RESUMO
Carbon ion beam irradiation (CIBI) is a highly efficient mutagenesis for generating mutations that can be used to expand germplasm resources and create superior new germplasm. The study investigated the effects of different doses of CIBI (50 Gy, 100 Gy, 150 Gy, 200 Gy and 300 Gy) on seed germination and seedling survival, seedling morphological and physiological traits of an elite centipedegrass cultivar Ganbei. The results showed that irradiation greater than 50 Gy cause inhibition of seed germination, and the semi-lethal dose (LD50) is around 90 Gy for CIBI treated seeds of Ganbei. A carbon ion beam-mutagenized centipedegrass population was generated from Ganbei, with irradiation dosages from 50 Gy to 200 Gy. More than ten types of phenotypic variations and novel mutants with heritable tendencies mainly including putative mutants of stolon number, length and diameter, of internode length, of leaf length and width, of leaf chlorophyll content, of stolon growth rate, of aboveground tissue dry weight, of sward height were identified. While the total sugar content of the plants from irradiated seeds showed no obvious change in all treatments as compared to the control, the crude protein content displayed significant reduction at a high-dose treatment of 200 Gy. Genetic polymorphism was detected in mutagenized centipedegrass population using SSR-PCR analysis, suggesting that CIBI caused alteration of larger fragments of the DNA sequence. As a result, a preliminary batch of mutants was screened in this study. In summary, carbon ion beam mutagenesis is an effective way for developing centipedegrass germplasm with wider variation, and treating seeds with CIBI at a dosage of ~100 Gy could be effective in centipedegrass mutation breeding.
RESUMO
Oral mucositis is a common and debilitating oral complication in head and neck cancer patients undergoing radiotherapy, resulting in diminished quality of life and potential treatment disruptions. Oral microbiota has long been recognized as a contributing factor in the initiation and progression of radiation-induced oral mucositis (RIOM). Numerous studies have indicated that the radiation-induced oral microbial dysbiosis promotes the occurrence and severity of oral mucositis. Therefore, approaches that modulate oral microbial ecology are promising for the management of RIOM. Probiotics as a relatively predicable and safe measure that modulates microecology have garnered significant interest. In this review, we discussed the correlation between RIOM and oral microbiota, with a particular focus on the efficacy of probiotics in the control of RIOM, in order to provide novel paradigm for the management of this disease.
Assuntos
Disbiose , Probióticos , Lesões por Radiação , Estomatite , Probióticos/uso terapêutico , Humanos , Estomatite/etiologia , Estomatite/microbiologia , Estomatite/terapia , Estomatite/prevenção & controle , Lesões por Radiação/terapia , Microbiota , Neoplasias de Cabeça e Pescoço/radioterapia , Radioterapia/efeitos adversos , Boca/microbiologia , Qualidade de VidaRESUMO
Apple replant disease (ARD) is a significant factor restricting the healthy development of the apple industry. Biological control is an important and sustainable method for mitigating ARD. In this study, a strain of Paenibacillus polymyxa GRY-11 was isolated and screened from the rhizosphere soil of healthy apple trees in old apple orchards in Shandong Province, China, and the effects of strain GRY-11 on soil microbial community and ARD were studied. The result showed that P. polymyxa GRY-11 could effectively inhibit the growth of the main pathogenic fungi that caused ARD, and the inhibition rates of the strain against Fusarium moniliforme, Fusarium proliferatum, Fusarium solani, and Fusarium oxysporum were 80.00%, 71.60%, 75.00%, and 70.00%, respectively. In addition, the fermentation supernatant played an active role in suppressing the growth of pathogenic fungi. The results of the pot experiment showed that the bacterial fertilizer of the GRY-11 promoted the growth of Malus hupehensis seedlings, improved the activity of protective enzymes in plant roots, enhanced the soil enzyme content, and optimized the soil microbial environment. In general, the GRY-11 can be used as an effective microbial preparation to alleviate ARD. Our study offers novel perspectives for the prevention of ARD.
RESUMO
KEY MESSAGE: Hydrogen peroxide promoted leaf senescence by sulfenylating the magnesium chelating protease I subunit (CHLI1) in the chlorophyll synthesis pathway, and inhibited its activity to reduce chlorophyll synthesis. Leaf senescence is the final and crucial stage of plant growth and development, during which chlorophyll experiences varying degrees of destruction. It is well-known that the higher ROS accumulation is a key factor for leaf senescence, but whether and how ROS regulates chlorophyll synthesis in the process are unknown. Here, we report that H2O2 inhibits chlorophyll synthesis during leaf senescence via the I subunit of magnesium-chelatase (CHLI1). During leaf senescence, the decrease of chlorophyll content is accompanied by the increase of H2O2 accumulation, as well as the inhibition of catalase (CAT) genes expression. The mutant cat2-1, with increased H2O2 shows an accelerated senescence phenotype and decreased CHLI1 activity compared with the wild type. H2O2 inhibits CHLI1 activity by sulfenylating CHLI1 during leaf senescence. Consistent with this, the chli1 knockout mutant displays the same premature leaf senescence symptom as cat2-1, while overexpression of CHLI1 in cat2-1 can partially restore its early senescence phenotype. Taken together, these results illustrate that CAT2-mediated H2O2 accumulation during leaf senescence represses chlorophyll synthesis through sulfenylating CHLI1, and thus inhibits its activity, providing a new insight into the pivotal role of chlorophyll synthesis as a participant in orchestrating the leaf senescence.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Catalase , Clorofila , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio , Folhas de Planta , Senescência Vegetal , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Clorofila/metabolismo , Peróxido de Hidrogênio/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Senescência Vegetal/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Catalase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , LiasesRESUMO
Accurate specification of female and male germ cells during embryonic development is critical for sexual reproduction. Primordial germ cells (PGCs) are the bipotential precursors of mature gametes that commit to an oogenic or spermatogenic fate in response to sex-determining cues from the fetal gonad. The critical processes required for PGCs to integrate and respond to signals from the somatic environment in gonads are not understood. In this study, we developed the first single-nucleus multiomics map of chromatin accessibility and gene expression during murine PGC development in both XX and XY embryos. Profiling of cell-type specific transcriptomes and regions of open chromatin from the same cell captured the molecular signatures and gene networks underlying PGC sex determination. Joint RNA and ATAC data for single PGCs resolved previously unreported PGC subpopulations and cataloged a multimodal reference atlas of differentiating PGC clusters. We discovered that regulatory element accessibility precedes gene expression during PGC development, suggesting that changes in chromatin accessibility may prime PGC lineage commitment prior to differentiation. Similarly, we found that sexual dimorphism in chromatin accessibility and gene expression increased temporally in PGCs. Combining single-nucleus sequencing data, we computationally mapped the cohort of transcription factors that regulate the expression of sexually dimorphic genes in PGCs. For example, the gene regulatory networks of XX PGCs are enriched for the transcription factors, TFAP2c, TCFL5, GATA2, MGA, NR6A1, TBX4, and ZFX. Sex-specific enrichment of the forkhead-box and POU6 families of transcription factors was also observed in XY PGCs. Finally, we determined the temporal expression patterns of WNT, BMP, and RA signaling during PGC sex determination, and our discovery analyses identified potentially new cell communication pathways between supporting cells and PGCs. Our results illustrate the diversity of factors involved in programming PGCs towards a sex-specific fate.
RESUMO
PURPOSE: The aim of this study was to investigate the relationship between obesity and lower extremity arterial disease (LEAD) in patients with type 2 diabetes mellitus (T2DM). METHODS: This retrospective study included 1821 patients with type 2 diabetes: 364 patients with LEAD and 1457 patients without LEAD. The patients were divided into training and internal test cohorts in a 7:3 ratio. LASSO regression analysis was used in the training cohort to filter relevant variables. Univariate and multivariate regression analyses were conducted to assess independent risk factors. A diagnostic nomogram was constructed and its discrimination was evaluated using the area under the ROC curve (AUC). The consistency was assessed using a calibration plot. The clinical application of the nomogram was evaluated by performing a decision curve analysis (DCA) and validated by an internal test cohort of the training cohorts. RESULTS: The LEAD group exhibited significantly higher values in obesity-related indices compared to the non-LEAD group, including waist circumference (WC), waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), conicity index (CI), body adiposity index (BAI), and abdominal volume index (AVI). Multivariate analysis identified BMI, CI, BAI, and other parameters as independent risk factors for LEAD. A nomogram was constructed, and the AUC value of the nomogram was 0.746 in the training cohort and 0.663 in the internal test cohort. CONCLUSION: Obesity-related indices are associated with LEAD in patients with T2DM. Therefore, it is important to manage waist circumference and weight to reduce the risk of LEAD in patients with T2DM.
RESUMO
OBJECTIVE: Precise root torque adjustment of anterior teeth is indispensable for optimizing dental esthetics and occlusal stability in orthodontics. The efficiency of traditional rectangular archwire manipulation within bracket slots seems to be limited. The crimpable gate spring, a novel device, has emerged as a promising alternative. Yet, there is a paucity of guidelines for its optimal clinical application. This study used finite element analysis (FEA) to investigate the biomechanical impact of the gate spring on torque adjustment of individual anterior teeth and to elucidate the most effective application strategy. METHODS: A FEA model was constructed by a maxillary central incisor affixed with an edgewise bracket featuring a 0.022â¯× 0.028â¯inch (in) slot. A range of stainless steel rectangular archwires, in conjunction with a gate spring, were modeled and simulated within the bracket slots. A control group utilized a conventional rectangular wire devoid of a gate spring. Palatal root moments were standardized to 9, 18, and 36â¯Nmm for both experimental and control groups. RESULTS: The gate spring significantly amplified palatal root movement, notably with the 0.019â¯× 0.025â¯in archwire. However, this was accompanied by an increase in stress on the tooth and periodontal ligament, particularly in the cervical regions. The synergistic use of a 0.019â¯× 0.025â¯in rectangular archwire with a gate spring in a 0.022â¯× 0.028â¯in bracket slot was identified as most efficacious for torque control of individual anterior teeth. CONCLUSIONS: The gate spring is a viable auxiliary device for enhancing torque adjustment on individual teeth. However, caution is advised as excessive initial stress may concentrate in the cervical and apical regions of the periodontal ligament and tooth.
RESUMO
BACKGROUND: The recent Maternal Immune Activation (MIA) theory suggests maternal systemic inflammation may serve as a mediator in associations between prenatal maternal adversities and neurodevelopmental diseases in offspring. Given the co-exposure to multiple adversities may be experienced by pregnant person, it is unclear whether a quantitative index can be developed to characterize the inflammation related exposure level, and whether this index is associated with neurodevelopmental delays in offspring. METHODS: Based on Jiangsu Birth Cohort (JBC), a total of 3051 infants were included in the analysis. Inflammation related Prenatal Adversity Index (IPAI) was constructed using maternal data. Neurodevelopmental outcomes were assessed using the Bayley Scales of Infant and Toddler Development, third edition, screening test in one year. Multivariate linear regression and Poisson regression model were performed to analyze the associations between IPAI and neurodevelopment in offspring. RESULTS: Compared with "low IPAI" group, offspring with "high IPAI" have lower scores of cognition, receptive communication, expressive communication, and fine motor. The adjusted ß were - 0.23 (95%CI: -0.42, -0.04), -0.47 (95%CI: -0.66, -0.28), -0.30 (95%CI: -0.49, -0.11), and - 0.20 (95%CI: -0.33, -0.06). Additionally, the elevated risk for noncompetent development of cognition and receptive communication among "high IPAI" group was observed. The relative risk [RR] and 95% confidence interval [CI] were 1.35 (1.01, 1.69) and 1.37 (1.09, 1.72). CONCLUSIONS: Our results revealed a significant association between higher IPAI and lower scores across cognition, receptive communication, expressive communication, and fine motor domains, and an increased risk of noncompetent development in the cognition and receptive communication domains.
Assuntos
Coorte de Nascimento , Inflamação , Transtornos do Neurodesenvolvimento , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Gravidez , Estudos Prospectivos , Estudos Longitudinais , Masculino , Lactente , Adulto , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/epidemiologia , Desenvolvimento Infantil , China/epidemiologiaRESUMO
NKG2D chimeric antigen receptor (CAR)-modified T cells (NKG2D CAR-T cells) have been reported to be pre-clinically efficient in several tumors, but little is known whether NKG2D CAR-T cells co-expressing IL21 (IL21-NKG2D CAR-T cells) display greater anti-tumor activity in multiple myeloma (MM). In this study, the lentivirus has been produced for expression of the IL21 sequence linked to the extracellular NKG2D sequence with the signal peptide linked through the CD8α hinge-transmembrane domain to the 4-1BB molecule fused with the CD3-ζ chain signaling domain, and the engineered IL21-NKG2D-CAR T cells and NKG2D-CAR T cells were constructed. The CAR expression on CAR-T cells was assessed by flow cytometry, and the killing effects of CAR-T cells on MM were assessed by the cytotoxicity assay and ELISA assay. Moreover, xenograft models were also established to evaluate the ability of IL21-NKG2D-CAR T cells to eliminate MM in vivo. Our results indicated that NKG2D CAR-T cells had a dramatic cytotoxicity on MM cells in vitro, and co-expression of IL-21 significantly increased the cytotoxicity of NKG2D-CAR T cells on MM cells. Remarkably, we found that dexamethasone enhanced the cytotoxicity of IL21-NKG2D-CAR T cells on MM cells. Furthermore, IL21-NKG2D-CAR T cells also displayed significant anti-myeloma activity in vivo. In conclusion, IL21-NKG2D-CAR T cells had a dramatic cytotoxicity on MM cells in vitro and in vivo, and a system to apply IL21-NKG2D-CAR T cells and low dosage of dexamethasone for the future study of the targeted therapy for MM has been established.
RESUMO
Haploidentical hematopoietic cell transplantation (haplo-HCT) is associated with an increased risk of allograft rejection. Here, we employed a major histocompatibility complex (MHC)-mismatched allogeneic HCT (allo-HCT) murine model to better understand the role of Gal-1 in immune tolerance. Transplanted mice were classified into either rejected or engrafted based on donor chimerism levels. We noted significantly higher frequencies of CD4+ T cells, CD8+ T cells, natural killer cells, IFN-γ and TNF-α producing CD4+ T cells, and IFN-γ producing dendritic cells and macrophages in rejected mice. Conversely, we found significantly increased frequencies of regulatory T cells (Tregs), predominantly Helios+, IL-10-producing CD4+ T cells, type 1 regulatory (Tr1) cells, and the proportion of Tr1+Gal-1+ cells in engrafted mice. Further, Gal-1 specific blockade in Tregs reduced suppression of effector T cells in engrafted mice. Lastly, effector T cells from engrafted mice were more prone to undergo apoptosis. Collectively, we have shown that Gal-1 may favor HSC engraftment in an MHC-mismatched murine model. Our results demonstrate that Gal-1-expressing Tregs, especially at earlier time points post-transplant, are associated with inducing immune tolerance and stable mixed chimerism after HCT.
Assuntos
Galectina 1 , Transplante de Células-Tronco Hematopoéticas , Linfócitos T Reguladores , Animais , Camundongos , Galectina 1/imunologia , Galectina 1/metabolismo , Linfócitos T Reguladores/imunologia , Camundongos Endogâmicos C57BL , Rejeição de Enxerto/imunologia , Transplante Homólogo , Complexo Principal de Histocompatibilidade/imunologia , Sobrevivência de Enxerto/imunologia , Camundongos Endogâmicos BALB C , Tolerância ImunológicaRESUMO
Introduction: The incidence of hemiplegia caused by stroke is high. In particular, lower limb dysfunction affects the daily activities of patients, and lower limb robotic devices have been proposed to provide rehabilitation therapy to improve balance function in this patient population. Objective: To assess the effectiveness of the LiteStepper® unilateral lower limb exoskeleton (ULLE) combined with conventional treatment for balance function training in patients with post-stroke hemiplegia. Methods: This multicenter randomized controlled trial, conducted in the convalescent rehabilitation ward of four hospitals, involved 92 patients in their post-stroke phase. Participants were randomized into an experimental group (EG) or a conventional group (CG). The EG adopted the LiteStepper® ULLE combined with conventional treatment for 21 days. The CG underwent a standard daily rehabilitation routine for 21 days. The Berg Balance Scale (BBS), Functional Ambulation Category scale (FAC), 6-min walk test (6MWT), and Barthel Index (Barthel) were used for evaluations before and after 21 days of rehabilitative training. Results: The BBS scores in EG was significantly elevated compared to CG, exhibiting a profound statistical difference (P< 0.0001). Notably, these disparities persisted at both day 21 (P < 0.0001) and day 14 (P < 0.0047) post-intervention, underscoring the efficacy of the treatment in the EG. The EG demonstrated a markedly greater improvement in BBS scores from pre-rehabilitation to 21 days post-training, significantly outperforming the CG. Furthermore, at both day 14 and day 21, functional assessments including the FAC, 6MWT, and Barthel revealed improvements in both groups. However, the improvements in the EG were statistically significant compared to the CG at both time points: day 14 (FAC, P = 0.0377; 6MWT, P = 0.0494; Barthel, P = 0.0225) and day 21 (FAC, P = 0.0015; 6MWT, P = 0.0005; Barthel, P = 0.0004). These findings highlight the superiority of the intervention in the EG in enhancing functional outcomes. Regarding safety, the analysis revealed a solitary adverse event (AEs) related to the LiteStepper®ULLE device during the study period, affirming the combination therapy's safety profile when administered alongside conventional balance training in post-stroke hemiplegic patients. This underscores the feasibility and potential of incorporating LiteStepper®ULLE into rehabilitation protocols for this patient population. Discussion and significance: The LiteStepper® ULLE combined with conventional treatment is effective and safe for balance function training in patients with post-stroke hemiplegia.
RESUMO
Kuey teow is one of the delicacies of Guangdong, China and is a gluten-free noodle dish made from rice. It has a short storage period and extending the shelf life by quick freezing induces quality deterioration due to temperature fluctuations. To improve its freeze-thaw frozen storage quality, this paper examined the effects of hydroxypropyl corn starch (HCS), guar gum (GG), and compound phosphates (CP) on the quality of quick-frozen kuey teow during freeze-thaw cycles. The mechanism was investigated by identifying changes in the moisture status, aging degree of the starch, and textural and cooking characteristics. The results showed that all three additions improved the toughness, chewiness and steaming characteristics of the kuey teow, with CP significantly enhancing chewiness. XRD and FTIR results revealed that GG more significantly inhibited the decrease of starch crystallinity, while HCS inhibited starch aging. GG, HCS and CP all improved the hydration characteristics and water holding capacity of rice starch. GG enhances the ability of starch to bind more tightly with water, resulting in a more uniform water distribution and a more continuous and tight structure of the kuey teow. This study will provide a theoretical basis for compounding and optimizing the quick-freezing of kuey teow.
RESUMO
Background: The diagnosis of acute myocardial infarction (AMI) using high-sensitivity cardiac troponin T (hs-cTnT) remains challenging in patients with kidney dysfunction. Methods: In this large, multicenter cohort study, a total of 20 912 adults who underwent coronary angiography were included. Kidney function-specific cut-off values of hs-cTnT were determined to improve the specificity without sacrificing sensitivity, as compared with that using traditional cut-off value (14 ng/L) in the normal kidney function group. The diagnostic accuracy of the novel cut-off values was validated in an independent validation cohort. Results: In the derivation cohort (n = 12 900), 3247 patients had an estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2. Even in the absence of AMI, 50.2% of participants with eGFR <60 mL/min/1.73 m2 had a hs-cTnT concentration ≥14 ng/L. Using 14 ng/L as the threshold of hs-cTnT for diagnosing AMI led to a significantly reduced specificity and positive predictive value in patients with kidney dysfunction, as compared with that in patients with normal kidney function. The kidney function-specific cut-off values were determined as 14, 18 and 48 ng/L for patients with eGFR >60, 60-30 and <30 mL/min/1.73 m2, respectively. Using the novel cut-off values, the specificities for diagnosing AMI in participants with different levels of kidney dysfunction were remarkably improved (from 9.1%-52.7% to 52.8-63.0%), without compromising sensitivity (96.6%-97.9%). Similar improvement of diagnostic accuracy was observed in the validation cohort (n = 8012). Conclusions: The kidney function-specific cut-off values of hs-cTnT may help clinicians to accurately diagnose AMI in patients with kidney dysfunction and avoid the potential overtreatment in practice.
RESUMO
Background: Idiopathic pulmonary fibrosis (IPF) is a progressive and deadly lung disease with limited therapeutic options. Bone morphogenetic protein 4 (BMP4), a multifunctional growth factor that belongs to the transforming growth factor-ß superfamily, is able to relieve pulmonary fibrosis in mice; nevertheless, the potential mechanism of action remains largely unknown. Growing evidence supports the notion that reiterant damage to the alveolar epithelial cells (AECs) is usually the "prime mover" for pulmonary fibrosis. Here, we examined the effect and mechanisms of BMP4 on bleomycin (BLM)-induced activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome and epithelial-mesenchymal transition (EMT) in vivo and in vitro. Methods: The in vivo impact of BMP4 was investigated in a BLM mouse model. Histopathologic changes were analyzed by hematoxylin-eosin (H&E) and Masson's trichrome staining. The NLRP3 inflammasome activation was determined by quantitative real time polymerase chain reaction (qRT-PCR) and immunofluorescence staining. Biomarkers of EMT were measured by qRT-PCR, Western blot and immunofluorescence staining. The in vitro impact of BMP4 on BLM-induced NLRP3 inflammasome activation and EMT was explored in A549 AECs. We also evaluated whether BMP4 inhibited BLM-activated ERK1/2 signaling to address the possible molecular mechanisms. Results: BMP4 was significantly downregulated in the mouse lungs from BLM-induced pulmonary fibrosis. BMP4+/- mice presented with more severe lung fibrosis in response to BLM, and accelerated NLRP3 inflammasome activation and EMT process compared with that in BMP4+/+ mice. Whereas overexpression of BMP4 by injecting adeno-associated virus (AAV) 9 into mice attenuated BLM-induced fibrotic changes, NLRP3 inflammasome activation, and EMT in the mouse lungs, thus exerting protective efficacy against lung fibrosis. In vitro, BMP4 significantly reduced BLM-induced activation of NLRP3 inflammasome and EMT in human alveolar epithelial A549 cells. Mechanically, BMP4 repressed BLM-induced activation of ERK1/2 signaling in vivo and in vitro, suggesting that ERK1/2 inactivation contributes to BMP4-induced effects on BLM-induced activation of NLRP3 inflammasome and EMT. Conclusions: Our findings suggest that BMP4 can suppress NLRP3 inflammasome activation and EMT in AECs via inhibition of ERK1/2 signaling pathway, thus has a potential for the treatment of pulmonary fibrosis.
RESUMO
INTRODUCTION: Venous thromboembolism (VTE) poses a significant risk in colorectal cancer surgeries due to hypercoagulability and the anatomical challenges of the pelvic cavity. With the advancement of minimally invasive techniques, intraoperative strategies for preventing VTE may prove to be effective. This study explores the effects of intraoperative pneumoperitoneum pressures on VTE incidence following colorectal cancer surgeries. METHODS: This single center parallel randomized controlled double-blind, trial involved 302 patients undergoing elective laparoscopic or robotic colorectal surgery. Patients were randomized to either a standard pneumoperitoneum pressure group (SP: 15 mmHg) or a low-pressure group (LP: 10 mmHg). Primary outcomes measured were the incidence of VTE, including symptomatic and asymptomatic DVT and PE. Secondary outcomes included postoperative D-dimer levels, surgery duration, blood loss, surgeon satisfaction, and oncological quality. RESULTS: Out of 302 randomized patients, 275 were evaluable post exclusions, with 138 in the SP group and 137 in the LP group. The incidence of VTE was 10.9 % in the SP and 13.9 % in the LP group, with no significant difference between the two (P = 0.450). Secondary outcomes such as D-dimer levels, surgery duration, and blood loss showed no significant differences between two groups. Surgeon satisfaction and oncological outcomes were similarly comparable. CONCLUSIONS: The trial demonstrated no significant difference in the incidence of VTE between standard and low pneumoperitoneum pressures. This suggests that lower pressures may not necessarily provide a benefit in reducing postoperative VTE in colorectal cancer surgeries.
RESUMO
Enantiopure 1,2-diols are widely used in the production of pharmaceuticals, cosmetics, and functional materials as essential building blocks or bioactive compounds. Nevertheless, developing a mild, efficient and environmentally friendly biocatalytic route for manufacturing enantiopure 1,2-diols from simple substrate remains a challenge. Here, we designed and realized a step-wise biocatalytic cascade to access chiral 1,2-diols starting from aromatic aldehyde and formaldehyde enabled by a newly mined benzaldehyde lyase from Sphingobium sp. combined with a pair of tailored-made short-chain dehydrogenase/reductase from Pseudomonas monteilii (PmSDR-MuR and PmSDR-MuS) capable of producing (R)- and (S)-1-phenylethane-1,2-diol with 99% ee. The planned biocatalytic cascade could synthesize a series of enantiopure 1,2-diols with a broad scope (16 samples), excellent conversions (94%-99%), and outstanding enantioselectivity (up to 99% ee), making it an effective technique for producing chiral 1,2-diols in a more environmentally friendly and sustainable manner.
RESUMO
INTRODUCTION: The safety and effectiveness of percutaneous nephroscopic surgery without artificial hydronephrosis remain controversial, and there are few relevant studies. This retrospective study aimed to compare the efficacy of two different methods of eliminating and creating artificial hydronephrosis in percutaneous nephrolithotomy(PCNL) in the oblique supine position. METHODS: This is a retrospective study. A total of 162 patients who underwent PCNL in an oblique supine position at our hospital were divided into two groups according to the surgical method: the free artificial hydronephrosis group (Group A) and the artificial hydronephrosis group (Group B). Group A was directly treated with PCNL under ultrasound guidance and group B was treated with artificial hydronephrosis before PCNL. Several outcomes were measured, including operation time, stone clearance rate, and incidence of complications. RESULTS: The operation time in Group A lower than that in Group B, and the incidence of sepsis was significantly lower in group A than in Group B (P<0.05). There was no statistical difference in stone clearance rate, success rate of primary establishment of puncture channel, unilateral change in perioperative red blood cell count, change in perioperative renal function, and perioperative complications (except sepsis) between the two groups (P>0.05). CONCLUSION: For experienced physicians, percutaneous nephrolithotomy without artificial hydronephrosis in an oblique supine position can be attempted to reduce the number of surgical steps without affecting the stone clearance rate and increasing the occurrence of complications.
RESUMO
OBJECTIVE: Association between mitochondrial dysfunction and osteoarthritis (OA) has been consistently investigated, yet their genetic association remains obscure. In this study, mitochondrial-related genes were used as instrumental variables to proxy for mitochondrial dysfunction, and summary data of knee OA (KOA) were used as outcome to examine their genetic association. METHODS: We obtained 1136 mitochondrial-related genes from the human MitoCarta3.0 database. Genetic proxy instruments for mitochondrial-related genes from studies of corresponding gene expression (n = 31,684) and protein (n = 35,559) quantitative trait locus (eQTLs and pQTLs), respectively. Aggregated data for KOA (62,497 KOA cases and 333,557 controls) were extracted from the largest OA genome-wide association study (GWAS). We integrated QTL data with KOA GWAS data to estimate their genetic association using summary data-based Mendelian randomization analysis (SMR). Additionally, we implemented Bayesian colocalization analysis to reveal whether suggestive mitochondrial-related genes and KOA were driven by a same genetic variant. Finally, to validate the primary findings, replication study (24,955 cases and 378,169 controls) and multi-SNP-based SMR (SMR-multi) test was performed. RESULTS: Through SMR analysis, we found that the expression levels of 2 mitochondrial-related genes were associated with KOA risk. Specifically, elevated gene expression levels of the IMMP2L (odds ratio [OR] = 1.056; 95% confidence interval [CI] = 1.030-1.082; P-FDR = 0.004) increased the risk of KOA. Conversely, increased gene expression levels of AKAP10 decreased the risk of KOA (OR = 0.955; 95% CI, 0.934-0.977; P-FDR = 0.019). Colocalization analysis demonstrated that AKAP10 (PP.H4 = 0.84) and IMMP2L (PP.H4 = 0.91) shared the same genetic variant with KOA. In addition, consistent results were found in replication study and SMR-multi test, further demonstrating the reliability of our findings. CONCLUSIONS: In summary, our analyses revealed the genetic association between mitochondrial dysfunction proxied by mitochondrial-related genes and KOA, providing new insight into potential pathogenesis of KOA. Furthermore, these identified candidate genes offer the possibility of clinical drug target development for KOA. Key points ⢠This is the first SMR study to explore the genetic association between mitochondrial dysfunction proxied by mitochondrial-related genes and KOA. ⢠Sufficient evidence to support genetic association between the expression levels of AKAP10 and IMMP2L, and KOA ⢠Our MR analysis may provide novel new insight into potential pathogenesis of KOA. ⢠These identified candidate genes offer the possibility of clinical drug target development for KOA.
RESUMO
Fusobacterium nucleatum in colorectal cancer (CRC) tissue is implicated at multiple stages of the disease, while the mechanisms underlying bacterial translocation and colonization remain incompletely understood. Herein, we investigated whether extracellular vesicles derived from F. nucleatum (FnEVs) have impacts on bacterial colonization. In mice with colitis-related CRC, a notable enrichment of FnEVs was observed, leading to a significant increase in intratumor colonization by F. nucleatum and accelerated progression of CRC. The enrichment of FnEVs in clinical CRC tissues was demonstrated. Subsequently, we revealed that FnEVs undergo membrane fusion with CRC cells, leading to the transfer and retention of FomA on recipient cell surfaces. Given its ability to facilitate F. nucleatum autoaggregation through interaction with FN1441, the presence of FomA on CRC cell surfaces presents a target for bacterial adhesion. Collectively, the findings unveil a mechanism used by EVs to prepare a niche conducive for bacterial colonization in distal organs.