Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32031780

RESUMO

Wafer-scale monocrystalline two-dimensional (2D) materials can theoretically be grown by seamless coalescence of individual domains into a large single crystal. Here we present a concise study of the coalescence behavior of crystalline 2D films using a combination of complementary in situ methods. Direct observation of overlayer growth from the atomic to the millimeter scale and under model- and industrially relevant growth conditions reveals the influence of the film-substrate interaction on the crystallinity of the 2D film. In the case of weakly interacting substrates, the coalescence behavior is dictated by the inherent growth kinetics of the 2D film. It is shown that the merging of coaligned domains leads to a distinct modification of the growth dynamics through the formation of fast-growing high-energy edges. The latter can be traced down to a reduced kink-creation energy at the interface between well-aligned domains. In the case of strongly interacting substrates, the lattice mismatch between film and substrate induces a pronounced moiré corrugation that determines the growth and coalescence behavior. It furthermore imposes additional criteria for seamless coalescence and determines the structure of grain boundaries. The experimental findings, obtained here for the case of graphene, are confirmed by theory-based growth simulations and can be generalized to other 2D materials that show 3- or 6-fold symmetry. Based on the gained understanding of the relation between film-substrate interaction, shape evolution, and coalescence behavior, conditions for seamless coalescence and, thus, for the optimization of large-scale production of monocrystalline 2D materials are established.

2.
Nat Chem ; 11(8): 730-736, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31308494

RESUMO

Two-dimensional materials show a variety of promising properties, and controlling their growth is an important aspect for practical applications. To this end, active species such as hydrogen and oxygen are commonly introduced into reactors to promote the synthesis of two-dimensional materials with specific characteristics. Here, we demonstrate that fluorine can play a crucial role in tuning the growth kinetics of three representative two-dimensional materials (graphene, hexagonal boron nitride and WS2). When growing graphene by chemical vapour deposition on a copper foil, fluorine released from the decomposition of a metal fluoride placed near the copper foil greatly accelerates the growth of the graphene (up to a rate of ~200 µm s-1). Theoretical calculations show that it does so by promoting decomposition of the methane feedstock, which converts the endothermic growth process to an exothermic one. We further show that the presence of fluorine also accelerates the growth of two-dimensional hexagonal boron nitride and WS2.

3.
Nature ; 570(7759): 91-95, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31118514

RESUMO

The development of two-dimensional (2D) materials has opened up possibilities for their application in electronics, optoelectronics and photovoltaics, because they can provide devices with smaller size, higher speed and additional functionalities compared with conventional silicon-based devices1. The ability to grow large, high-quality single crystals for 2D components-that is, conductors, semiconductors and insulators-is essential for the industrial application of 2D devices2-4. Atom-layered hexagonal boron nitride (hBN), with its excellent stability, flat surface and large bandgap, has been reported to be the best 2D insulator5-12. However, the size of 2D hBN single crystals is typically limited to less than one millimetre13-18, mainly because of difficulties in the growth of such crystals; these include excessive nucleation, which precludes growth from a single nucleus to large single crystals, and the threefold symmetry of the hBN lattice, which leads to antiparallel domains and twin boundaries on most substrates19. Here we report the epitaxial growth of a 100-square-centimetre single-crystal hBN monolayer on a low-symmetry Cu (110) vicinal surface, obtained by annealing an industrial copper foil. Structural characterizations and theoretical calculations indicate that epitaxial growth was achieved by the coupling of Cu <211> step edges with hBN zigzag edges, which breaks the equivalence of antiparallel hBN domains, enabling unidirectional domain alignment better than 99 per cent. The growth kinetics, unidirectional alignment and seamless stitching of the hBN domains are unambiguously demonstrated using centimetre- to atomic-scale characterization techniques. Our findings are expected to facilitate the wide application of 2D devices and lead to the epitaxial growth of broad non-centrosymmetric 2D materials, such as various transition-metal dichalcogenides20-23, to produce large single crystals.

4.
Nanoscale ; 11(10): 4226-4230, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30806651

RESUMO

Graphene quantum dots (GQDs), a zero-dimensional material system with distinct physical properties, have great potential in the applications of photonics, electronics, photovoltaics, and quantum information. In particular, GQDs are promising candidates for quantum computing. In principle, a sub-10 nm size is required for GQDs to present the intrinsic quantum properties. However, with such an extreme size, GQDs have predominant edges with lots of active dangling bonds and thus are not stable. Satisfying the demands of both quantum size and stability is therefore of great challenge in the design of GQDs. Herein we demonstrate the fabrication of sub-10 nm stable GQD arrays by embedding GQDs into large-bandgap hexagonal boron nitride (h-BN). With this method, the dangling bonds of GQDs were passivated by the surrounding h-BN lattice to ensure high stability, meanwhile maintaining their intrinsic quantum properties. The sub-10 nm nanopore array was first milled in h-BN using an advanced high-resolution helium ion microscope and then GQDs were directly grown in them through the chemical vapour deposition process. Stability analysis proved that the embedded GQDs show negligible property decay after baking at 100 °C in air for 100 days. The success in preparing sub-10 nm stable GQD arrays will promote the physical exploration and potential applications of this unique zero-dimensional in-plane quantum material.

5.
J Colloid Interface Sci ; 539: 54-64, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30576988

RESUMO

Poly(ethylene terephthalate) (PET) generally suffers from low crystallization rate and long molding duration, which as a result limit its application as engineering plastics. To overcome these drawbacks, series of PET/layered double hydroxide (LDH) nanocomposites were prepared by a solution blending process. The effect of metal composition (MgAl and CaAl) and organo-modification (stearic acid intercalated) for LDH fillers on the crystallization behavior of the nanocomposites was investigated. It was revealed that, compared with PET/CaAl-LDH, the PET/MgAl-LDH nanocomposite exhibits a higher crystallization temperature and faster crystallization rate, which is associated with the superior nucleation ability of MgAl-LDH. The nucleation mechanism of PET induced by LDHs was explored by means of Avrami equation and theory of Hoffman-Lauritzen, pointing out that the incorporation of LDHs reduce the free energy of nucleation and the fold surface free energy of PET. In order to improve the compatibility between LDH and PET, stearic acid (SA) intercalated MgAl-LDH was prepared and filled into PET matrix. The resultant PET/MgAl-LDH-SA shows a further enhanced crystallization temperature and accelerated crystallization rate, in comparison with PET/MgAl-LDH nanocomposites. In addition, the thermal stability, gas barrier and mechanical properties of PET/LDH composites were improved upon incorporation of LDH fillers.

6.
J Am Chem Soc ; 140(38): 11935-11941, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30175921

RESUMO

We study the roles of graphene acting as a buffer layer for growth of an AlN film on a sapphire substrate. Graphene can reduce the density of AlN nuclei but increase the growth rate for an individual nucleus at the initial growth stage. This can lead to the reduction of threading dislocations evolved at the coalescence boundaries. The graphene interlayer also weakens the interaction between AlN and sapphire and accommodates their large mismatch in the lattice and thermal expansion coefficients; thus, the compressive strain in AlN and the tensile strain in sapphire are largely relaxed. The effective relaxation of strain further leads to a low density of defects in the AlN films. These findings reveal the roles of graphene in III-nitride growth and offer valuable insights into the efficient applications of graphene in the light-emitting diode industry.

7.
ACS Appl Mater Interfaces ; 10(33): 28130-28138, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30053379

RESUMO

Gas barrier films with water-vapor-permeability have exhibited broad application prospects in gas separation and dehumidification. Herein, multilayer films comprised of layered double hydroxides (LDH) nanosheets and carboxymethyl cellulose sodium (CMC) were fabricated via layer-by-layer assembly. The resulting (LDH/CMC) n films show excellent gas barrier properties, which are ascribed to the significantly increased pathway for gas permeation originating from the large aspect ratio and high orientation of two-dimensional LDH nanosheets. Unlike traditional gas barrier films with nonselective blocking effect for various gases (including water vapor), the (LDH/CMC) n films exhibit an unusual moisture permselective property. The moisture-permeable property was related to the hygroscopicity of CMC and hydrophilicity of LDH, which can enrich the water molecules from the surroundings and aggrandize the osmotic pressure for water vapor, resulting in an uncommon improvement of water vapor transmission. It is interesting to find that the (LDH/CMC) n films exhibit enhanced gas (O2, CO2, CH4, and N2) barrier properties upon treatment in a humid environment, due to the formation of hydrogen bonds between the infiltrated water molecules and hydrophilic groups in CMC, thus padding the interstitial space of the CMC molecular chains and increasing the gas transmission path. The reduction of free volume and extension of the gas transmission path further enhance the gas barrier properties of (LDH/CMC) n films. Moreover, the (LDH/CMC) n films represent the water vapor permselective property in mixed gas (including O2, CO2, CH4, N2, and water vapor), while maintaining the barrier for other gases, which can be potentially applied in air dehydration and dehumidification of natural gas.

8.
Chem Commun (Camb) ; 54(56): 7778-7781, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29942959

RESUMO

A dual-functional organic-inorganic film with gas barrier and hydroxide ion conductivity properties was fabricated via the layer-by-layer assembly of layered double hydroxide (LDH) nanoplates and quaternary ammonium grafted polysulfone (QAPSF). By incorporating inorganic flakes with high ionic conductivity and gas barrier effects into an ion-conductive polymer matrix, this work overcomes the commonly-believed incompatibility between gas blocking and ionic conduction.

9.
Chem Soc Rev ; 47(9): 3059-3099, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29513306

RESUMO

Graphene exhibits superior mechanical strength, high thermal conductivity, strong light-matter interactions, and, in particular, exceptional electronic properties. These merits make graphene an outstanding material for numerous potential applications. However, a graphene-based high-performance transistor, which is the most appealing application, has not yet been produced, which is mainly due to the absence of an intrinsic electronic bandgap in this material. Therefore, bandgap opening in graphene is urgently needed, and great efforts have been made regarding this topic over the past decade. In this review article, we summarise recent theoretical and experimental advances in interfacial engineering to achieve bandgap opening. These developments are divided into two categories: chemical engineering and physical engineering. Chemical engineering is usually destructive to the pristine graphene lattice via chemical functionalization, the introduction of defects, doping, chemical bonds with substrates, and quantum confinement; the latter largely maintains the atomic structure of graphene intact and includes the application of an external field, interactions with substrates, physical adsorption, strain, electron many-body effects and spin-orbit coupling. Although these pioneering works have not met all the requirements for electronic applications of graphene at once, they hold great promise in this direction and may eventually lead to future applications of graphene in semiconductor electronics and beyond.

10.
Adv Mater ; 30(6)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29266426

RESUMO

Metal corrosion is a long-lasting problem in history and ultrahigh anticorrosion is one ultimate pursuit in the metal-related industry. Graphene, in principle, can be a revolutionary material for anticorrosion due to its excellent impermeability to any molecule or ion (except for protons). However, in real applications, it is found that the metallic graphene forms an electrochemical circuit with the protected metals to accelerate the corrosion once the corrosive fluids leaks into the interface. Therefore, whether graphene can be used as an excellent anticorrosion material is under intense debate now. Here, graphene-coated Cu is employed to investigate the facet-dependent anticorrosion of metals. It is demonstrated that as-grown graphene can protect Cu(111) surface from oxidation in humid air lasting for more than 2.5 years, in sharp contrast with the accelerated oxidation of graphene-coated Cu(100) surface. Further atomic-scale characterization and ab initio calculations reveal that the strong interfacial coupling of the commensurate graphene/Cu(111) prevents H2 O diffusion into the graphene/Cu(111) interface, but the one-dimensional wrinkles formed in the incommensurate graphene on Cu(100) can facilitate the H2 O diffusion at the interface. This study resolves the contradiction on the anticorrosion capacity of graphene and opens a new opportunity for ultrahigh metal anticorrosion through commensurate graphene coating.

11.
J Am Chem Soc ; 139(48): 17574-17581, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29135245

RESUMO

During graphene growth on various transition metals in the periodic table, metal carbides always emerge to behave as complex intermediates. On VIII metals, metastable carbides usually evolve and then transform into graphene along the phase interfaces, and even no metal carbides can form on IB-IIB metals. In contrast, during graphene growth on group IVB-VIB metals, carbides are usually generated even before the evolution of graphene and stably exist throughout the whole growth process. However, for the remaining transition metals, e.g., group VIIB, located in between IVB-VIB and VIII, the interplay between graphene and carbide is still vague. Herein, on Re(0001) (VIIB), we have revealed a novel transition from graphene to metal carbide (reverse to that on VIII metals) for the first time. This transition experienced graphene decomposition, dissolution, and carbon segregation processes, as evidenced by scanning tunneling microscopy (STM) and on-site, variable-temperature low electron energy diffraction (LEED) characterizations. This work thus completes the picture about the interplay between graphene and carbide on/in transition metals in the periodic table, as well as discloses a new territory for the growth of carbon-related materials, especially the metal carbide.

12.
ACS Nano ; 11(12): 12001-12007, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29141137

RESUMO

Large scale epitaxial growth and transfer of monolayer MoS2 has attracted great attention in recent years. Here, we report the wafer-scale epitaxial growth of highly oriented continuous and uniform monolayer MoS2 films on single-crystalline sapphire wafers by chemical vapor deposition (CVD) method. The epitaxial film is of high quality and stitched by many 0°, 60° domains and 60°-domain boundaries. Moreover, such wafer-scale monolayer MoS2 films can be transferred and stacked by a simple stamp-transfer process, and the substrate is reusable for subsequent growth. Our progress would facilitate the scalable fabrication of various electronic, valleytronic, and optoelectronic devices for practical applications.

13.
Adv Sci (Weinh) ; 4(9): 1700086, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28932669

RESUMO

Light-induced interlayer ultrafast charge transfer in 2D heterostructures provides a new platform for optoelectronic and photovoltaic applications. The charge separation process is generally hypothesized to be dependent on the interlayer stackings and interactions, however, the quantitative characteristic and detailed mechanism remain elusive. Here, a systematical study on the interlayer charge transfer in model MoS2/WS2 bilayer system with variable stacking configurations by time-dependent density functional theory methods is demonstrated. The results show that the slight change of interlayer geometry can significantly modulate the charge transfer time from 100 fs to 1 ps scale. Detailed analysis further reveals that the transfer rate in MoS2/WS2 bilayers is governed by the electronic coupling between specific interlayer states, rather than the interlayer distances, and follows a universal dependence on the state-coupling strength. The results establish the interlayer stacking as an effective freedom to control ultrafast charge transfer dynamics in 2D heterostructures and facilitate their future applications in optoelectronics and light harvesting.

14.
Adv Sci (Weinh) ; 4(9): 1700087, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28932670

RESUMO

The exceptional properties of graphene make it a promising candidate in the development of next-generation electronic, optoelectronic, photonic and photovoltaic devices. A holy grail in graphene research is the synthesis of large-sized single-crystal graphene, in which the absence of grain boundaries guarantees its excellent intrinsic properties and high performance in the devices. Nowadays, most attention has been drawn to the suppression of nucleation density by using low feeding gas during the growth process to allow only one nucleus to grow with enough space. However, because the nucleation is a random event and new nuclei are likely to form in the very long growth process, it is difficult to achieve industrial-level wafer-scale or beyond (e.g. 30 cm in diameter) single-crystal graphene. Another possible way to obtain large single-crystal graphene is to realize ultrafast growth, where once a nucleus forms, it grows up so quickly before new nuclei form. Therefore ultrafast growth provides a new direction for the synthesis of large single-crystal graphene, and is also of great significance to realize large-scale production of graphene films (fast growth is more time-efficient and cost-effective), which is likely to accelerate various graphene applications in industry.

15.
Zhongguo Dang Dai Er Ke Za Zhi ; 19(7): 741-747, 2017 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-28697824

RESUMO

OBJECTIVE: To observe the effects of initial doses and treatment timing of levothyroxine (L-T4) on the clinical efficacy in children with congenital hypothyroidism (CH). METHODS: This study included 98 children who had an abnormal level of thyroid stimulating hormone (TSH) in neonatal screening in four regions of Yunnan Province and who finally had a confirmed diagnosis of CH. They received treatment with L-T4 and were divided into standard dose group (10-15 µg/kg per day) and low dose group (<10 µg/kg per day) by the therapeutic dose of L-T4. Meanwhile, these patients were also classified into two treatment groups based on the starting time of L-T4 treatment, namely under 2 months old group and more than 2 months old group. The thyroid function and physical and neural development were examined before and after treatment. RESULTS: Compared with the low dose group, the standard dose group had a significantly lower TSH level and a significantly higher free thyroxine (FT4) level at 2 weeks after treatment (P<0.05). There were no significant differences in TSH and FT4 levels at other time points after treatment between the standard and low dose groups (P>0.05). The physical and neural development were not significantly different between the two dose groups before and at all time points after treatment (P>0.05). At all time points after treatment, the levels of TSH and FT4 and physical development were not significantly different between the different starting time groups (P>0.05). However, the Gesell score was significantly higher in the under 2 months old group than in the more than 2 months old group at all time points after treatment (P<0.05). CONCLUSIONS: The standard dose group has a better treatment outcome than the low dose group, whereas the symptoms of hyperthyroidism deserve close attention. The treatment timing is vital to the neurodevelopment of children with CH. Once diagnosed, the patients should receive treatments immediately.


Assuntos
Hipotireoidismo Congênito/tratamento farmacológico , Desenvolvimento Infantil , Hipotireoidismo Congênito/fisiopatologia , Feminino , Humanos , Recém-Nascido , Masculino , Sistema Nervoso/crescimento & desenvolvimento , Tireotropina/sangue , Tiroxina/sangue , Resultado do Tratamento
16.
Nat Nanotechnol ; 11(11): 930-935, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27501317

RESUMO

Graphene has a range of unique physical properties and could be of use in the development of a variety of electronic, photonic and photovoltaic devices. For most applications, large-area high-quality graphene films are required and chemical vapour deposition (CVD) synthesis of graphene on copper surfaces has been of particular interest due to its simplicity and cost effectiveness. However, the rates of growth for graphene by CVD on copper are less than 0.4 µm s-1, and therefore the synthesis of large, single-crystal graphene domains takes at least a few hours. Here, we show that single-crystal graphene can be grown on copper foils with a growth rate of 60 µm s-1. Our high growth rate is achieved by placing the copper foil above an oxide substrate with a gap of ∼15 µm between them. The oxide substrate provides a continuous supply of oxygen to the surface of the copper catalyst during the CVD growth, which significantly lowers the energy barrier to the decomposition of the carbon feedstock and increases the growth rate. With this approach, we are able to grow single-crystal graphene domains with a lateral size of 0.3 mm in just 5 s.

17.
Adv Mater ; 28(40): 8968-8974, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27562642

RESUMO

Wafer-sized single-crystalline Cu (100) surface can be readily achieved on stacked polycrystalline Cu foils via simple oxygen chemisorption-induced reconstruction, enabling fast growth of large-scale millimeter-sized single-crystalline graphene arrays under molecular flow. The maximum growth rate can reach 300 µm min-1 , several orders of magnitude higher than previously reported values for millimeter-sized single-crystalline graphene growth on Cu foils.

18.
Nano Lett ; 15(2): 903-8, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25621539

RESUMO

Ordered configurations of hydrogen adatoms on graphene have long been proposed, calculated, and searched for. Here, we report direct observation of several ordered configurations of H adatoms on graphene by scanning tunneling microscopy. On the top side of the graphene plane, H atoms in the configurations appear to stick to carbon atoms in the same sublattice. Scanning tunneling spectroscopy measurements revealed a substantial gap in the local density of states in H-contained regions as well as in-gap states below the conduction band due to the incompleteness of H ordering. These findings can be well explained by density functional theory calculations based on double-sided H configurations. In addition, factors that may influence H ordering are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA