among the best results for photocatalytic hydrogen evolution.

2.
Nat Commun ; 13(1): 3330, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680880

RESUMO

Sensitive detection of local acoustic vibrations at the nanometer scale has promising potential applications involving miniaturized devices in many areas, such as geological exploration, military reconnaissance, and ultrasound imaging. However, sensitive detection of weak acoustic signals with high spatial resolution at room temperature has become a major challenge. Here, we report a nanometer-scale system for acoustic detection with a single molecule as a probe based on minute variations of its distance to the surface of a plasmonic gold nanorod. This system can extract the frequency and amplitude of acoustic vibrations with experimental and theoretical sensitivities of 10 pm Hz-1/2 and 10 fm Hz-1/2, respectively. This approach provides a strategy for the optical detection of acoustic waves based on molecular spectroscopy without electromagnetic interference. Moreover, such a small nano-acoustic detector with 40-nm size can be employed to monitor acoustic vibrations or read out the quantum states of nanomechanical devices.


Assuntos
Ressonância de Plasmônio de Superfície , Vibração , Acústica , Nanotecnologia/métodos , Ressonância de Plasmônio de Superfície/métodos , Temperatura
3.
Angew Chem Int Ed Engl ; 61(34): e202207300, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35761506

RESUMO

To enhance the fluorescence efficiency of semiconductor nanocrystal quantum dots (QDs), strategies via enhancing photo-absorption and eliminating non-radiative relaxation have been proposed. In this study, we demonstrate that fluorescence efficiency of molybdenum disulfide quantum dots (MoS2 QDs) can be enhanced by single-atom metal (Au, Ag, Pt, Cu) modification. Four-fold enhancement of the fluorescence emission of MoS2 QDs is observed with single-atom Au modification. The underlying mechanism is ascribed to the passivation of non-radiative surface states owing to the new defect energy level of Au in the forbidden band that can trap excess electrons in n-type MoS2 , increasing the recombination probability of conduction band electrons with valence band holes of MoS2 . Our results open an avenue for enhancing the fluorescence efficiency of QDs via the modification of atomically dispersed metals, and extend their scopes and potentials in a fundamental way for economic efficiency and stability of single-atom metals.

4.
Sci Adv ; 8(2): eabl7707, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35030029

RESUMO

Correlated-electron systems have long been an important platform for various interesting phenomena and fundamental questions in condensed matter physics. As a pivotal process in these systems, d-d transitions have been suggested as a key factor toward realizing optical spin control in two-dimensional (2D) magnets. However, it remains unclear how d-d excitations behave in quasi-2D systems with strong electronic correlation and spin-charge coupling. Here, we present a systematic electronic Raman spectroscopy investigation on d-d transitions in a 2D antiferromagnet­NiPS3, from bulk to atomically thin samples. Two electronic Raman modes originating from the scattering of incident photons with d electrons in Ni2+ ions are observed at ~1.0 eV. This electronic process persists down to trilayer flakes and exhibits insensitivity to the spin ordering of NiPS3. Our study demonstrates the utility of electronic Raman scattering in investigating the unique electronic structure and its coupling to magnetism in correlated 2D magnets.

5.
Nat Commun ; 12(1): 4890, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385451

RESUMO

Low-dimensional hybrid perovskites have demonstrated excellent performance as white-light emitters. The broadband white emission originates from self-trapped excitons (STEs). Since the mechanism of STEs formation in perovskites is still not clear, preparing new low-dimensional white perovskites relies mostly on screening lots of intercalated organic molecules rather than rational design. Here, we report an atom-substituting strategy to trigger STEs formation in layered perovskites. Halogen-substituted phenyl molecules are applied to synthesize perovskite crystals. The halogen-substituents will withdraw electrons from the branched chain (-R-NH3+) of the phenyl molecule. This will result in positive charge accumulation on -R-NH3+, and thus stronger Coulomb force of bond (-R-NH3+)-(PbBr42-), which facilitates excitons self-trapping. Our designed white perovskites exhibit photoluminescence quantum yield of 32%, color-rendering index of near 90 and chromaticity coordinates close to standard white-light. Our joint experiment-theory study provides insights into the STEs formation in perovskites and will benefit tailoring white perovskites with boosting performance.

6.
Nano Lett ; 21(16): 6773-6780, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34382814

RESUMO

Polarity often refers to the charge carrier type of a semiconductor or the charging state of a functional group, generally dominating their functionality and performance. Herein we uncover a spontaneous and stochastic polarity-flipping phenomenon in monolayer WSe2, which randomly switches between the n-type and p-type states and is essentially triggered by fluctuating carrier flows from or to the adjacent WS2 monolayer. We have traced such fluctuating carrier flows by interfacial photocurrent measurements in a zero-bias two-terminal device. Such polarity flipping results in switching between the negative and positive correlations between the emission intensities of WS2 and WSe2 in the heterobilayer, which is further well-controlled by the electrostatic gate-tuning experiments in a capacitor-structure device. Our work not only demonstrates giant and intermittent carrier flows through long-range coupling in 2D heterostructures and a consequent spontaneous polarity flipping phenomenon but also provides a two-emitter system with a switchable correlation sign that could project future applications in optical logic devices.

7.
ACS Appl Mater Interfaces ; 13(34): 40922-40931, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34410699

RESUMO

The capability to manipulate the size of the electronic band gap is of importance to semiconductor technology. Among these, a wide direct band gap is particularly helpful in optoelectronic devices due to the efficient utilization of blue and ultraviolet light. Here, we reported a paraffin-enabled compressive folding (PCF) strategy to widen the band gap of two-dimensional (2D) materials. Due to the large thermal expansion coefficient of paraffin, folded 2D materials can be achieved via thermal engineering of the paraffin-assisted transfer process. It can controllably introduce 0.2-1.3% compressive strain onto folded structures depending on the temperature differences and transfer the folding product to both rigid and soft substrates. Exemplified by MoS2, its folded multilayers demonstrated blue-shifts at direct gap transition peaks, six times stronger photoluminescence intensity, almost double mobility, and 20 times higher photoresponsivity over unfolded MoS2. This PCF strategy can attain controllable widening band gap of 2D materials, which will open up novel applications in optoelectronics.

8.
ACS Appl Mater Interfaces ; 12(23): 25700-25708, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32407067

RESUMO

Aqueous rechargeable lithium-ion batteries (ARLIBs) as alternative energy storage devices have attracted tremendous attention because of their low cost and high safety. However, it is still a significant challenge to develop flexible high-performance ARLIBs for powering wearable devices because of the lack of all binder-free electrode materials. In this study, we develop one-step hydro-/solvothermal methods to design binder-free electrodes of LiCoO2 polygonal-sheeted arrays and rugby ball-shaped NaTi2(PO4)3 on carbon nanotube fibers as the cathode (LCO@CNTF) and the anode (NTP@CNTF). Both the electrodes are prepared at low temperatures without an extra calcination process, which is a great improvement for the growth process. The electrodes deliver remarkable capacity and extraordinary rate performance in a saturated Li2SO4 solution. Meanwhile, because of the synergy of LCO@CNTF and NTP@CNTF, an impressive capacity of 45.24 mA h cm-3 and an admirable energy density of 67.86 mW h cm-3 are achieved for the assembled quasi-solid-state fiber-shaped flexible ARLIB (FARLIB), which outperform most reported fiber-shaped aqueous rechargeable batteries. More encouragingly, our FARLIB possesses good flexibility, with a 94.74% capacity retention after bending 3000 times. Thus, this work represents a significant step toward developing FARLIBs and provides a new prospect in the design of wearable energy storage devices.

9.
Nat Commun ; 9(1): 753, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467477

RESUMO

Transition metal dichalcogenides have valley degree of freedom, which features optical selection rule and spin-valley locking, making them promising for valleytronics devices and quantum computation. For either application, a long valley polarization lifetime is crucial. Previous results showed that it is around picosecond in monolayer excitons, nanosecond for local excitons and tens of nanosecond for interlayer excitons. Here we show that the dark excitons in two-dimensional heterostructures provide a microsecond valley polarization memory thanks to the magnetic field induced suppression of valley mixing. The lifetime of the dark excitons shows magnetic field and temperature dependence. The long lifetime and valley polarization lifetime of the dark exciton in two-dimensional heterostructures make them promising for long-distance exciton transport and macroscopic quantum state generations.

10.
Nano Lett ; 18(3): 1686-1692, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29376381

RESUMO

Modulating second harmonic generation (SHG) by a static electric field through either electric-field-induced SHG or charge-induced SHG has been well documented. Nonetheless, it is essential to develop the ability to dynamically control and manipulate the nonlinear properties, preferably at high speed. Plasmonic hot carriers can be resonantly excited in metal nanoparticles and then injected into semiconductors within 10-100 fs, where they eventually decay on a comparable time scale. This allows one to rapidly manipulate all kinds of characteristics of semiconductors, including their nonlinear properties. Here we demonstrate that plasmonically generated hot electrons can be injected from plasmonic nanostructure into bilayer (2L) tungsten diselenide (WSe2), breaking the material inversion symmetry and thus inducing an SHG. With a set of pump-probe experiments we confirm that it is the dynamic separation electric field resulting from the hot carrier injection (rather than a simple optical field enhancement) that is the cause of SHG. Transient absorption measurement further substantiate the plasmonic hot electrons injection and allow us to measure a rise time of ∼120 fs and a fall time of 1.9 ps. Our study creates opportunity for the ultrafast all-optical control of SHG in an all-optical manner that may enable a variety of applications.

11.
Small ; 13(35)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28639278

RESUMO

The gate-tunable phonon properties in bilayer MoS2 are shown to be dependent on excitation energy. Raman intensity, Raman shift, and linewidth are affected by resonant excitation, while a nonresonant laser does not influence the intensity significantly. The gate-dependent Raman shift of A1g mode (either blue-, red-, or no-shift) is a result of the combined effect of antibonding electron and resonant-related decoupling effect. Although the decoupling effect cannot be directly measured due to the resonant background, it can be indirectly and qualitatively probed by observing A1g mode. This study on gate-tunable resonant Raman spectroscopy has clarified the influence of carrier doping on phonon properties and demonstrates a new degree of freedom in manipulating phonons in 2D material systems.

12.
Nanoscale ; 9(24): 8281-8287, 2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28585960

RESUMO

Recently, organic-inorganic lead halide perovskites have gained great attention for their breakthrough in photovoltaic and optoelectronics. However, their thermal transport properties that affect the device lifetime and stability are still rarely explored. In this work, the thermal conductivity properties of single crystal CH3NH3PbI3 platelets grown by chemical vapor deposition are studied via non-contact micro-photoluminescence (PL) spectroscopy. We developed a measurement methodology and derived expressions suitable for the thermal conductivity extraction for micro-sized perovskites. The room temperature thermal conductivity of ∼0.14 ± 0.02 W m-1 K-1 is extracted from the dependence of the PL peak energy on the excitation laser power. On changing the film thickness from 80 to 400 nm, the thermal conductivity does not show noticeable variations, indicating the minimal substrate effects due to the advantage of the suspended configuration. The ultra-low thermal conductivity of perovskites, especially thin films, suggests their promising applications for thermal isolation, such as thermal insulation and thermo-electricity.

13.
Nano Lett ; 17(6): 3982-3988, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28541055

RESUMO

Polariton lasing is the coherent emission arising from a macroscopic polariton condensate first proposed in 1996. Over the past two decades, polariton lasing has been demonstrated in a few inorganic and organic semiconductors in both low and room temperatures. Polariton lasing in inorganic materials significantly relies on sophisticated epitaxial growth of crystalline gain medium layers sandwiched by two distributed Bragg reflectors in which combating the built-in strain and mismatched thermal properties is nontrivial. On the other hand, organic active media usually suffer from large threshold density and weak nonlinearity due to the Frenkel exciton nature. Further development of polariton lasing toward technologically significant applications demand more accessible materials, ease of device fabrication, and broadly tunable emission at room temperature. Herein, we report the experimental realization of room-temperature polariton lasing based on an epitaxy-free all-inorganic cesium lead chloride perovskite nanoplatelet microcavity. Polariton lasing is unambiguously evidenced by a superlinear power dependence, macroscopic ground-state occupation, blueshift of the ground-state emission, narrowing of the line width and the buildup of long-range spatial coherence. Our work suggests considerable promise of lead halide perovskites toward large-area, low-cost, high-performance room-temperature polariton devices and coherent light sources extending from the ultraviolet to near-infrared range.

14.
Nature ; 541(7635): 62-67, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27974803

RESUMO

'Blinking', or 'fluorescence intermittency', refers to a random switching between 'ON' (bright) and 'OFF' (dark) states of an emitter; it has been studied widely in zero-dimensional quantum dots and molecules, and scarcely in one-dimensional systems. A generally accepted mechanism for blinking in quantum dots involves random switching between neutral and charged states (or is accompanied by fluctuations in charge-carrier traps), which substantially alters the dynamics of radiative and non-radiative decay. Here, we uncover a new type of blinking effect in vertically stacked, two-dimensional semiconductor heterostructures, which consist of two distinct monolayers of transition metal dichalcogenides (TMDs) that are weakly coupled by van der Waals forces. Unlike zero-dimensional or one-dimensional systems, two-dimensional TMD heterostructures show a correlated blinking effect, comprising randomly switching bright, neutral and dark states. Fluorescence cross-correlation spectroscopy analyses show that a bright state occurring in one monolayer will simultaneously lead to a dark state in the other monolayer, owing to an intermittent interlayer carrier-transfer process. Our findings suggest that bilayer van der Waals heterostructures provide unique platforms for the study of charge-transfer dynamics and non-equilibrium-state physics, and could see application as correlated light emitters in quantum technology.

15.
Nano Lett ; 15(8): 5653-7, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26203670

RESUMO

Controlling nonlinear light-matter interaction is important from a fundamental science point of view as well as a basis for future optoelectronic devices. Recent advances in two-dimensional crystals have created opportunities to manipulate nonlinear processes electrically. Here we report a strong second-harmonic generation (SHG) in a 2D WSe2 bilayer crystal caused by a back gate field. This unusual process takes place only when the gate polarity causes charge accumulation rather than depletion. Analysis based on a bond-charge model traces the origin of SHG to the nonuniform field distribution within a single monolayer, caused by the accumulated submonolayer screening charge in the tungsten plane. We name this phenomenon charge-induced SHG (CHISHG), which is fundamentally different from the field- or current-induced SHG. Our findings provide a potentially valuable technique for understanding and noninvasive probing of charge and current distributions in future low dimensional electronic devices.

16.
Nat Commun ; 6: 6519, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25735443

RESUMO

Graphene/hexagonal boron nitride (h-BN) vertical heterostructures have recently revealed unusual physical properties and new phenomena, such as commensurate-incommensurate transition and fractional quantum hall states featured with Hofstadter's butterfly. Graphene-based devices on h-BN substrate also exhibit high performance owing to the atomically flat surface of h-BN and its lack of charged impurities. To have a clean interface between the graphene and h-BN for better device performance, direct growth of large-area graphene/h-BN heterostructures is of great importance. Here we report the direct growth of large-area graphene/h-BN vertical heterostructures by a co-segregation method. By one-step annealing sandwiched growth substrates (Ni(C)/(B, N)-source/Ni) in vacuum, wafer-scale graphene/h-BN films can be directly formed on the metal surface. The as-grown vertically stacked graphene/h-BN structures are demonstrated by various morphology and spectroscopic characterizations. This co-segregation approach opens up a new pathway for large-batch production of graphene/h-BN heterostructures and would also be extended to the synthesis of other van der Waals heterostructures.

17.
Nano Lett ; 13(11): 5666-71, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24147753

RESUMO

Chiral structure determination of single-walled carbon nanotube (SWNT), including its handedness and chiral index (n,m), has been regarded as an intractable issue for both fundamental research and practical application. For a given SWNT, the n and m values can be conveniently deduced if an arbitrary two of its three crucial structural parameters, that is, diameter d, chiral angle θ, and electron transition energy E(ii), are obtained. Here, we have demonstrated a novel approach to derive the (n,m) indices from the θ, d, and E(ii) of SWNTs. Handedness and θ were quickly measured based on the chirality-dependent alignment of SWNTs on graphite surface. By combining their measured d and E(ii), (n,m) indices of SWNTs can be independently and uniquely identified from the (θ,d) or (θ,E(ii)) plots, respectively. This approach offers intense practical merits of high-efficiency, low-cost, and simplicity.

18.
Small ; 9(8): 1206-24, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23529788

RESUMO

Surface-enhanced Raman spectroscopy (SERS) imparts Raman spectroscopy with the capability of detecting analytes at the single-molecule level, but the costs are also manifold, such as a loss of signal reproducibility. Despite remarkable steps having been taken, presently SERS still seems too young to shoulder analytical missions in various practical situations. By the virtue of its unique molecular structure and physical/chemical properties, the rise of graphene opens up a unique platform for SERS studies. In this review, the multi-role of graphene played in SERS is overviewed, including as a Raman probe, as a substrate, as an additive, and as a building block for a flat surface for SERS. Apart from versatile improvements of SERS performance towards applications, graphene-involved SERS studies are also expected to shed light on the fundamental mechanism of the SERS effect.

20.
Proc Natl Acad Sci U S A ; 109(24): 9281-6, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22623525

RESUMO

Surface enhanced Raman spectroscopy (SERS) is an attractive analytical technique, which enables single-molecule sensitive detection and provides its special chemical fingerprints. During the past decades, researchers have made great efforts towards an ideal SERS substrate, mainly including pioneering works on the preparation of uniform metal nanostructure arrays by various nanoassembly and nanotailoring methods, which give better uniformity and reproducibility. Recently, nanoparticles coated with an inert shell were used to make the enhanced Raman signals cleaner. By depositing SERS-active metal nanoislands on an atomically flat graphene layer, here we designed a new kind of SERS substrate referred to as a graphene-mediated SERS (G-SERS) substrate. In the graphene/metal combined structure, the electromagnetic "hot" spots (which is the origin of a huge SERS enhancement) created by the gapped metal nanoislands through the localized surface plasmon resonance effect are supposed to pass through the monolayer graphene, resulting in an atomically flat hot surface for Raman enhancement. Signals from a G-SERS substrate were also demonstrated to have interesting advantages over normal SERS, in terms of cleaner vibrational information free from various metal-molecule interactions and being more stable against photo-induced damage, but with a comparable enhancement factor. Furthermore, we demonstrate the use of a freestanding, transparent and flexible "G-SERS tape" (consisting of a polymer-layer-supported monolayer graphene with sandwiched metal nanoislands) to enable direct, real time and reliable detection of trace amounts of analytes in various systems, which imparts high efficiency and universality of analyses with G-SERS substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...