Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(6): 3050-3059, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31973522

RESUMO

Arenes with four different contiguous substituents, i.e. 1,2,3,4-tetrasubstituted arenes, are commonly found in bioactive compounds, but they are nontrivial to access via conventional methods. Through addressing the "meta constraint" in the palladium/norbornene (Pd/NBE) cooperative catalysis, which is the difficulty of tolerating a sizable meta substituent in aryl halide substrates, here a modular and regioselective approach is realized for preparing 1,2,3,4-tetrasubstituted arenes. One key is the use of a C2-amide-substituted NBE, and a combined experimental and computational study reveals its role in promoting the NBE insertion and the ortho C-H metalation steps. The scope is broad: a variety of electrophiles and nucleophiles could be introduced to the ortho and ipso positions, respectively, with 1,4-disubstituted aryl halides, leading to diverse unsymmetrical contiguous tetrasubstituted arenes. Application of this approach has been demonstrated in streamlined syntheses of several bioactive compounds.

2.
FASEB J ; 34(1): 720-734, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31914611

RESUMO

Confusion persists over pathogenesis of spondylolysis. To confirm pathogenicity of the previously identified causative mutation of spondylolysis and investigate the genetic etiology, we generate a new mouse line harboring D673V mutation in the Slc26a2 gene. D673V mutation induces delayed endochondral ossification characterized by transiently reduced chondrocyte proliferation in mice at the early postnatal stage. Adult D673V homozygotes exhibit dysplastic isthmus and reduced bone volume of the dorsal vertebra resembling the detached vertebral bony structure when spondylolysis occurs, including the postzygopophysis, vertebral arch, and spinous process, which causes biomechanical alterations around the isthmic region of L4-5 vertebrae indicated by finite element analysis. Consistently, partial ablation of Slc26a2 in vertebral skeletal cells using Col1a1-Cre; Slc26a2 fl/fl mouse line recapitulates a similar but worsened vertebral phenotype featured by lamellar isthmus. In addition, when reaching late adulthood, D673V homozygotes develop an evident bone-loss phenotype and show impaired osteogenesis. These findings support a multifactorial etiology, involving congenitally predisposed isthmic conditions, altered biomechanics, and age-dependent bone loss, which leads to SLC26A2-related spondylolysis.

3.
ACS Nano ; 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31829558

RESUMO

The many advantageous optoelectronic properties of lead halide perovskites have made them promising materials in both solar cells and light source applications. However, lead halide perovskites are soluble in polar solvents, which hinders their practical applications. Thus, the effective protection of perovskite against polar solvents is of great significance. Herein, we report a waterproof CsPbBr3 nanoplate (NP) laser protected by large-scale on-chip microprocess-compatible atomic layer deposition (ALD) Al2O3. The 50 nm Al2O3 coated CsPbBr3 NPs can continuously lase in water for over an hour and can still lase after being immersed in water for a month. Moreover, the lasing behaviors of the 20 nm Al2O3 coated CsPbBr3 NP, in the mixed solution of water and glycerine with the refractive index ranging from 1.33 to 1.47, are also studied. As the environmental refractive index increases, the NP laser goes through a mode selection process, showing single-mode (540.3 nm) to dual-mode and to single-mode (533.9 nm) lasing behavior, which is caused by mode competition resulting from the decrease of quality factor (Q factor) and the blue-shift of the material's gain spectra. Besides, lasing thresholds of the CsPbBr3 NP increase with the environmental refractive index, which can be utilized for sensing with a measured sensitivity of 129.7 µJ cm-2 RIU-1 (per refractive index unit) (388.2 µJ cm-2 RIU-1) for the long (short)-wavelength lasing mode. Our work demonstrates that the ALD Al2O3 protection method can effectively protect CsPbBr3 against polar solvents, enhance the material's stability, and enable perovskite's practical applications in both on-chip integration and solvent systems.

4.
Oncogene ; 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831834

RESUMO

Previous studies have shown that the main function of VASP is to regulate the cytoskeleton and play an important role in promoting tumor cell metastasis. In this study, we first reveal that VASP is located in the nucleus of breast cancer cells and elucidate a Wnt/ß-catenin/VASP positive feedback loop. We identify that VASP is a target gene of Wnt/ß-catenin signaling pathway, and activation of Wnt/ß-catenin signaling pathway can significantly upregulate VASP protein expression, while upregulated VASP protein can in turn promote translocation of ß-catenin and DVL3 proteins into the nucleus. In the nucleus, VASP, DVL3, ß-catenin, and TCF4 can form VASP/DVL3/ß-catenin/TCF4 protein complex, activating Wnt/ß-catenin signaling pathway, and promoting the expression of target genes VASP, c-myc, and cyclin D1. Thus, our study reveals that there is a Wnt/ß-catenin/VASP malignant positive feedback loop in breast cancer, which promotes the proliferation and migration of breast cancer cells, and breaking this positive feedback loop may provide new strategy for breast cancer treatment.

5.
Environ Pollut ; 258: 113758, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31881510

RESUMO

Natural halloysite nanotubes (HNTs) with a hollow lumen are already applied in numerous fields and enter the environment in increasing quantities, which may have effects on animal and human health. However their in vivo toxicity in mammals is still largely unclear. The aim of this study is to assess acute oral toxicity of HNTs in the stomach of mice and recovery. Oral HNTs at low dose (5 mg HNTs/kg BW) for 30 days increased in daily food and water intake and promoted mouse growth with no obvious adverse effect on the stomach. The promotive effect on mouse growth disappeared after cessation of oral administration of the nanotubes. Oral HNTs for 30 days at high dose (50 mg HNTs/kg BW) induced Si and Al accumulation in the stomach, which caused oxidative stress, inflammation and iNOS-mediated damage in the organ. The damage in the stomach led to slight atrophic gastritis and reduced mouse growth. Oral HNTs-induced changes at high dose were not observed after a 30-days recovery period. The findings provided the evidence that oral HNTs-induced acute toxicity in the stomach was reversible. More importantly, this research showed that Al and Si were cleared out of the mice by hepatic excretion and renal excretion, respectively, during the recovery period. The results suggest that HNTs at low concentration in environments have no adverse effect on mice, while there are health risks to mice under severe contamination by HNTs.

6.
Cell Death Dis ; 10(12): 887, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31767864

RESUMO

Chordoma is a malignant primary osseous spinal tumor with pronounced chemoresistance. However, the mechanisms of how chordoma cells develop chemoresistance are still not fully understood. Cytokeratin 8 (KRT8) is a molecular marker of notochordal cells, from which chordoma cells were believed to be originated. In this study, we showed that either doxorubicin or irinotecan promoted KRT8 expression in both CM319 and UCH1 cell lines, accompanied by an increased unfolded protein response and autophagy activity. Then, siRNA-mediated knockdown of KRT8 chemosensitized chordoma cells in vitro. Mechanistic studies showed that knockdown of KRT8 followed by chemotherapy aggravated endoplasmic reticulum stress through PERK/eIF2α arm of unfolded protein response and blocked late-stage autophagy. Moreover, suppression of the PERK/eIF2α arm of unfolded protein response using PERK inhibitor GSK2606414 partially rescued the apoptotic chordoma cells but did not reverse the blockage of the autophagy flux. Finally, tumor xenograft model further confirmed the chemosensitizing effects of siKRT8. This study represents the first systematic investigation into the role of KRT8 in chemoresistance of chordoma and our results highlight a possible strategy of targeting KRT8 to overcome chordoma chemoresistance.

7.
Breast Cancer ; 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31728872

RESUMO

BACKGROUND: Breast cancer has become a dangerous killer for the female, which seriously threatened women's life, leading to huge pressures to society. The present study assessed the mechanism underlying the involvement of bone marrow tyrosine kinase on chromosome X (BMX) in breast cancer development. METHODS: The expression of BMX was examined by qPCR and immunohistochemistry. The effect of BMX on cell proliferation and migration was detected by Clone formation assay and Transwell assay. In vitro study, the correlation of BMX with Wnt/ß-catenin pathway was explored by western blot and TOP/FOP flash assay. RESULTS: In the present study, we found that BMX was up-regulated in breast cancer, which was associated with the tumor differentiation and TNM stage. Oncogenic BMX enhanced the ability of breast cancer cell proliferation and migration. Furthermore, BMX could up-regulate the protein expression levels of p-ß-catenin (Y142), p-ß-catenin(Y654) and inhibit the expression level of p-ß-catenin (S33/37), thus activating Wnt/ß-catenin pathway in MCF-7 and MDA-MB-231 cells. In addition, we revealed that BMX promoted GSK3ß phosphorylation, which suppressed the degradation of ß-catenin. CONCLUSIONS: In this study, we identified that BMX-activated Wnt/ß-catenin signaling pathway, playing an oncogenic role in breast cancer, suggesting that BMX could become a potential treatment target of breast cancer.

8.
J Am Chem Soc ; 141(48): 18958-18963, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31744291

RESUMO

Herein we report a direct vicinal difunctionalization of thiophenes via the palladium/norbornene (Pd/NBE) cooperative catalysis. A series of mono- and disubstituted thiophenes can be difunctionalized site-selectively and regioselectively at the C4 and C5 positions in good yields, enabled by an arsine ligand and a unique amide-based NBE. The synthetic utility has been shown in derivatizations of complex bioactive compounds and an open-flask gram-scale preparation. Preliminary results have been obtained in the difunctionalization of furans and a direct C4-selective arylation of 2-substituted thiophenes.

9.
Nanoscale ; 11(48): 23498-23501, 2019 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-31777899

RESUMO

Removal of expression of concern for 'Controllable 2H-to-1T' phase transition in few-layer MoTe2' by Yuan Tan et al., Nanoscale, 2018, 10, 19964-19971.

10.
Int J Biol Sci ; 15(12): 2733-2749, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31754343

RESUMO

Breast cancer is one of the most common malignant tumors worldwide. Metastasis remains the leading cause of death in breast cancer patients. Research on the mechanism of breast cancer metastasis has become a core issue in breast cancer research. Our previous series of studies have shown that VASP, as a key oncogene, plays an important role in the development of various tumors such as breast cancer. In this study, we find that miR-638 can target to inhibit VASP expression, and Lin28 acts as an RNA-binding protein to regulate the processing of miR-638, which inhibits its maturation and promotes the expression of VASP. In addition, we also find that CREB1 acts as a transcription factor that binds to the promoter of Lin28 gene and activates the Lin28/miR-638/VASP pathway. Furthermore, CREB1 can also directly bind to the promoter of VASP, and activate VASP expression, forming a CREB/Lin28/miR-638/VASP interactive network, which plays an important role in promoting cell proliferation and migration in breast cancer. Our study explained the mechanism of CREB1/Lin28/miR-638/VASP network promoting the development of breast cancer, which further elucidated the mechanism of VASP as a key oncogene, and also provided a theoretical basis for expanding new approaches to tumor biotherapy.

11.
Front Immunol ; 10: 1930, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31474996

RESUMO

Sepsis is a life-threatening condition that often occurs in the intensive care unit. The excessive activation of the host's immune system at early stages contributes to multiple organ damage. Mitogen-activated protein kinase phosphatase-1 (MKP1) exerts an important effect on the inflammatory process. In our recent bioinformatic analysis, we confirmed that the inhibition of protein tyrosine phosphatase-1B (PTP1B) significantly promoted the expression of MKP1 in murine macrophages. However, the underlying mechanism and its effect on macrophage polarization remain unclear. In this study, we show that the suppression of PTP1B induced upregulation of MKP1 in M1 macrophages. A RayBiotech mouse inflammation antibody assay further revealed that MKP1-knockdown promoted pro-inflammatory cytokine (IL-1ß, IL12p70, IL-17, IL-21, IL-23, and TNF-α) secretion but suppressed anti-proinflammatory cytokine (IL-10) production in M2 macrophages. Phospho-proteomics analysis further identified ERK1/2 and p38 as downstream molecules of MKP1. Moreover, we found that the inhibition of PTP1B lowered the expression of miR-26a, showing a negative correlation with MKP1 protein expression. Thus, we concluded that the inhibition of PTP1B contributes to M2 macrophage polarization via reducing mir-26a and afterwards enhancing MKP1 expression in murine macrophages.

12.
Nano Lett ; 19(10): 6845-6852, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31478675

RESUMO

Two-dimensional (2D) layered semiconductors, with their ultimate atomic thickness, have shown promise to scale down transistors for modern integrated circuitry. However, the electrical contacts that connect these materials with external bulky metals are usually unsatisfactory, which limits the transistor performance. Recently, contacting 2D semiconductors using coplanar 2D conductors has shown promise in reducing the problematic high contact resistance. However, many of these methods are not ideal for scaled production. Here, we report on the large-scale, spatially controlled chemical assembly of the integrated 2H-MoTe2 field-effect transistors (FETs) with coplanar metallic 1T'-MoTe2 contacts via phase engineered approaches. We demonstrate that the heterophase FETs exhibit ohmic contact behavior with low contact resistance, resulting from the coplanar seamless contact between 2H and 1T'-MoTe2 confirmed by transmission electron microscopy characterizations. The average mobility of the heterophase FETs was measured to be as high as 23 cm2 V-1 s-1 (comparable with those of exfoliated single crystals), due to the large 2H-MoTe2 single-crystalline domain size (486 ± 187 µm). By developing a patterned growth method, we realize the 1T'-MoTe2 gated heterophase FET array whose components of the channel, gate, and contacts are all 2D materials. Finally, we transfer the heterophase device array onto a flexible substrate and demonstrate the near-infrared photoresponse with high photoresponsivity (∼1.02 A/W). Our study provides a basis for the large-scale application of phase-engineered coplanar MoTe2 semiconductor-metal structure in advanced electronics and optoelectronics.

13.
Pathol Res Pract ; 215(10): 152573, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31399258

RESUMO

The development of breast cancer is still a relatively unclear biological process, and there is currently no consensus on the occurrence of breast cancer and the process of tumor metastases. This study was to reveal a correlation between TRIM63 and the development of breast cancer. In this study, we found that the expression of TRIM63 was significantly increased in breast cancer tissues and closely related to pathological differentiation and TNM stage of breast cancer. Overexpression of TRIM63 could significantly promote proliferation and migration of breast cancer cells, while TRIM63 knockdown significantly inhibited the proliferation and migration of breast cancer cells. In addition, TRIM63 could activate Wnt/ß-catenin signaling pathway in breast cancer cells. Further study found that TRIM63 could regulate ß-catenin degradation by promoting GSK3ß phosphorylation. Our study revealed that TRIM63, as an oncogene, involved in breast cancer progression by activating the Wnt/ß-catenin signaling pathway, suggesting that the potential applicability of TRIM63 as a target for breast cancer treatment.

14.
Pathol Res Pract ; 215(10): 152575, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31387807

RESUMO

The important role of LncRNA in the development of breast cancer is attracting more and more attention. In the previous study, we found that the expression level of LncRNA SNHG6 in breast cancer tissues and cells was significantly increased, but its mechanism in the development of breast cancer was still unclear. Our study found that knockdown of SNHG6 significantly inhibited the proliferation, migration and invasion of breast cancer cells MCF-7 and MDA-MB-231 cells. Further study showed that knockdown of SNHG6 significantly inhibited the expression level of VASP. More importantly, SNHG6 and VASP both can bind directly to miR-26a, suggesting that SNHG6 could act as a ceRNA to sponge miR-26a, thereby promoting the expression of VASP, which leading to activated proliferation, migration and invasion of breast cancer cells. Taken together, this study revealed the important role of the SNHG6/miR-26a/VASP regulatory network in the development of breast cancer, and provided a reference for exploring new pathogenesis and biomarkers of breast cancer.

15.
Oxid Med Cell Longev ; 2019: 8194804, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31341536

RESUMO

Generally, inflammatory bowel disease (IBD) can be caused by psychology, genes, environment, and gut microbiota. Therefore, IBD therapy should be improved to utilize multiple strategies. Shen Ling Bai Zhu San (SLBZS) adheres to the aim of combating complex diseases from an integrative and holistic perspective, which is effective for IBD therapy. Herein, a systems pharmacology and microbiota approach was developed for these molecular mechanisms exemplified by SLBZS. First, by systematic absorption-distribution-metabolism-excretion (ADME) analysis, potential active compounds and their corresponding direct targets were retrieved. Then, the network relationships among the active compounds, targets, and disease were built to deduce the pharmacological actions of the drug. Finally, an "IBD pathway" consisting of several regulatory modules was proposed to dissect the therapeutic effects of SLBZS. In addition, the effects of SLBZS on gut microbiota were evaluated through analysis of the V3-V4 region and multivariate statistical methods. SLBZS significantly shifted the gut microbiota structure in a rat model. Taken together, we found that SLBZS has multidimensionality in the regulation of IBD-related physiological processes, which provides new sights into herbal medicine for the treatment of IBD.

16.
Nature ; 572(7769): 387-391, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31330531

RESUMO

The bacterial pathogen Legionella pneumophila creates an intracellular niche permissive for its replication by extensively modulating host-cell functions using hundreds of effector proteins delivered by its Dot/Icm secretion system1. Among these, members of the SidE family (SidEs) regulate several cellular processes through a unique phosphoribosyl ubiquitination mechanism that bypasses the canonical ubiquitination machinery2-4. The activity of SidEs is regulated by another Dot/Icm effector known as SidJ5; however, the mechanism of this regulation is not completely understood6,7. Here we demonstrate that SidJ inhibits the activity of SidEs by inducing the covalent attachment of glutamate moieties to SdeA-a member of the SidE family-at E860, one of the catalytic residues that is required for the mono-ADP-ribosyltransferase activity involved in ubiquitin activation2. This inhibition by SidJ is spatially restricted in host cells because its activity requires the eukaryote-specific protein calmodulin (CaM). We solved a structure of SidJ-CaM in complex with AMP and found that the ATP used in this reaction is cleaved at the α-phosphate position by SidJ, which-in the absence of glutamate or modifiable SdeA-undergoes self-AMPylation. Our results reveal a mechanism of regulation in bacterial pathogenicity in which a glutamylation reaction that inhibits the activity of virulence factors is activated by host-factor-dependent acyl-adenylation.

17.
Mol Med Rep ; 20(2): 1943-1951, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31257464

RESUMO

Saikosaponin b2 (SSb2) can be extracted from Bupleurum spp. roots (Radix Bupleuri), which belongs to the Umbelliferae family. The current study aimed to explore the effects of SSb2 on proliferation of breast cancer cells and to identify the mechanism by which SSb2 affects breast cancer cell migration. mRNA expression levels of STAT3 and vasodilator­stimulated phosphoprotein (VASP) were determined and increased expression was observed in 16 breast cancer tissues compared with the paracancerous tissues. MTT, wound healing, colony formation assays and western blot suggested that SSb2 inhibited MCF­7 proliferation and migration. It was further identified by western blot analysis that SSb2 treatment reduced levels of phosphorylated STAT3, VASP, matrix metallopeptidase (MMP) 2 and MMP9 in MCF­7 compared with the untreated cells. In addition, it was demonstrated that inhibition of STAT3 phosphorylation decreased VASP expression levels and induction of STAT3 phosphorylation increased VASP levels. Furthermore, it was observed that the treatment of Kunming mice with SSb2 at 30 mg/kg/day for 30 days induced no obvious changes in the liver or kidney tissues, as determined by haematoxylin and eosin staining. In conclusion, these results indicated that SSb2 may be a potential antitumor drug for the treatment of breast cancer, which acts by suppressing proliferation and migration by downregulating the STAT3 signalling pathway and inhibiting the expression of VASP, MMP2 and MMP9 expression.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Moléculas de Adesão Celular/genética , Proteínas dos Microfilamentos/genética , Ácido Oleanólico/análogos & derivados , Fosfoproteínas/genética , Fator de Transcrição STAT3/genética , Saponinas/farmacologia , Adolescente , Adulto , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Metaloproteinase 9 da Matriz/genética , Camundongos , Pessoa de Meia-Idade , Ácido Oleanólico/farmacologia , Adulto Jovem
18.
Theranostics ; 9(8): 2252-2267, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31149042

RESUMO

Progerin, a truncated unprocessed lamin A protein, causes tissue aging and degeneration. In this study we explored the role of progerin in the pathogenesis of intervertebral disc degeneration (IDD). We also examined the effect of sulforaphane (SFN) on progerin accumulation and mitochondrial dysfunction in IDD. Methods: The role of progerin in IDD was explored using human nucleus pulposus (NP) tissues, rat NP cells, and Lmna G609G knock-in mice. Immunostaining, X-ray imaging, and Western blotting were performed to assess the phenotypes of intervertebral discs. Alterations in senescence and apoptosis were evaluated by SA-ß-galactosidase, immunofluorescence, flow cytometry, and TUNEL assays. Mitochondrial function was investigated by JC-1 staining, transmission electron microscopy, and determination of the level of ATP and the activities of mitochondrial enzymes. Results: The progerin level was elevated in degenerated human NP tissues. Lmna G609G/G609G mice displayed IDD, as evidenced by increased matrix metalloproteinase-13 expression and decreased collagen II and aggrecan expression and disc height. Furthermore, progerin overexpression in rat NP cells induced mitochondrial dysfunction (decreased ATP synthesis, mitochondrial membrane potential, and activities of mitochondrial complex enzymes), morphologic abnormalities, and disrupted mitochondrial dynamic (abnormal expression of proteins involved in fission and fusion), resulting in apoptosis and senescence. SFN ameliorated the progerin-induced aging defects and mitochondrial dysfunction in NP cells and IDD in Lmna G609G/G609G mice. Conclusions: Progerin is involved in the pathogenesis of IDD. Also, SFN alleviates progerin­induced IDD, which is associated with amelioration of aging defects and mitochondrial dysfunction. Thus, SFN shows promise for the treatment of IDD.

19.
Talanta ; 203: 9-15, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31202354

RESUMO

Biosensors are rising technologies in the pharmaceutical field for medicine discovery, development and Quality Control (QC) stages. Surface acoustic wave (SAW) biosensor employs acoustic waves generated by oscillating a piezoelectric crystal quartz plate to meas. mass and viscosity, and allows to detect and quantify binding events between the analyte and an immobilized interacting ligand. We present here a SAW biosensor based approach for the functional quantification of Escherichia colil-asparaginase (E. colil-ASNase), using polyclonal antibody (pAb) as the interaction partner immobilized on the chip. Different immobilization strategies of pAb were initially evaluated, resulting in the BS3 activated amide coupling via protein G strategy as the final immobilization method. The method was validated by evaluating the selectivity, linearity, as well as accuracy (a recovery of 102.4%) and precision (RSD of 8.5%). The application of the validated method on different samples encompassing different lots of E. colil-ASNase, deamidated E. colil-ASNase and dry-heated E. colil-ASNase (80 °C, 10 min) indicated the suitability of the developed SAW method to quantify E. colil-ASNase. We suggest this SAW method can be adopted as a pharmaceutical QC method.


Assuntos
Asparaginase/análise , Escherichia coli/enzimologia , Animais , Anticorpos Imobilizados/imunologia , Asparaginase/imunologia , Técnicas Biossensoriais/métodos , Ensaios Enzimáticos/métodos , Ouro/química , Limite de Detecção , Coelhos , Som
20.
Org Lett ; 21(13): 5078-5081, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31199158

RESUMO

Catalytic ring opening of five- to eight-membered lactones with quinones is achieved through a redox chain mechanism. With low loading of a simple metal triflate Lewis acid catalyst and a chain initiator, C-H bonds of many quinones were efficiently functionalized with carboxylic acid-containing side chains. This method also features 100% atom economy and wide substrate scope. A novel route to the anti-asthma drug Seratrodast was developed. Mechanism study suggests that the redox chain reaction likely undergoes a carbocation intermediate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA