Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 415
Filtrar
1.
Plant Cell Rep ; 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33398474

RESUMO

KEY MESSAGE: CCA1α and CCA1ß protein variants respond to environmental light and temperature cues, and higher temperature promotes CCA1ß protein production and causes its retention detectable in the cytoplasm. CIRCADIAN CLOCK ASSOCIATED1 (CCA1), as the core transcription factor of circadian clock, is involved in the regulation of endogenous circadian rhythm in Arabidopsis. Previous studies have shown that CCA1 consists of two abundant splice variants, fully spliced CCA1α and intron-retaining CCA1ß. CCA1ß is believed to form a nonfunctional heterodimer with CCA1α and its closed-related homolog LHY. Many studies have established that CCA1ß is a transcription product, while how CCA1ß protein is produced and how two CCA1 isoforms respond to environmental cues have not been elucidated. In this study, we identified CCA1α and CCA1ß protein variants under different photoperiods with warm or cold temperature cycles, respectively. Our results showed that CCA1 protein production is regulated by prolonged light exposure and warm temperature. The protein levels of CCA1α and CCA1ß peak in the morning, but the detection of CCA1ß is dependent on immunoprecipitation enrichment at 22 °C. Higher temperature of 37 °C promotes CCA1ß protein production and causes its retention to be detectable in the cytoplasm. Overall, our results indicate that two splice variants of the CCA1 protein respond to environmental light and temperature signals and may, therefore, maintain the circadian rhythms and give individuals the ability to adapt to environment.

2.
J Exp Med ; 218(3)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33346797

RESUMO

Podocyte injury is a common hallmark in various glomerular diseases. The level of LRRC55 was increased in podocytes of patients with focal segmental glomerulosclerosis (FSGS), diabetic nephropathy (DN), and membranous nephropathy (MN). Upregulated LRRC55 and increased intracellular Ca2+ led to BK channel activation and the loss of intracellular potassium, resulting in apoptosome formation and caspase-3 activation in angiotensin II (Ang II)-treated podocytes. Knockout of Lrrc55 or the BK channel prevented the BK current and ameliorated podocyte injury in Ang II-treated mice. Upstream, NFATc3 regulated the expression of LRRC55. Increased LRRC55 expression in podocytes was also evident in animal models of FSGS, DN, and MN. Treatment with losartan or LRRC55 siRNA suppressed LRRC55 expression, prevented BK channel activation, and attenuated podocyte injury in animal models of FSGS, DN, and MN. In conclusion, upregulated LRRC55 promotes BK channel activation and aggravates cell injury in podocytes in FSGS, DN, and MN. LRRC55 inhibition may represent a new therapeutic approach for podocyte injury.

3.
Appl Opt ; 59(33): 10493-10497, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33361983

RESUMO

Mode-locked laser operation near 2.05 µm based on a mixed sesquioxide Tm:LuYO3 ceramic is demonstrated. Continuous-wave and wavelength-tunable operation is also investigated. Employing a GaSb-based semiconductor saturable absorber mirror as a saturable absorber, a maximum average output power of 133 mW is obtained for a pulse duration of 59 fs. Pulses as short as 54 fs, i.e., eight optical cycles are generated at a repetition rate of ∼78MHz with an average output power of 51 mW. To the best of our knowledge, this result represents the shortest pulse duration ever achieved from Tm-based solid-state mode-locked lasers.

4.
Mol Plant ; 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33307246

RESUMO

Rice grain oil is a valuable nutrient source. However, the genetic basis of oil biosynthesis in rice grains remains unclear. In this study, we performed a genome-wide association study on oil composition and oil concentration in a diverse panel of 533 cultivated rice accessions. High variation for eleven oil-related traits was observed and oil composition was found to differentiate in rice grains among the subpopulations. We identified 46 loci that are significantly associated with grain oil concentration or composition, of which 16 were detected in three RIL populations. Twenty-six candidate genes encoding enzymes involved in oil metabolism were identified from these forty-six loci, of which four genes (OsPAL6, OsLIN6, OsMYR2 and OsFAE6) were found to contribute to natural variation in oil composition and show differentiation among the subpopulations. Interestingly, population genetic analyses revealed that specific haplotypes of OsPAL6 and OsLIN6 were selected in japonica rice. Based on these results, we propose a possible oil biosynthetic pathway in rice grains. Collectively, our study provides new insights into the genetic basis of oil biosynthesis in rice grains and would facilitate marker-based breeding of rice varieties with enhanced oil and grain quality.

5.
Nano Lett ; 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33301334

RESUMO

Transition-metal dichalcogenide heterostructures are an emergent platform for novel many-body states from exciton condensates to nanolasers. However, their exciton dynamics are difficult to disentangle due to multiple competing processes with time scales varying over many orders of magnitude. Using a configurable nano-optical cavity based on a plasmonic scanning probe tip, the radiative (rad) and nonradiative (nrad) relaxation of intra- and interlayer excitons is controlled. Tuning their relative rates in a WSe2/MoSe2 heterobilayer over 6 orders of magnitude in tip-enhanced photoluminescence spectroscopy reveals a cavity-induced crossover from nonradiative quenching to Purcell-enhanced radiation. Rate equation modeling with the interlayer charge transfer time as a reference clock allows for a comprehensive determination from the long interlayer exciton (IX) radiative lifetime τIXrad = (94 ± 27) ns to the 5 orders of magnitude faster competing nonradiative lifetime τIXnrad = (0.6 ± 0.2) ps. This approach of nanocavity clock spectroscopy is generally applicable to a wide range of excitonic systems with competing decay pathways.

6.
Plant Signal Behav ; : 1855384, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33270500

RESUMO

Circadian clock operates autonomously in each cell and drives the approximately 24-h rhythm in individual tissues and organs. It is known that the evening complex (EC) components and GI are required for ambient temperature perception and thermomorphogenesis in higher plants. Our previous study found that PRR9 and 7 are required for the lengthened period of the circadian rhythm in roots, and they are responsible for the temperature overcompensation in shoots. However, the molecular mechanism of the circadian clock, especially in different tissues, in response to temperature oscillations remains largely unknown. Here, we studied the transcript levels of EC genes and GI of the prr7 prr9 mutant shoots and roots in response to 22°C or 28°C, respectively. The results showed that PRR9, 7 in roots inhibited the transcripts accumulation of ELF3, ELF4, and LUX at 28°C. In addition, loss-of-function of both PRR9 and 7 caused an increase in GI expression at 22°C, but warm temperature of 28°C limited the negative effect of PRR9, 7 on GI in roots. Our findings proposed a temperature-dependent molecular basis for root-specific circadian clock and indicated the critical role for PRR9, 7 in negatively regulating ELF3, ELF4, LUX, and GI in the circadian gating of thermoresponse.

7.
Mol Oncol ; 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33244865

RESUMO

Circular RNAs (circRNAs) have been shown to modulate gene expression and participate in the development of multiple malignancies. The purpose of this study was to investigate the role of circ_0008039 in breast cancer (BC). The expression of circ_0008039, miR-140-3p and spindle and kinetochore-associated protein 2 (SKA2) was detected by qRT-PCR. Cell viability, colony formation, migration and invasion were evaluated using methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay, colony formation assay, and transwell assay, respectively. Glucose consumption and lactate production were measured using commercial kits. Protein levels of hexokinase II (HK2) and SKA2 were determined by western blot. The interaction between miR-140-3p and circ_0008039 or SKA2 was verified by dual-luciferase reporter assay. Finally, a mouse xenograft model was established to investigate the roles of circ_0008039 in BC in vivo. We found that circ_0008039 and SKA2 were upregulated in BC tissues and cells, while miR-140-3p was downregulated. Knockdown of circ_0008039 suppressed BC cell proliferation, migration, invasion, and glycolysis. Moreover, miR-140-3p could bind to circ_0008039 and its inhibition reversed the inhibitory effect of circ_0008039 interference on proliferation, migration, invasion, and glycolysis in BC cells. SKA2 was verified as a direct target of miR-140-3p and its overexpression partially inhibited the suppressive effect of miR-140-3p restoration in BC cells. Additionally, circ_0008039 positively regulated SKA2 expression by sponging miR-140-3p. Consistently, silencing circ_0008039 restrained tumor growth via increasing miR-140-3p and decreasing SKA2. In conclusion, circ_0008039 downregulation suppressed BC cell proliferation, migration, invasion, and glycolysis partially through regulating the miR-140-3p/SKA2 axis, providing an important theoretical basis for treatment of BC.

8.
Food Chem ; : 128645, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33229158

RESUMO

This study analyzed the meat and bone meal (MBM) matrix complexity from the perspective of fraction composition diversity and a classification strategy was proposed to accurately and rapidly identify the MBM species based on near infrared spectroscopy (NIRS). Partial Least Squares-Discrimination Analysis (PLS-DA) based on full samples, meat meal (MM), MBM and bone meal (BM) performed with decreasing classification errors of 0.115, 0.079, 0.044 and 0.039 which were partly caused by wide sample range; bone fraction content had positive correlation with most of MBM species differences reflected by principal component scores; and PLS-DA classification errors among MM, MBM and BM were lower than 0.013. To take fully advantage of the above results, a sequential classification strategy was proposed; near infrared spectra were selected (belong to MM, MBM or BM) and then species discrimination analysis was conducted based on the specific PLS-DA model.

9.
Pak J Med Sci ; 36(7): 1484-1489, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33235561

RESUMO

Objective: Diabetic nephropathy is a serious threat to human health, and its incidence is on the rise. End-stage diabetic nephropathy (ESDN) requires extra investigation due to its complexity and severity, as well as serious concurrent diseases. Our objective was to compare the efficacy of hemodialysis (HD) and peritoneal dialysis (PD) in the treatment of ESDN. Methods: Clinical data of 84 patients with ESDN admitted to our hospital from June 2016 to June 2018 were retrospectively analyzed. The patients were divided into an HD group that received hemodialysis and a PD group that received peritoneal dialysis. Their general conditions, biochemical indicators, residual renal function and incidence of complications were recorded and compared between the two groups. Results: (1) No significant difference in diastolic blood pressure, systolic blood pressure, body weight, or urine output was detected between the two groups at the beginning of dialysis (P>0.05). (2) Compared to the PD group, the HD group had significantly lower total cholesterol (TC) and triglyceride (TG) (P<0.05), and significantly higher total protein (TP) and albumin (ALB) after treatment (P<0.05). (3) The two groups also showed significant difference in residual renal function after treatment (P<0.05). (4) The HD group had significantly higher systolic pressure than the PD group after treatment (P<0.05). And more cases of infection were observed in the PD group than the HD group (P<0.05). Conclusion: Both HD and PD are used for treatment of ESDN, and can achieve similar calcium and phosphorus control. Compared to HD, PD has less adverse effect on hemodynamics and better preserves residual renal function, but is more likely to cause malnutrition and disorders of lipid metabolism. Therefore, choice of dialysis method should be based on specific conditions of each patient.

10.
Front Immunol ; 11: 2026, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33162971

RESUMO

Cancer-associated fibroblasts (CAFs) are an essential component in the tumor microenvironment and have been reported to contribute to tumor progression through many mechanisms; however, the detailed mechanism underlying the immune-suppression effect of CAFs is not clearly defined. In this study, human breast cancer-derived CAFs were cultured, and CAF-derived exosomes in a culture medium were isolated. Using a miRNA profiles assay, we identify a significantly higher level of microRNA-92 isolated in CAFs exosomes. After treatment by CAF-derived exosomes, breast cancer cells express higher programmed cell death receptor ligand 1 (PD-L1), accompanied with increased miR-92 expression. Increased PD-L1 expression, which was induced by CAF-derived exosomes, significantly promotes apoptosis and impaired proliferation of T cells. The underlying mechanism of this effect was studied, proliferation and migration of breast cancer cells were increased after the transfection of miR-92, LATS2 was recognized as a target gene of miR-92, and further confirmed by a luciferase assay. Immunoprecipitation showed that LATS2 can interact with YAP1, chromatin immunoprecipitation confirmed that after nuclear translocation YAP1 could bind to the enhancer region of PD-L1 to promotes transcription activity. Furthermore, the animal study confirmed that CAFs significantly promoted tumor progression and impaired the function of tumor-infiltrated immune cells in vivo. Our data revealed a novel mechanism that can induce immune suppression in the tumor microenvironment.

11.
Cell Death Dis ; 11(10): 893, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093461

RESUMO

Pancreatic adenocarcinoma (PDAC) is an extremely malignant tumor that is associated with low survival rates. Fisetin is a natural flavonoid that shows diverse antitumor effects, including DNA damage, in various cancers. Increasing studies have demonstrated that epigenetic modifications play critical roles in DNA-damage response. However, the epigenetic regulation mechanism of fisetin in cancers is hardly studied. RFXAP is a critical transcription factor for MHC II molecules, however, its transcriptional role in PDAC is poorly understood. The anti-PDAC effect of fisetin was measured by CCK-8, flow cytometry, xenograft tumor nude mice model. DNA-damage levels were examined by immunofluorescence. Bioinformatics analysis was used to examine the expression of RFXAP and other genes involved in DNA-damage response. ChIP sequencing was used to explore the transcriptional role of RFXAP. The expression of target gene KDM4A was measured by qRT-PCR and western blots. KDM4A promoter activity was analyzed using dual-luciferase reporter assay. RFXAP overexpressing or silencing of PDAC cells was used to explore the effect of RFXAP in DNA damage induced by fisetin. We found that fisetin inhibited cell proliferation and induced DNA damage and S-phase arrest in PDAC. Expression of RFXAP and other DNA-damage response genes were upregulated by fisetin. We revealed that RFXAP expression was relatively low in PDAC and correlated with tumor stage and poor prognosis. Then we explored the transcriptional role of RFXAP and found that RFXAP targeted KDM4A, a special demethylase specific for tri- and dimethylated histone H3K36. We found that overexpression of RFXAP upregulated KDM4A and attenuated methylation of H3K36, thereby impairing DNA repair and enhancing the DNA damage induced by fisetin, while RFXAP silencing showed the opposite effect. We also found the function of fisetin in enhancing the effect of chemotherapy on pancreatic cancer cells. Our findings revealed that fisetin induced DNA damage via RFXAP/KDM4A-dependent histone H3K36 demethylation, thus causing inhibition of proliferation in PDAC.

12.
Sci Rep ; 10(1): 17213, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057058

RESUMO

By first-principles calculations, we investigate the geometric stability, electronic and optical properties of the type-II PN-WSe2 and type-I PAs-WSe2 van der Waals heterostructures(vdWH). They are p-type semiconductors with indirect band gaps of 1.09 eV and 1.08 eV based on PBE functional respectively. By applying the external gate field, the PAs-WSe2 heterostructure would transform to the type-II band alignment from the type-I. With the increasing of magnitude of the electric field, two heterostructures turn into the n-type semiconductors and eventually into metal. Especially, PN/PAs-WSe2 vdWH are both high refractive index materials at low frequencies and show negative refractive index at high frequencies. Because of the steady absorption in ultraviolet region, the PAs-WSe2 heterostructure is a highly sensitive UV detector material with wide spectrum. The type-II PN-WSe2 heterostructure possesses giant and broadband absorption in the near-infrared and visible regions, and its solar power conversion efficiency of 13.8% is higher than the reported GaTe-InSe (9.1%), MoS2/p-Si (5.23%) and organic solar cells (11.7%). It does project PN-WSe2 heterostructure a potential for application in excitons-based solar cells.

13.
Plant Cell Environ ; 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33125160

RESUMO

The circadian clock allows plants to actively adapt to daily environmental changes through temporal regulation of physiological traits. In response to drought stress, circadian oscillators gate ABA signalling, but the molecular mechanisms remain unknown, especially in crops. Here, we investigated the role of soybean circadian oscillators GmLCLa1, GmLCLa2, GmLCLb1 and GmLCLb2 in leaf water stress response. Under dehydration stress, the GmLCL quadruple mutant had decreased leaf water loss. We found that the dehydration treatment delayed the peak expression of GmLCL genes by 4 hr. In addition, the circadian clock in hairy roots also responded to ABA, which led to a free-running rhythm with shortened period. Importantly, in the gmlclq quadruple mutant, diurnal expression phases of several circadian-regulated ABA receptor, ABA catabolism and ABA signalling-related genes were shifted significantly to daytime. Moreover, in the gmlclq mutant leaf, expression of GmPYL17, GmCYP707A, GmABI2 and GmSnRK2s was increased under water dehydration stress. In summary, our results show that GmLCLs act as negative regulators of ABA signalling in leaves during dehydration response.

14.
Phys Chem Chem Phys ; 22(37): 21412-21420, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32940302

RESUMO

Using the density functional theory (DFT) calculations, we find that  Janus group-III chalcogenide monolayers can serve as a suitable substrate for silicene, and the Dirac electron band properties of silicene are also fully preserved. The maximum opened band gap can reach 179 meV at the Dirac point due to the interaction of silicene and the polar two-dimensional (2D) substrate. In addition, the electronic band structure of the heterostructure can be modulated by applying an electric field where its predicted band gap increases or decreases according to the direction of the applied external electric field. Furthermore, an insight into the electron structures can be understood by analyzing the electron energy-loss (EEL) spectra. From these results, we also predict that heterostructures with polar 2D substrates have broad application prospects in multi-functional devices. Besides, Janus group-III chalcogenide monolayers can be used as good substrates for growing silicene and the modulation of the electronic structure can also be applied to nanodevices and optoelectronic devices.

15.
Nat Mater ; 19(12): 1276-1289, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32948831

RESUMO

Ultrathin van der Waals materials and their heterostructures offer a simple, yet powerful platform for discovering emergent phenomena and implementing device structures in the two-dimensional limit. The past few years has pushed this frontier to include magnetism. These advances have brought forth a new assortment of layered materials that intrinsically possess a wide variety of magnetic properties and are instrumental in integrating exchange and spin-orbit interactions into van der Waals heterostructures. This Review Article summarizes recent progress in exploring the intrinsic magnetism of atomically thin van der Waals materials, manipulation of their magnetism by tuning the interlayer coupling, and device structures for spin- and valleytronic applications.

16.
Cancer Cell Int ; 20: 454, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32944002

RESUMO

Background: Triple-negative breast cancer (TNBC) is a clinically aggressive subtype of breast cancer with a bad prognosis. Chemotherapy is still the standard of care for TNBC treatment. Circular RNAs (CircRNAs) have been recently discovered to be closely involved in the initiation and development of human cancers. Herein, we focus our attention on the functions and underlying mechanisms of circUBE2D2 in TNBC progression and chemoresistance. Methods: The expression of circUBE2D2, miR-512-3p, and cell division cycle associated 3 (CDCA3) mRNA were determined by qRT-PCR. CCK-8, colony formation, transwell and flow cytometry assays were performed to detect cell proliferation, migration, invasion and apoptosis. Western blot assay was utilized to measure the protein level of CDCA3. RNA pull-down, luciferase reporter and RIP experiments were employed to examine the possible regulatory mechanism of circUBE2D2. Results: CircUBE2D2 expression was elevated in TNBC tissues and cells. TNBC patients with high circUBE2D2 expression are inclined to present advanced TNM stage, lymph node metastasis and adverse prognosis. Knockdown of circUBE2D2 repressed cell proliferation, migration and invasion in vitro, and impeded tumor growth in vivo. Moreover, silencing of circUBE2D2 reduced doxorubicin resistance of TNBC cells. In-depth mechanism analysis revealed that circUBE2D2 served as a miRNA sponge to protect CDCA3 from the attack of miR-512-3p. Additionally, the tumor-suppressive effect induced by circUBE2D2 depletion was greatly impaired upon miR512-3p down-regulation or CDCA3 overexpression. Also, depletion of circUBE2D2 decreased the resistance to doxorubicin through regulating miR-512-3p/CDCA3 axis. Conclusion: CircUBE2D2 promoted TNBC progression and doxorubicin resistance through acting as a sponge of miR-512-3p to up-regulate CDCA3 expression. Targeting circUBE2D2 combine with doxorubicin might be exploited as a novel therapy for TNBC.

17.
PeerJ ; 8: e9740, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32879803

RESUMO

As a small order of Pterygota (Insecta), Ephemeroptera has almost 3,500 species around the world. Ephemerellidae is a widely distributed common group of Ephemeroptera. However, the relationship among Ephemerellidae, Vietnamellidae and Teloganellidae is still in dispute. In this study, we sequenced six complete mitogenomes of three genera from Ephemerellidae (Insecta: Ephemeroptera): Ephemerella sp. Yunnan-2018, Serratella zapekinae, Serratella sp. Yunnan-2018, Serratella sp. Liaoning-2019, Torleya grandipennis and T. tumiforceps. These mitogenomes were employed to reveal controversial phylogenetic relationships among the Ephemeroptera, with emphasis on the phylogenetic relationships among Ephemerellidae. The lengths of the six mayfly mitogenomes ranged from 15,134 bp to 15,703 bp. Four mitogenomes of Ephemerella sp. Yunnan-2018, Serratella zapekinae, Serratella sp. Yunnan-2018 and Serratella sp. Liaoning-2019 had 22 tRNAs including an inversion and translocation of trnI. By contrast, the mitogenomes of T. tumiforceps and T. grandipennis had 24 tRNAs due to an extra two copies of inversion and translocation of trnI. Within the family Ephemerellidae, disparate gene rearrangement occurred in the mitogenomes of different genera: one copy of inversion and translocation trnI in the genera Ephemerella and Serratella, and three repeat copies of inversion and translocation of trnI in the genus Torleya. A large non-coding region (≥200 bp) between trnS1 (AGN) and trnE was detected in T. grandipennis and T. tumiforceps. Among the phylogenetic relationship of the Ephemeroptera, the monophyly of almost all families except Siphlonuridae was supported by BI and ML analyses. The phylogenetic results indicated that Ephemerellidae was the sister clade to Vietnamellidae whereas Teloganellidae was not a sister clade of Ephemerellidae and Vietnamellidae.

18.
Mol Cancer ; 19(1): 130, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843065

RESUMO

BACKGROUND: Pancreatic cancer is one of the most lethal human cancers. N6-methyladenosine (m6A), a common eukaryotic mRNA modification, plays critical roles in both physiological and pathological processes. However, its role in pancreatic cancer remains elusive. METHODS: LC/MS was used to profile m6A levels in pancreatic cancer and normal tissues. Bioinformatics analysis, real-time PCR, immunohistochemistry, and western blotting were used to identify the role of m6A regulators in pancreatic cancer. The biological effects of methyltransferase-like 14 (METTL14), an mRNA methylase, were investigated using in vitro and in vivo models. MeRIP-Seq and RNA-Seq were used to assess the downstream targets of METTL14. RESULTS: We found that the m6A levels were elevated in approximately 70% of the pancreatic cancer samples. Furthermore, we demonstrated that METTL14 is the major enzyme that modulates m6A methylation (frequency and site of methylation). METTL14 overexpression markedly promoted pancreatic cancer cell proliferation and migration both in vitro and in vivo, via direct targeting of the downstream PERP mRNA (p53 effector related to PMP-22) in an m6A-dependent manner. Methylation of the target adenosine lead to increased PERP mRNA turnover, thus decreasing PERP (mRNA and protein) levels in pancreatic cancer cells. CONCLUSIONS: Our data suggest that the upregulation of METTL14 leads to the decrease of PERP levels via m6A modification, promoting the growth and metastasis of pancreatic cancer; therefore METTL14 is a potential therapeutic target for its treatment.

19.
Adv Mater ; 32(37): e2003240, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32776373

RESUMO

The recent discovery of magnetism within the family of exfoliatable van der Waals (vdW) compounds has attracted considerable interest in these materials for both fundamental research and technological applications. However, current vdW magnets are limited by their extreme sensitivity to air, low ordering temperatures, and poor charge transport properties. Here the magnetic and electronic properties of CrSBr are reported, an air-stable vdW antiferromagnetic semiconductor that readily cleaves perpendicular to the stacking axis. Below its Néel temperature, TN  = 132 ± 1 K, CrSBr adopts an A-type antiferromagnetic structure with each individual layer ferromagnetically ordered internally and the layers coupled antiferromagnetically along the stacking direction. Scanning tunneling spectroscopy and photoluminescence (PL) reveal that the electronic gap is ΔE  = 1.5 ± 0.2 eV with a corresponding PL peak centered at 1.25 ± 0.07 eV. Using magnetotransport measurements, strong coupling between magnetic order and transport properties in CrSBr is demonstrated, leading to a large negative magnetoresistance response that is unique among vdW materials. These findings establish CrSBr as a promising material platform for increasing the applicability of vdW magnets to the field of spin-based electronics.

20.
Cardiovasc Ther ; 2020: 1389312, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32788926

RESUMO

Inflammation plays a major role in the development of myocardial ischemia-reperfusion (IR) injury. Recombinant human brain natriuretic peptide (rhBNP), a man-made version of a peptide that is elevated in heart failure, exhibits anti-inflammatory effects in various tissues. However, its role in myocardial IR injury remains unclear. In this study, we demonstrate that treatment with rhBNP provided protection for mice against myocardial IR injury as manifested by reduced infarct size and well-preserved myocardial, attenuated inflammatory infiltration and CD4+ T cell proliferation function, and inhibited expression of proinflammatory related genes. Furthermore, mechanistic studies revealed that rhBNP inhibited Jurkat T proliferation by promoting PI3K/AKT/mTOR phosphorylation. Collectively, our data suggest that the administration of rhBNP during IR injury could expand our understanding of the cardioprotective effects of rhBNP.


Assuntos
Anti-Inflamatórios/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/enzimologia , Peptídeo Natriurético Encefálico/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Linfócitos T CD4-Positivos/enzimologia , Linfócitos T CD4-Positivos/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Células Jurkat , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/imunologia , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/imunologia , Miocárdio/patologia , Fosforilação , Proteínas Recombinantes/farmacologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA