Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.100
Filtrar
1.
Food Chem ; 338: 127796, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32805691

RESUMO

Trace detection of toxic chemicals in foodstuffs is of great concern in recent years. Surface-enhanced Raman scattering (SERS) has drawn significant attention in the monitoring of food safety due to its high sensitivity. This study synthesized signal optimized flower-like silver nanoparticle-(AgNP) with EF at 25 °C of 1.39 × 106 to extend the SERS application for pesticide sensing in foodstuffs. The synthesized AgNP was deployed as SERS based sensing platform to detect methomyl, acetamiprid-(AC) and 2,4-dichlorophenoxyacetic acid-(2,4-D) residue levels in green tea via solid-phase extraction. A linear correlation was twigged between the SERS signal and the concentration for methomyl, AC and 2,4-D with regression coefficient of 0.9974, 0.9956 and 0.9982 and limit of detection of 5.58 × 10-4, 1.88 × 10-4 and 4.72 × 10-3 µg/mL, respectively; the RSD value < 5% was recorded for accuracy and precision analysis suggesting that proposed method could be deployed for the monitoring of methomyl, AC and 2,4-D residue levels in green tea.


Assuntos
Contaminação de Alimentos/análise , Nanopartículas Metálicas/química , Resíduos de Praguicidas/análise , Análise Espectral Raman/métodos , Chá/química , Ácido 2,4-Diclorofenoxiacético/análise , Análise de Alimentos/instrumentação , Análise de Alimentos/métodos , Metomil/análise , Neonicotinoides/análise , Prata/química , Extração em Fase Sólida
2.
World J Biol Psychiatry ; : 1-13, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33143498

RESUMO

OBJECTIVES: Environmental and genetic factors play important roles in the development of schizophrenia (SCZ), bipolar disorder (BPD) or major depressive disorder (MDD). Some risk loci are identified with shared genetic effects on major psychiatric disorders. To investigate whether SNX29 gene played a significant role in these psychiatric disorders in the Han Chinese population. METHODS: We focused on 11 single-nucleotide polymorphisms (SNPs) harboring SNX29 gene and carried out case-control studies in patients with SCZ (n = 1,248), BPD (n = 1,344), or MDD (n = 1,056), and 1,248 healthy controls (HC) recruited from the Han Chinese population. We constructed weighted gene co-expression network analysis (WGCNA) and extracted significant modules by R package. RESULTS: We found that rs3743592 was significantly associated with MDD and rs6498263 with BPD in both allele and genotype distributions. Before correction, rs3743592 showed allelic and genotypic significance with SCZ, rs6498263 showed allelic significance with SCZ. WGCNA identified top ten modules of co-expressed genes. Gene Ontology (GO) and pathway analysis were used to examine the functions of SNX29, which revealed that SNX29 was involved in the regulation of a number of biological processes, such as TGF-beta, ErbB, and Wnt signaling pathway, etc. CONCLUSIONS: Our results supported common risk factors in SNX29 might share among these three mental disorders in the Han Chinese population.

3.
J Biol Chem ; 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144326

RESUMO

The envelopment of hepatitis C virus (HCV) is believed to occur primarily in the endoplasmic reticulum (ER)-associated membrane, and the translocation of viral Core protein from lipid droplets (LDs) to the ER is essential for the envelopment of viral particles. However, the factors involved in are not completely understood. Herein, we identified eight adaptive mutations that enhanced virus spread and infectivity of genotype 1a clone TNcc in hepatoma Huh7 cells through long-term culture adaptation and reverse genetic study. Of eight mutations, I853V in NS2 and C2865F in NS5B were found to be minimal mutation sets that enabled an increase in virus production without apparently affecting RNA replication, thus suggesting its roles in the post-replication stage of the HCV life cycle. Using a protease K protection and confocal microscopy analysis, we demonstrated that C2865F and the combination of I853V/C2865F enhanced virus envelopment by facilitating Core translocation from LDs to the ER. Buoyant density analysis revealed that I853V/C2865F contributed to the release of virion with a density of ~1.10 g/ml. Moreover, we demonstrated that NS5B directly interacted with NS2 at the protease domain, and that mutations I853V, C2865F, I853V/C2865F enhanced the interaction. In addition, C2865F also enhanced the interaction between NS5B and Core. In conclusion, this study demonstrated that adaptive mutations in NS2 and NS5B promoted HCV envelopment by accelerating Core translocation from LDs to the ER and reinforced the interaction between NS2 and NS5B. The findings facilitate our understanding of the assembly of HCV morphogenesis.

4.
J Orthop Surg Res ; 15(1): 506, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33143737

RESUMO

BACKGROUND: The modified Dunn procedure has rapidly gained popularity as a treatment for slipped capital femoral epiphysis (SCFE) during the past few years. However, there is limited information regarding its safety and efficacy in severe slips with this procedure. The purpose of this study is to present clinical results and incidence of complications associated with the modified Dunn osteotomy in a consecutive series of severe SCFE cohort. PATIENTS AND METHODS: We retrospectively assessed the outcomes of all twenty patients who had been treated with the modified Dunn procedure in our tertiary-care institution. According to the Loder and Fahey criteria, all cases were classified as severe slips; nineteen cases were stable, and one case was an unstable slip. All surgical procedures were performed by one senior orthopedic surgeon who had specific training in the modified Dunn procedure. Operative reports, outpatient records, follow-up radiographs, and the intraoperative findings were reviewed to determine the demographic information, type of fixation, final slip angle, presence of avascular necrosis (AVN), and any additional complications. The mean age of the patients was 13.2 ± 1.6 years (range, 10 to 17 years). Twenty patients (twenty-one hips) with a mean of 31.2 ± 14 months (range, 12 to 57 months) follow-up met the inclusion criteria. Pain and function were assessed by the modified Harris score and WOMAC score. Radiographic anatomy was measured using the slip angle and α-angle. The radiographic findings related to the anatomy of the femoral head-neck junction, as well as signs of early-onset of osteoarthritis (OA) and AVN, were evaluated pre- and postoperatively. RESULTS: Overall, nineteen patients had excellent clinical and radiographic outcomes with respect to hip function and radiographic parameters. One patient (5%) who developed implant failure at 3 months postoperatively had a poor outcome. The mean preoperative slip angle was corrected from 63.2 ± 8.1° (range, 51 to 84°) to a normal value of 7.5 ± 3.5° (range, 2 to 15°) (p < 0.01). The mean α-angle was improved from an average of 94.5 ± 21.1° (range, 61 to 123°) to postoperative 42 ± 6.4° (range, 25 to 55°) (p < 0.01). The mean modified Harris hip and WOMAC scores postoperatively were 96.7 ± 13.4 (range, 40 to 100) and 95.4 ± 10.6 (range, 38 to 100), respectively. There were no cases of the development of femoroacetabular impingement (FAI) and the progression of OA. We did not record any case of AVN, closure of the growth plate, heterotopic ossification (HO), trochanteric nonunion, or limb length discrepancy that occurred postoperatively either at the most recent follow-up. CONCLUSIONS: Our series of severe SCFEs treated with the modified Dunn osteotomy demonstrated that the procedure is safe and capable of restoring more normal proximal femoral anatomy by maximum correction of the slip angle, minimizing probability of secondary FAI and early onset of OA. However, despite its lower surgical complication rate compared with alternative treatment described in the literature for SCFE, AVN can and do occur postoperatively which should always be concerned in every hip.

5.
Food Chem ; : 128490, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33158673

RESUMO

Dendrobium officinale Kimura et Migo (D. officinale) is a dual-use plant with both botanical medicine and food applications, drawing increasing attentions. Pesticides are inevitably applied on D. officinale in commercial artificial-sheltered cultivation, yet little is known about pesticide residue levels in D. officinale. A modified high through-put QuEChERS method coupled with HPLC-MS/MS was developed and validated to detect 76 pesticides in D. officinale. Graphitized multi-wall carbon nanotubes (g-MWCNTs) was selected as the clean-up sorbent, showing relative weak affinity to triazole fungicide having planar structure in their molecular and low matrix effects of pesticides in D. officinale samples compared to MWCNTs and pesticarb. The validated method was applied to analyze pesticide residues in 86 real D. officinale samples collected from three main producing provinces. 43 different pesticides were detected with highest residue of 6.11 mg/kg for dimethomorph. Given possible health risks related to pesticide residues, accordingly, risk assessment of human exposure to pesticides via intake of D. officinale was thus performed, indicating that the pesticide residue in fresh or dry D. officinale would not cause potential risk to human health either in the long-term or short-term. This work improved our understanding of potential exposure risk of pesticide multi-residues in D. officinale.

6.
J Innate Immun ; : 1-20, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33152737

RESUMO

Intra-amniotic infection, the invasion of microbes into the amniotic cavity resulting in inflammation, is a clinical condition that can lead to adverse pregnancy outcomes for the mother and fetus as well as severe long-term neonatal morbidities. Despite much research focused on the consequences of intra-amniotic infection, there remains little knowledge about the innate immune cells that respond to invading microbes. We performed RNA-seq of sorted amniotic fluid neutrophils and monocytes/macrophages from women with intra-amniotic infection to determine the transcriptomic differences between these innate immune cells. Further, we sought to identify specific transcriptomic pathways that were significantly altered by the maternal or fetal origin of amniotic fluid neutrophils and monocytes/macrophages, the presence of a severe fetal inflammatory response, and pregnancy outcome (i.e., preterm or term delivery). We show that significant transcriptomic differences exist between amniotic fluid neutrophils and monocytes/macrophages from women with intra-amniotic infection, indicating the distinct roles these cells play. The transcriptome of amniotic fluid immune cells varies based on their maternal or fetal origin, and the significant transcriptomic differences between fetal and maternal monocytes/macrophages imply that those of fetal origin exhibit impaired functions. Notably, transcriptomic changes in amniotic fluid monocytes/macrophages suggest that these immune cells collaborate with neutrophils in the trafficking of fetal leukocytes throughout the umbilical cord (i.e., funisitis). Finally, amniotic fluid neutrophils and monocytes/macrophages from preterm deliveries display enhanced transcriptional activity compared to those from term deliveries, highlighting the protective role of these cells during this vulnerable period. Collectively, these findings demonstrate the underlying complexity of local innate immune responses in women with intra-amniotic infection and provide new insights into the functions of neutrophils and monocytes/macrophages in the amniotic cavity.

7.
Cancer Immunol Res ; 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177108

RESUMO

Metabolism is reprogrammed in cancer to fulfill the demands of malignant cells for cancer initiation and progression. Apart from their effects within cancer cells, little is known about whether and how reprogramed metabolism regulates the surrounding tumor microenvironment (TME). Myeloid-derived suppressor cells (MDSCs) are key regulators of the TME and greatly impact tumor progression and therapeutic responses. In this study, our results revealed that retinol metabolism-related genes and enzymes were significantly downregulated in human colorectal cancer (CRC) compared to adjacent colonic tissues, and tumors exhibited a defect in retinoic acid (RA) synthesis. Reduced ADH1-mediated retinol metabolism was associated with attenuated RA signaling and accumulated MDSCs in CRC tumors. Using an in vitro model, generating MDSCs from CD34P+P myeloid precursors, we found that exogenous RA could abrogate the generation of polymorphonuclear MDSCs (PMN-MDSCs) with negligible impact on myeloid differentiation. Mechanistically, RA could restrain the glycolytic capacity of myeloid cells, which in turn activated the AMP-activated protein kinase (AMPK) pathway, further impairing the suppressive capacity of myeloid cells. Supplementation with RA could significantly delay tumor growth, with reduced arginase 1-expressing myeloid cells, increased CD8P+P and granzyme BP+P T cells in both colitis-associated and implanted MC38 mouse CRC models. Our results indicated that the defect in ADH1-mediated RA synthesis could provide a possible mechanism that fosters the generation of PMN-MDSCs in CRC and that restoring RA signaling in the TME could serve as a promising therapeutic strategy to abrogate the generation of PMN-MDSCs.

8.
J Food Sci ; 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33174252

RESUMO

Time-temperature indicators (TTIs) are cost-efficient tools that may be used to predict food quality. In this paper, a diffusion TTI was used to predict fruit quality during storage. Both the color changing characters of TTI and the quality parameters, including weight loss, soluble solids content, vitamin C content, titratable acidity, and antioxidant capacity of three kinds of fruits (kiwifruit, strawberry, and mango), were investigated for storage temperatures (5, 10, 15, and 20 °C). The relationships between the color changing properties and fruit quality parameters have been built based on the activation energy (Ea ). The results showed that the storage temperature and time had significant effects on the color changing of TTI and fruit quality. The RGB value of TTI decreased with time, and the higher the storage temperature, the faster the RGB value reduced. Also, the higher the storage temperature, the faster the fruit quality changed and the poorer they were. Furthermore, all of the differences of Ea between TTI color response and fruit quality change are less than 25 kJ/mol, which indicates that the TTI can be used to predict these fruit quality. Finally, prediction models were built and validated based on the RGB values of TTI. It provides the possibility for low-cost quality monitoring and has more application potential in food quality predicting. PRACTICAL APPLICATION: By monitoring the color change of diffuse time-temperature indicator (TTI) and the quality change of fruit, the feasibility of TTI for fruit quality monitoring was determined and the quality prediction model was established. The diffusion TTI and fruit quality prediction model can realize the monitoring and predicting of fruit quality based on the TTI, which provides a basis for the combination of TTI Quick Response Code and fruit quality monitoring, with a view to achieving fruit quality status by scanning the Quick Response Code of TTI with mobile phones in the future. This method may provide a new solution to monitor the fruit quality during storage and distribution based on visualization technology that can simplify the methods of detecting fruit quality and achieve fast quality detection. It provides the possibility for low-cost quality monitoring and has more application potential in food quality predicting. Further studies on diffusion TTI are needed to develop its application in more field of food and make the diffusion TTI an intelligent mean for food quality monitoring and predicting.

9.
Int J Mol Sci ; 21(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153158

RESUMO

It is important to explore the regulatory mechanism of phosphorus homeostasis in fish, which help avoid the risk of P toxicity and prevent P pollution in aquatic environment. The present study obtained the full-length cDNA sequences and the promoters of three SLC20 members (slc20a1a, slc20a1b and slc20a2) from grass carp Ctenopharyngodon idella, and explored their responses to inorganic phosphorus (Pi). Grass carp SLC20s proteins possessed conservative domains and amino acid sites relevant with phosphorus transport. The mRNAs of three slc20s appeared in the nine tissues, but their expression levels were tissue-dependent. The binding sites of three transcription factors (SREBP1, NRF2 and VDR) were predicted on the slc20s promoters. The mutation and EMSA analysis indicated that: (1) SREBP1 binding site (-783/-771 bp) negatively but VDR (-260/-253 bp) binding site positively regulated the activities of slc20a1a promoter; (2) SREBP1 (-1187/-1178 bp), NRF2 (-572/-561 bp) and VDR(615/-609 bp) binding sites positively regulated the activities of slc20a1b promoter; (3) SREBP1 (-987/-977 bp), NRF2 (-1469/-1459 bp) and VDR (-1124/-1117 bp) binding sites positively regulated the activities of the slc20a2 promoter. Moreover, Pi incubation significantly reduced the activities of three slc20s promoters, and Pi-induced transcriptional inactivation of slc20s promoters abolished after the mutation of the VDR element but not SREBP1 and NRF2 elements. Pi incubation down-regulated the mRNA levels of three slc20s. For the first time, our study elucidated the transcriptional regulatory mechanisms of SLC20s and their responses to Pi, which offered new insights into the Pi homeostatic regulation and provided the basis for reducing phosphorus discharge into the waters.

10.
Cell Metab ; 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159852

RESUMO

The emergence of cancer from diverse normal tissues has long been rationalized to represent a common set of fundamental processes. However, these processes are not fully defined. Here, we show that forced expression of glucose-6-phosphate dehydrogenase (G6PD) affords immortalized mouse and human cells anchorage-independent growth in vitro and tumorigenicity in animals. Mechanistically, G6PD augments the NADPH pool by stimulating NAD+ kinase-mediated NADP+ biosynthesis in addition to converting NADP+ to NADPH, bolstering antioxidant defense. G6PD also increases nucleotide precursor levels through the production of ribose and NADPH, promoting cell proliferation. Supplementation of antioxidants or nucleosides suffices to convert immortalized mouse and human cells into a tumorigenic state, and supplementation of both is required when their overlapping metabolic consequences are minimized. These results suggest that normal cells have a limited capacity for redox balance and nucleotide synthesis, and overcoming this limit might represent a key aspect of oncogenic transformation.

11.
Biosens Bioelectron ; 172: 112806, 2020 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33190016

RESUMO

In this study, a sensitive biosensor was developed based on aptamer functionalized polydimethylsiloxane (PDMS) film for the detection of Staphylococcus aureus (S. aureus) using surface-enhanced Raman scattering (SERS) technology. Initially, the surface of PDMS film was chemically modified by piranha solution and 3-Aminopropyltriethoxysilane (APTES), and then AuNPs-PDMS film was prepared by coating gold nanoparticles (AuNPs) through electrostatic interaction. Next, the aptamers were immobilized on the AuNPs-PDMS membrane via gold-sulfur bond to form the capture substrate. Meanwhile, gold-silver core-shell nanoflowers (Au@Ag NFs) modified with mercaptobenzoic acid (4-MBA) and aptamers were applied as a signal probe. In the presence of the target, the signal molecular probe and the capturing substrate specifically combined with the target and resulted in a sandwich structure "capture substrate-target-signal molecular probe". Under the optimized experimental condition, the signal of 4-MBA at 1085 cm-1 was linearly related to the S. aureus concentration in the range of 4.3 × 10 cfu mL-1-4.3 × 107 cfu mL-1 (y = 326.91x-117.62, R2 = 0.9932) with a detection limit of 13 cfu mL-1. The method was successfully applied to spiked actual samples and a 92.5-110% recovery rate was achieved.

12.
Dis Markers ; 2020: 8847986, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33029258

RESUMO

Prostate cancer (PCa) is one of the most commonly diagnosed cancers in males worldwide. lncRNAs (long noncoding RNAs) play a significant role in the occurrence and development of PCa. eRNAs (enhancer RNAs) and SE-lncRNAs (superenhancer lncRNAs) are important elements of lncRNAs, but the role of eRNAs and SE-lncRNAs in PCa remains largely unclear. In this work, we identified 681 eRNAs and 292 SE-lncRNAs that were expressed differentially in PCa using a microarray. We also found that eRNAs transcribed from active open chromatin had significantly higher expression than those from active closed chromatin, and SE-lncRNAs had a little higher expression than eRNAs. Next, we constructed a transcriptional regulation network that eRNA-related enhancer and the target genes shared the same TF-binding motifs. Further, we investigated whether CTCF played a role in mediating the transcriptional regulation network. eRNAs, especially those that regulate androgen response genes, may be candidates for prognostic biomarkers and therapy targets. Our work provides a new perspective for developing medical treatments and therapies for prostate cancer.

13.
Artigo em Inglês | MEDLINE | ID: mdl-33078219

RESUMO

OBJECTIVES: This study aimed to investigate the microbiological profiles and antimicrobial resistance patterns of bloodstream pathogens in Chinese children. METHODS: This retrospective study was conducted at 13 tertiary hospitals in China during 2016-2018. The first bloodstream isolates of the same species from one pediatric patient < 18 years were included to this study for analysis. Antimicrobial susceptibility testing was determined based on minimum inhibitory concentrations or Kirby-Bauer disk diffusion methods according to the 2018 Clinical and Laboratory Standards Institute guidelines. RESULTS: Overall, 9345 nonduplicate bloodstream isolates were collected. Top 10 pathogens included Coagulase-negative staphylococcus (CoNS) (44.4%), Escherichia coli (10.2%), Klebsiella pneumoniae (5.9%), Staphylococcus aureus (5.0%), Streptococcus pneumoniae (4.9%), Pseudomonas aeruginosa(2.8%), Enterococcus faecium (2.7%), Stenotrophomonas maltophilia (2.4%), Salmonella spp. (2.3%), and Streptococcus agalactiae (2.0%). The commonest pathogens apart from CoNS in age group 0-28 days, 29 days-2 months, 3-11 months, 1-5 years, and ≥ 5 years were Escherichia coli (17.2%), Escherichia coli (14.0%), Escherichia coli (7.9%), Streptococcus pneumoniae (10.7%) ,and Staphylococcus aureus (13.6%), respectively. The overall prevalence of extended-spectrum ß-lactamases-producing Enterobacteriaceae, carbapenem-resistant Klebsiella pneumoniae, carbapenem-resistant Acinetobacter baumannii, and carbapenem-resistant Pseudomonas aeruginosa were 41.4, 28.4, 31.7, and 5.6%, respectively. The overall prevalence of methicillin-resistant Staphylococcus aureus, penicillin-resistant Streptococcus pneumoniae and vancomycin-resistant Enterococcus was 38.1, 28.3, and 0.7%, respectively. CONCLUSIONS: The major bacterial pathogens have differences in different age groups, ward types, and regions in Chinese children, and the commonest causing microorganism was the Escherichia coli, especially in neonates and infants. High prevalence of important resistant phenotypes is of a serious concern.

14.
Chin Med J (Engl) ; 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33021767

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a malignant hematological disease, originating from hematopoiesis stem cell differentiation obstruction and clonal proliferation. New reagents or biologicals for the treatment of AML are urgently needed, and exosomes have been identified as candidate biomarkers for disease diagnosis and prognosis. This study aimed to investigate the effects of exosomes from bone marrow mesenchymal stem cells (BMSCs) on AML cells as well as the underlying microRNA (miRNA)-mediated mechanisms. METHODS: Exosomes were isolated using a precipitation method, followed by validation using marker protein expression and nanoparticle tracking analysis. Differentially expressed miRNAs were identified by deep RNA sequencing and confirmed by quantitative real-time polymerase chain reaction (qPCR). Cell proliferation was assessed by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt method, and cell cycle progression and apoptosis were detected by flow cytometry. Functional gene expression was analyzed by qPCR and Western blotting (WB). Significant differences were determined using Student's t test or analysis of variance. RESULTS: BMSCs-derived exosomes effectively suppressed cell proliferation (both P < 0.0001 at 10 and 20 µg/mL) and cell cycle progression (P < 0.01 at G0-G1 stage), and also significantly enhanced cell apoptosis (P < 0.001) in KG-1a cells. There were 1167 differentially expressed miRNAs obtained from BMSCs-derived exosomes compared with KG-1a cell-derived exosomes (P < 0.05). Knockdown of hsa-miR-124-5p in BMSCs abrogated the effects of BMSCs-derived exosomes in regulating KG-1a such as the change in cell proliferation (both P < 0.0001 vs. normal KG-1a cell [NC] at 48 and 72 h). KG-1a cells treated with BMSCs-derived exosomes suppressed expression of structural maintenance of chromosomes 4 (P < 0.001 vs. NC by qPCR and P < 0.0001 vs. NC by WB), which is associated with the progression of various cancers. This BMSCs-derived exosomes effect was significantly reversed with knockdown of hsa-miR-124-5p (P < 0.0001 vs. NC by WB). CONCLUSIONS: BMSCs-derived exosomes suppress cell proliferation and cycle progression and promote cell apoptosis in KG-1a cells, likely acting through hsa-miR-124-5p. Our study establishes a basis for a BMSCs-derived exosomes-based AML treatment.

15.
J Cell Biochem ; 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33025669

RESUMO

Monopolar spindle-1 (Mps1) is a critical interphase regulator that also involves into the spindle assembly checkpoint for the cell cycle control in both mitosis and meiosis. However, the functions of Mps1 during mouse early embryo development is still unclear. In this study, we reported the important roles of Mps1 in the first cleavage of mouse embryos. Our data indicated that the loss of Mps1 activity caused precocious cleavage of zygotes to 2-cell embryos; however, prolonged culture disturbed the early embryo development to the blastocyst. We found that the spindle organization was disrupted after Mps1 inhibition, and the chromosomes were misaligned in the first cleavage. Moreover, the kinetochore-microtubule attachment was lost and Aurora B failed to accumulate to the kinetochores, indicating that the spindle assembly checkpoint (SAC) was activated. Furthermore, the inhibition of Mps1 activity resulted in an increase of DNA damage, which further induced oxidative stress, showing with positive γ-H2A.X signal and increased reactive oxygen species level. Ultimately, irreparable DNA damage and oxidative stress-activated apoptosis and autophagy, which was confirmed by the positive Annexin-V signal and increased autophagosomes. Taken together, our data indicated that Mps1 played important roles in the control of SAC and DNA repair during mouse early embryo development.

16.
Turk J Pediatr ; 62(5): 820-825, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33108085

RESUMO

BACKGROUND: Oral rehydration salt (ORS) is a first-line medication for vasovagal syncope (VVS) in children and adolescents. We retrospectively investigated the treatment with ORS-I (Na 90 mmol/L) for VVS in children and adolescents to define appropriate duration of treatment. METHODS: All patients with a diagnosis of VVS, based on the first head-up tilt test (HUTT) response, and who accepted ORS-I treatment were enrolled. ORS was stopped when the HUTT response turned negative. Patients were followed for six months after cessation of ORS treatment. RESULTS: The study group included 129 patients (57 male, 72 female; mean age, 11.8 ± 2.0 years, age range, 7.0- 17.0 years). Median duration of VVS was 4 months (range, 1 week to > 10 years). The number of syncope ranged from 2 times to > 20 times. Mean follow-up time was 27.8 ± 6.9 weeks (range, 26-33 weeks). It took to 2~13 weeks for HUTT response to turn negative, with an average time of 8.4 weeks (95% confidence interval, 6.89~9.84 weeks). There was no statistical difference for the time to negative HUTT response according to age groups ( < 12-year-old vs. ≥12-year-old), syncope type (vasodepressor vs. mixed), and the syncope frequency. No patient experienced syncope after cessation of ORS treatment. CONCLUSIONS: Our findings suggest that ORS-I is an effective measure to treat children and adolescents with VVS. We recommend a treatment course of 2 months.

17.
Huan Jing Ke Xue ; 41(10): 4555-4563, 2020 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-33124387

RESUMO

Considering the Haihe River Basin as an example, the DPeRS model was used to analyze the spatial distribution characteristics and pollution sources of the diffuse pollution by remote sensing pixel scale. Combined with the evaluation standard of surface water quality, a potential risk grading method for diffuse pollution was constructed to assess the potential risk of diffuse pollution in Haihe River Basin. The results showed that, in 2016, the diffuse discharge loads of total nitrogen (TN), total phosphorus (TP), ammonia nitrogen (NH4+-N), and chemical oxygen demand (COD) were 429.2, 25.7, 288.3, and 1017.0 kg ·km-2, respectively, with the amount of river entry being 2.5×104 ton, 1597.2 ton, 1.7×104 ton, and 6.6×104 ton in Haihe River Basin, respectively. Farmland runoff is the most important source of diffuse pollution of TN, TP and NH4+-N in the Haihe River Basin. For COD index, urban life is the primary type of pollution, followed by livestock. The diffuse pollution is relatively severe in the central and southern areas of Haihe River Basin, and this area is also a high-risk concentrated distribution area of diffuse pollution in the basin. The distribution of high-risk areas of nitrogen-phosphorus diffuse pollution are relatively concentrated, and the chemical oxygen demand is relatively scattered. More than 36% of the Haihe River Basin has a nitrogen-phosphorus diffuse pollution risk, and 2.94% of the area has a chemical oxygen demand diffuse pollution risk.


Assuntos
Rios , Poluentes Químicos da Água , Análise da Demanda Biológica de Oxigênio , China , Monitoramento Ambiental , Nitrogênio/análise , Fósforo/análise , Poluentes Químicos da Água/análise
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 246: 118994, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33038862

RESUMO

In this study, a novel analytical approach is proposed for the identification of pesticide residues in tea by combining surface-enhanced Raman scattering (SERS) with a deep learning method one-dimensional convolutional neural network (1D CNN). First, a handheld Raman spectrometer was used for rapid on-site collection of SERS spectra. Second, the collected SERS spectra were augmented by a data augmentation strategy. Third, based on the augmented SERS spectra, the 1D CNN models were established on the cloud server, and then the trained 1D CNN models were used for subsequent pesticide residue identification analysis. In addition, to investigate the identification performance of the 1D CNN method, four conventional identification methods, including partial least square-discriminant analysis (PLS-DA), k-nearest neighbour (k-NN), support vector machine (SVM) and random forest (RF), were also developed on the basis of the augmented SERS spectra and applied for pesticide residue identification analysis. The comparative studies show that the 1D CNN method possesses better identification accuracy, stability and sensitivity than the other four conventional identification methods. In conclusion, the proposed novel analytical approach that exploits the advantages of SERS and a deep learning method (1D CNN) is a promising method for rapid on-site identification of pesticide residues in tea.

19.
Artigo em Inglês | MEDLINE | ID: mdl-33119515

RESUMO

Breast Ultrasound (BUS) imaging has been recognized as an essential imaging modality for breast masses classification in China. Current deep learning (DL) based solutions for BUS classification seek to feed ultrasound (US) images into deep convolutional neural networks (CNNs), to learn a hierarchical combination of features for discriminating malignant and benign masses. One existing problem in current DL-based BUS classification was the lack of spatial and channel-wise features weighting, which inevitably allow interference from redundant features and low sensitivity. In this study, we aim to incorporate the instructive information provided by breast imaging reporting and data system (BI-RADS) within DL-based classification. A novel DL-based BI-RADS Vector-Attention Network (BVA Net) that trains with both texture information and decoded information from BI-RADS stratifications was proposed for the task. Three baseline models, pretrained DenseNet-121, ResNet-50 and Residual-Attention Network(RA Net) were included for comparison. Experiments were conducted on a large scale private main dataset and two public datasets, UDIAT and BUSI. On the main dataset, BVA Net outperformed other models, in terms of AUC (area under the receiver operating curve, 0.908), ACC (accuracy, 0.865), sensitivity (0.812) and precision(0.795). BVA Net also achieved the high AUC (0.87 and 0.882) and ACC (0.859 and 0.843), on UDIAT and BUSI. Moreover, we proposed a method that integrates both BVA Net binary classification and BI-RADS stratification estimation, called integrated classification. The introduction of integrated classification helped improving the overall sensitivity while maintaining a high specificity.

20.
Artigo em Inglês | MEDLINE | ID: mdl-33128544

RESUMO

Arginase I (ARG1) is a cytosolic enzyme that catalyzes the hydrolysis of L-arginine to L-ornithine and urea. The association of ARG1 with cancer has mostly been focused on the ARG1 released by tumor-associated myeloid cells in tumor microenvironment. However, the role of ARG1 expressed in cancer cells is unclear. Here, we showed that the expression of ARG1 in human breast cancer (BC) is related to a good prognosis in BC patients. Overexpression of ARG1 suppresses BC cell proliferation and migration in vitro and xenograft tumor growth and development in mouse models. Furthermore, ARG1 expression down-regulates the expression of p-AKT, leading to the de-activation of AKT signal pathway in BC cells. Thus, our results established that in contrast to the role of ARG1 released from tumor-associated myeloid cells in tumor microenvironment that promotes tumor immune escape, ARG1 expressed in BC cells suppresses AKT signaling pathway and functions as a tumor suppressor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA