Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-34924338

RESUMO

BACKGROUND/PURPOSE: Streptococcus pneumoniae is an important human pathogen that causes invasive infections in adults and children. Accurate serotyping is important to study its epidemiological distribution and to assess vaccine efficacy. METHODS: Invasive S. pneumoniae isolates (n = 300) from 27 teaching hospitals in China were studied. The Quellung reaction was used as the gold standard to identify the S. pneumoniae serotypes. Subsequently, multiplex PCR and cpsB gene-based sequetyping methods were used to identify the serotypes. METHODS: Based on the Quellung reaction, 299 S. pneumoniae isolates were accurately identified to the serotype level and 40 different serotypes were detected. Only one strain was non-typeable, and five most common serotypes were identified: 23F (43, 14.3%), 19A (41, 13.7%), 19F (41, 13.7%), 3 (31, 10.3%), and 14 (27, 9.0%). Overall, the multiplex PCR method identified 73.3 and 20.7% of the isolates to the serotype and cluster levels, respectively, with 1.7% of the isolates misidentified. In contrast, the cpsB sequetyping method identified 59.0 and 30.3% of the isolates to the serotype and cluster levels, respectively, and 7% were misidentified. CONCLUSIONS: The cpsB gene sequetyping method combined with multiplex PCR, can greatly improve the accuracy and efficiency of serotyping, besides reducing the associated costs.

2.
Front Cell Infect Microbiol ; 11: 739496, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778103

RESUMO

Diutina catenulata (Candida catenulata) is an ascomycete yeast species widely used in environmental and industrial research and capable of causing infections in humans and animals. At present, there are only a few studies on D. catenulata, and further research is required for its more in-depth characterization and analysis. Eleven strains of D. catenulata collected from China Hospital Invasive Fungal Surveillance Net (CHIF-NET) and the CHIF-NET North China Program were identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry and internal transcribed spacer sequencing. The antifungal susceptibility of the Diutina catenulata strains was tested using the Clinical and Laboratory Standards Institute broth microdilution method and Sensititre YeastOne™. Furthermore, ERG11 and FKS1 were sequenced to determine any mutations related to azole and echinocandin resistance in D. catenulata. All isolates exhibited low minimum inhibitory concentration (MIC) values for itraconazole (0.06-0.12 µg/ml), posaconazole (0.06-0.12 µg/ml), amphotericin B (0.25-1 µg/ml), and 5-flucytosine (range, <0.06-0.12 µg/ml), whereas four isolates showed high MICs (≥4 µg/ml) for echinocandins. Strains with high MIC values for azoles showed common ERG11 mutations, namely, F126L/K143R. In addition, L139R mutations may be linked to high MICs of fluconazole. Two amino acid alterations reported to correspond to high MIC values of echinocandin, namely, F621I (F641) and S625L (S645), were found in the hot spot 1 region of FKS1. In addition, one new amino acid alteration, I1348S (I1368), was found outside of the FKS1 hot spot 2 region, and its contribution to echinocandin resistance requires future investigation. Diutina catenulata mainly infects patients with a weak immune system, and the high MIC values for various antifungals exhibited by these isolates may represent a challenge to clinical treatment.


Assuntos
Antifúngicos , Farmacorresistência Fúngica , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida , Humanos , Testes de Sensibilidade Microbiana , Saccharomycetales
3.
Biomedicines ; 9(7)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34356854

RESUMO

The specific recognition of T cell receptors (TCR) and peptides presented by human leukocyte antigens (pHLAs) is the core step for T cell triggering to execute anti-tumor activity. However, TCR assembly and soluble expression are challenging, which precludes the broad use of TCR in tumor therapy. Herein, we used heterodimeric Fc to assist in the correct assembly of TCRs to achieve the stable and soluble expression of several TCRs in mammalian cells, and the soluble TCRs enable us to yield novel bispecific T cell engagers (TCR/aCD3) through pairing them with an anti-CD3 antibody. The NY-ESO-1/LAGE-1 targeted TCR/aCD3 (NY-TCR/aCD3) that we generated can redirect naïve T cells to specific lysis antigen-positive tumor cells, but the potency of the NY-TCR/aCD3 was disappointing. Furthermore, we found that the activation of T cells by NY-TCR/aCD3 was mild and unabiding, and the activity of NY-TCR/aCD3 could be significantly improved when we replaced naïve T cells with pre-activated T cells. Therefore, we employed the robust T cell activation ability of staphylococcal enterotoxin C2 (SEC2) to optimize the activity of NY-TCR/aCD3. Moreover, we found that the secretions of SEC2-activated T cells can promote HLA-I expression and thus increase target levels, which may further contribute to improving the activity of NY-TCR/aCD3. Our study described novel strategies for soluble TCR expression, and the optimization of the generation and potency of TCR/aCD3 provided a representative for us to fully exploit TCRs for the precision targeting of cancers.

4.
Microorganisms ; 9(7)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34361971

RESUMO

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been used in the field of clinical microbiology since 2010. Compared with the traditional technique of biochemical identification, MALDI-TOF MS has many advantages, including convenience, speed, accuracy, and low cost. The accuracy and speed of identification using MALDI-TOF MS have been increasing with the development of sample preparation, database enrichment, and algorithm optimization. MALDI-TOF MS has shown promising results in identifying cultured colonies and rapidly detecting samples. MALDI-TOF MS has critical research applications for the rapid detection of highly virulent and drug-resistant pathogens. Here we present a scientific review that evaluates the performance of MALDI-TOF MS in identifying clinical pathogenic microorganisms. MALDI-TOF MS is a promising tool in identifying clinical microorganisms, although some aspects still require improvement.

5.
Front Cell Infect Microbiol ; 11: 687240, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295837

RESUMO

Filamentous fungi identification by Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been challenging due to the lack of simple and rapid protein extraction methods and insufficient species coverage in the database. In this study, we created two rapid protein extraction methods for filamentous fungi: a one-step zirconia-silica beads method (ZSB) and a focused-ultrasonication method (FUS). The identification accuracy of two methods were evaluated with the VITEK MS, as well as number of spectra peaks and signal-to-noise ratio (S/N) with M-Discover 100 MALDI-TOF MS compared to the routine method. The better method was applied to build a filamentous fungi in-house spectra library for the M-Discover 100 MS, and then another one and routine method were performed in parallel to verify the accuracy and commonality of the in-house library. Using the two optimized methods, the dedicated operating time before MALDI-TOF MS analysis was reduced from 30 min to 7 (ZSB) or 5 (FUS) min per sample, with only a few seconds added for each additional strain. And both two methods identified isolates from most mold types equal to or better than the routine method, and the total correct identification rate using VITEK MS was 79.67, 76.42, and 76.42%, respectively. On the other hand, the two rapid methods generally achieved higher maximum and minimum S/N ratios with these isolates tested as compared to the routine method. Besides, the ZSB method produced overall mean of maximum and minimum S/N ratio higher than that by FUS. An in-house library of M-Discover MS was successfully built from 135 isolates from 42 species belonging to 18 genera using the ZSB method. Analysis of 467 isolates resulted in 97.22% correctly identified isolates to the species level by the ZSB method versus 95.50% by the routine method. The two novel methods are time- and cost-effective and allow efficient identification of filamentous fungi while providing a simplified procedure to build an in-house library. Thus, more clinical laboratories may consider adopting MALDI-TOF MS for filamentous fungi identification in the future.


Assuntos
Micoses , Fungos , Humanos , Dióxido de Silício , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Zircônio
6.
Front Cell Infect Microbiol ; 11: 648988, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222036

RESUMO

Immune cells can optimize the management of metabolic resources to balance their energy requirements in order to regulate immune responses. The interconnection between immunometabolism and fungal infections is becoming increasingly apparent. Using proteome and metabolome assays, we found that stimulation of primary human monocytes by Candida albicans was accompanied by upregulation of glucose transporter 3 (GLUT3) and activation of the glycerophospholipid metabolism pathway. Upregulated GLUT3 expression has been preliminarily confirmed in monocytes from patients with C. albicans bloodstream infection. Our findings support the importance of GLUT3 in the complex network of glycerophospholipid metabolism and the innate immune responses against C. albicans. In summary, this study might contribute to decipher the regulatory mechanism between the monocyte metabolic reprogramming and innate immune response and reveal potential targets for the antifungal treatments.


Assuntos
Candida albicans , Imunidade Inata , Glicerofosfolipídeos , Humanos , Metabolismo dos Lipídeos , Monócitos
8.
Int J Antimicrob Agents ; 58(1): 106349, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33905861

RESUMO

Morphologically identified Penicillium (n = 103) and Talaromyces marneffei (n = 8) isolates were collected from various clinical sources between 2016 and 2017 at a medical centre in Beijing, China. Identification to species level was confirmed by sequencing of the internal transcribed spacer (ITS) region, ß-tubulin gene (benA) and RNA polymerase II second largest subunit (RPB2) gene. Of the 111 isolates, 56 (50.5%) were identified as Penicillium spp. and 55 (49.5%) as Talaromyces spp. Eleven species of Penicillium were detected, of which Penicillium oxalicum was the commonest, accounting for 51.8% (29/56), followed by Penicillium rubens (10.7%; 6/56) and Penicillium citrinum (10.7%; 6/56). Among the 55 Talaromyces isolates, nine species were identified, with Talaromyces funiculosus (36.4%; 20/55), Talaromyces stollii (27.3%; 15/55) and Talaromyces marneffei (14.5%; 8/55) being the most common. Of note, 89.3% (50/56) of the Penicillium isolates and 98.2% (54/55) of the Talaromyces isolates exhibited growth at 37°C. The isolates were mainly recovered from patients with pulmonary disorders (56.8%; 63/111), autoimmune disease (12.6%; 14/111) and AIDS (5.4%; 6/111). The azoles and amphotericin B exhibited potent activity against T. marneffei, while various levels of activity were observed against Penicillium and other Talaromyces species The echinocandins had the lowest MECs (MEC90, ≤0.12 mg/L) against most Penicillium and Talaromyces species, with the exception of T. marneffei whose MEC90 (4 mg/L) was five or more dilutions higher than that of the other species tested. These data on the species distribution and antifungal susceptibility expand the current clinical knowledge of Penicillium and Talaromyces species.


Assuntos
Antifúngicos/farmacologia , Pneumopatias/microbiologia , Micoses/microbiologia , Penicillium/efeitos dos fármacos , Talaromyces/efeitos dos fármacos , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , China/epidemiologia , DNA Fúngico , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Micoses/tratamento farmacológico , Penicillium/classificação , Penicillium/genética , Prevalência , RNA Polimerase II/genética , Talaromyces/classificação , Talaromyces/genética , Tubulina (Proteína)/genética , Adulto Jovem
9.
Artigo em Inglês | MEDLINE | ID: mdl-33839057

RESUMO

BACKGROUND/PURPOSE: There are limited studies on species distribution and susceptibility profiles of Aspergillus strains isolated from patients with otomycosis in China. METHODS: A total of 69 confirmed Aspergillus species isolates were obtained from ear swabs of patients diagnosed with otomycosis from 2017 to 2018 in northern China. Identification of these Aspergillus isolates at the species level was performed using conventional morphological methods and MALDI-TOF MS in combination with molecular sequencing, and in vitro susceptibility to nine antifungal agents was evaluated using the Sensititre YeastOne system. RESULTS: The Aspergillus section Nigri had the greatest distribution of Aspergillus isolates. A. welwitschiae (n = 25) was the most predominant isolate in section Nigri, followed by A. tubingensis (n = 12) and A. niger (n = 11). Other Aspergillus species were also isolated, including A. terreus (n = 11), A. flavus/A. oryzae (n = 8), and A. fumigatus (n = 2). Amphotericin B, posaconazole, and echinocandins were highly in vitro active against all the isolates tested. 2.9% (2/69) of the isolates were resistant to azoles in our study, including one A. niger isolate with a high MIC value for itraconazole (ITR) (16 mg/L) and one A. tubingensis isolate cross-resistant to both voriconazole (VOR) (MIC >8 mg/L) and ITR (MIC >16 mg/L). One A. welwitschiae and one A. niger isolate both had increased MIC values of 4 mg/L against VOR. CONCLUSIONS: A. welwitschiae was the most prevalent Aspergillus species isolated from patients with otomycosis. Our findings also indicated that the azole-resistant Aspergillus section Nigri should be utilized to guide clinical medication for Otomycosis.

10.
Front Cell Infect Microbiol ; 11: 628828, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33680993

RESUMO

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been accepted as a rapid, accurate, and less labor-intensive method in the identification of microorganisms in clinical laboratories. However, there is limited data on systematic evaluation of its effectiveness in the identification of phylogenetically closely-related yeast species. In this study, we evaluated two commercially available MALDI-TOF systems, Autof MS 1000 and Vitek MS, for the identification of yeasts within closely-related species complexes. A total of 1,228 yeast isolates, representing 14 different species of five species complexes, including 479 of Candida parapsilosis complex, 323 of Candida albicans complex, 95 of Candida glabrata complex, 16 of Candida haemulonii complex (including two Candida auris), and 315 of Cryptococcus neoformans complex, collected under the National China Hospital Invasive Fungal Surveillance Net (CHIF-NET) program, were studied. Autof MS 1000 and Vitek MS systems correctly identified 99.2% and 89.2% of the isolates, with major error rate of 0.4% versus 1.6%, and minor error rate of 0.1% versus 3.5%, respectively. The proportion of isolates accurately identified by Autof MS 1000 and Vitek MS per each yeast complex, respectively, was as follows; C. albicans complex, 99.4% vs 96.3%; C. parapsilosis complex, 99.0% vs 79.1%; C glabrata complex, 98.9% vs 94.7%; C. haemulonii complex, 100% vs 93.8%; and C. neoformans, 99.4% vs 95.2%. Overall, Autof MS 1000 exhibited good capacity in yeast identification while Vitek MS had lower identification accuracy, especially in the identification of less common species within phylogenetically closely-related species complexes.


Assuntos
Infecções Fúngicas Invasivas , Candida , China , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
11.
Chin Med Sci J ; 36(1): 1-16, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33500098

RESUMO

The polymyxins are important antimicrobial agents against antibiotic-resistant gram-negative bacilli. In 2020, the Clinical and Laboratory Standards Institute modified the clinical breakpoints for polymyxin susceptibility test by eliminating the "susceptible" interpretive category, only reporting intermediate (≤2 mg/L) and resistant (≥4 mg/L). However, the European Committee on Antimicrobial Susceptibility Testing recommended the use of clinical breakpoints of ≤2 mg/L as susceptible and >2 mg/L as resistant. The first-line laboratorians and clinicians in China have been perplexed by the inconsistence of international polymyxin clinical breakpoints and discouraged by the difficulty of conducting polymyxin susceptibility testing. Therefore, it is urgently needed to make it clear for the laboratorians in China to know how to accurately carry out polymyxin susceptibility testing and standardize the interpretation of susceptibility testing results. To this end, the experts from relevant fields were convened to formulate this consensus statement on the testing and clinical interpretation of polymyxin susceptibility. Relevant recommendations are proposed accordingly for laboratorians and clinicians to streamline their daily work.


Assuntos
Anti-Infecciosos , Polimixinas , Antibacterianos/farmacologia , Consenso , Testes de Sensibilidade Microbiana , Polimixina B , Polimixinas/farmacologia
12.
J Microbiol Immunol Infect ; 54(1): 17-26, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33153907

RESUMO

Since the initial emergence of coronavirus disease 2019 (COVID-19) in Wuhan, Hubei province, China, a rapid spread of the disease occurred around the world, rising to become an international global health concern at pandemic level. In the face of this medical challenge threatening humans, the development of rapid and accurate methods for early screening and diagnosis of COVID-19 became crucial to containing the emerging public health threat, and prevent further spread within the population. Despite the large number of COVID-19 confirmed cases in China, some problematic cases with inconsistent laboratory testing results, were reported. Specifically, a high false-negative rate of 41% on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection by real-time reverse transcription-polymerase chain reaction (qRT-PCR) assays was observed in China. Although serological testing has been applied worldwide as a complementary method to help identify SARS-CoV-2, several limitations on its use have been reported in China. Therefore, the use of both qRT-PCR and serological testing in the diagnosis of COVID-19 in China and elsewhere, presented considerable challenges, but when used in combination, can be valuable tools in the fight against COVID-19. In this review, we give an overview of the advantages and disadvantages of different molecular techniques for SARS-CoV-2 detection that are currently used in several labs, including qRT-PCR, gene sequencing, loop-mediated isothermal amplification (LAMP), nucleic acid mass spectrometry (MS), and gene editing technique based on clustered regularly interspaced short palindromic repeats (CRISPR/Cas13) system. Then we mainly review and analyze some causes of false-negative qRT-PCR results, and how to resolve some of the diagnostic dilemma.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/isolamento & purificação , COVID-19/epidemiologia , COVID-19/virologia , China/epidemiologia , Humanos , Programas de Rastreamento/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Pandemias , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade , Testes Sorológicos/métodos , Carga Viral
13.
Hum Vaccin Immunother ; 17(1): 146-156, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-32530720

RESUMO

Few studies in China focused on serotypes of Streptococcus pneumoniae in patients with invasive pneumococcal disease (IPD). We aimed at investigating the serotype distribution for IPD-causing S. pneumoniae and vaccine coverage among Chinese children and adults. This was a multicenter, observational study to collect S. pneumoniae isolates from normal sterile sites and IPD-related clinical information among children and adults. Serotyping was performed by a Capsule-Quellung reaction test using type-specific antisera. The study collected a total of 300 eligible isolates (pediatric = 148, adult = 152) were serotyped in a central laboratory. The most prevalent serotypes were 19A (20.9%) and 23 F (20.3%) in the pediatric group; 3 (21.7%) and 19 F (11.8%) in the adult group. PCV10 had low-to-moderate serotype coverage rates for children (60.8%) and adults (34.2%). PCV13 and PPV23 had high coverage rates for children (89.9%, 93.2%) and adults (70.4%, 82.9%), respectively, Investigational PCVs including PCV15 and PCV20 had high estimated coverage rates in children (89.9%, 93.9%). The study identified 269 subjects with IPD reported as the primary diagnosis in the medical records. Sepsis (48/136, 35.3%) and pneumonia (48/133, 36.1%) had the highest occurrence in the pediatric and adult groups, respectively. Study findings showed that non-PCV7 S. pneumoniae 19A and 3 were the most prevalent serotypes in Chinese children and adults, respectively. High-valent vaccines had similar coverage rates and may have a greater potential in preventing IPD.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Adulto , Criança , China/epidemiologia , Humanos , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas , Sorogrupo , Sorotipagem , Vacinas Conjugadas
14.
Bioconjug Chem ; 31(12): 2767-2778, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33237767

RESUMO

Despite the significant therapeutic advances in T-cell immunotherapy, many malignancies remain unresponsive, which might be because of the negative regulation of T cells by the tumor microenvironment (TME). T cells discriminate tumor cells and normal cells through T-cell receptors (TCRs); therefore, we generated a novel type of TCR-drug conjugates (TDCs) by referring antibody-drug conjugations (ADCs) to overcome the effects of the TME on T cells while preserving the specificity of TCR for tumor recognition. We selected HLA-A2/NY-ESO-1157-165 (peptide NY-ESO-1157-165 in complex with human leukocyte antigen serotype HLA-A*02:01) as the antigen and the antigen-specific TCR (1G4113) as the carrier. By sortase A-mediated ligation, we obtained three NY-TCR-vcMMAEs and further studied their properties, antitumor activity, and toxicity in vitro and in vivo. We found that all the NY-TCR-vcMMAEs had high endocytosis efficiency and specifically killed HLA-A2/NY-ESO-1157-165 positive tumor cells. In xenograft models, one of the TDCs, NY-TCR-2M, was effectively and specifically distributed into tumor tissues and inhibited tumor growth without inducing obvious toxicity. Our results demonstrated that TCRs can be carriers of toxic payloads and that the TDCs thus formed can specifically inhibit tumor growth, neglecting the immune microenvironment.


Assuntos
Antígenos de Neoplasias/imunologia , Antígenos de Superfície/imunologia , Proliferação de Células/efeitos dos fármacos , Imunoconjugados/farmacologia , Espaço Intracelular/efeitos dos fármacos , Proteínas de Membrana/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Humanos , Imunoconjugados/imunologia , Imunoconjugados/metabolismo , Imunoterapia , Espaço Intracelular/metabolismo , Camundongos
15.
BMC Microbiol ; 20(1): 350, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33198626

RESUMO

BACKGROUND: Omadacycline (ZL-2401) is a semi-synthetic derivative of minocycline. It has a broadspectrum activity against Gram-positive and Gram-negative bacteria, and atypical pathogens. The objective of this study was to evaluate the antibacterial activity of omadacycline against recently collected bacterial isolates from Chinese patients. RESULTS: Omadacycline showed potent activity against all Gram-positive pathogens: S. aureus MICs were low regardless of susceptibility to methicillin (methicillin-resistant Staphylococcus aureus, MRSA: N = 97, MIC50/90 0.12/0.25 mg/L, 98.5% susceptible; methicillin-sensitive Staphylococcus aureus, MSSA: N = 100, MIC50/90 0.12/0.12 mg/L, 100.0% susceptible). Omadacycline was also very effective against ß-haemolytic streptococci (MIC50/90, 0.06/0.12 mg/L), viridans group streptococci (MIC50/90,<0.03/0. 06 mg/L), and enterococci (MIC50/90, 0.03/0.12 mg/L). Against S. pneumoniae, omadacycline was highly active regardless of penicillin-resistance (MIC90 0.06 mg/L) and despite the fact that less than 10.0% of these strains were susceptible to tetracycline. Omadacycline exhibited good in vitro activity against Enterobacterales isolates (MIC50/90, 2/8 mg/L), inhibiting 81.7% of the isolates at ≤4 mg/L. M. catarrhalis isolates (MIC50/90, 0.12/0.25 mg/L) were fully susceptible to omadacycline at ≤0.5 mg/L. CONCLUSIONS: Omadacycline showed potent in vitro activity against most common bacterial pathogens, and even against highly resistant problem pathogens, such as MRSA, penicillin-R and tetracycline-R S. pneumoniae and enterococci. The susceptibility rate of Chinese isolates was similar to those reported in other countries, but the decreased activity against K. pneumoniae isolates in the present study should be noted.


Assuntos
Antibacterianos/farmacologia , Tetraciclinas/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Infecções Bacterianas/microbiologia , China , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana
16.
Infect Drug Resist ; 13: 2443-2452, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765018

RESUMO

Objective: Invasive candidiasis (IC), a life-threatening fungal infection prevalent among hospitalized patients, has highly variable regional epidemiology. We conducted a multicenter surveillance study to investigate recent trends in species distribution and antifungal susceptibility patterns among IC-associated Candida spp. in Beijing, China, from 2016 to 2017. Materials and Methods: A total of 1496 non-duplicate Candida isolates, recovered from blood and other sterile body fluids of IC patients, were identified using matrix-assisted laser desorption/ionization time of flight mass spectrometry combined with ribosomal DNA internal transcribed spacer (ITS) region sequencing. Broth microdilution-based susceptibility testing using six antifungal agents was also conducted. Results: Candida albicans was the most frequently isolated species (49.9%), followed by Candida tropicalis (15.5%), Candida glabrata (14.7%) and Candida parapsilosis (14.2%). No significant differences in species distribution were observed when compared with a 2012-2013 dataset. Overall, the rates of susceptibility to fluconazole and voriconazole were high among C. albicans (98% and 97.2%, respectively) and C. parapsilosis species complex (91.1% and 92%, respectively) isolates but low among C. tropicalis (81.5% and 81.1%, respectively) isolates. In addition, the rate of azole resistance among C. tropicalis isolates increased significantly (1.8-fold, P<0.05) compared with that observed in 2012-2013, while micafungin resistance rates were <5% for all tested Candida species. Conclusion: Our results suggest that species distribution has remained stable among IC-associated Candida isolates in Beijing. Resistance to micafungin was rare, but increased azole resistance among C. tropicalis isolates was noted. Our study provides information on local epidemiology that will be important for the selection of empirical antifungal agents and contributes to global assessments of antifungal resistance.

18.
Front Microbiol ; 11: 1672, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849346

RESUMO

Invasive aspergillosis (IA) due to Aspergillus lentulus is associated with high mortality. In this study, we investigated the clinical and microbiological characteristics of 6 fatal cases of proven or probable IA caused by A. lentulus in China. Underlying immunosuppression, prior antifungal exposure, and intensive care unit (ICU) hospitalization were important risk factors for invasive A. lentulus infection. Phenotypic differences were observed for A. lentulus isolates including slower growth, reduced sporulation, and inability to grow at 48°C, compared with Aspergillus fumigatus complex. ITS sequencing was unable to distinguish A. lentulus from A. fumigatus, but sequencing of the benA, CaM, and rod A loci enabled reliable distinction of these closely related species. Phylogenetic analysis further confirmed that the ITS region had little variation within the Aspergillus section Fumigati while the benA gene offered the highest intraspecific discrimination. Microsatellite typing results revealed that only loci on chromosomes 1, 3, 5, and 6b generated detectable amplicons for identification. All A. lentulus isolates showed in vitro resistance to multiple antifungal drugs including amphotericin B (MIC range 4 to 8 µg/ml), itraconazole (MIC 2 µg/ml), voriconazole (MIC of 4-16 µg/ml), and posaconazole (MIC of 0.5-1 µg/ml). However, MECs for the echinocandin drugs ranged from 0.03-0.25, ≤0.008-0.015, and ≤0.015-0.03 µg/ml for caspofungin, micafungin, and anidulafungin, respectively. A. lentulus is an emerging fungal pathogen in China, causing fatal disease, and clinicians as well as laboratories should be alert to their increasing presence.

19.
J Basic Microbiol ; 60(10): 905-915, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32852853

RESUMO

Streptococcus pneumoniae (the pneumococcus) has wall teichoic acid (WTA) and lipoteichoic acid (LTA) expressing the Forssman antigen (FA). Two lectins, Dolichos biflorus agglutinin (DBA) and Helix pomatia agglutinin (HPA), are known to bind FA. To determine the molecular structure targeted by these two lectins, different pneumococcal strains were studied for DBA/HPA binding with flow cytometry and fluorescence microscopy. Genetic experiments were used to further examine the lectins' molecular target. Twelve strains were positive for DBA binding, whereas three were negative. Super-resolution microscopy showed that DBA stained only the subcapsular area of pneumococci. The three DBA nonbinders showed no phosphorylcholine esterase (Pce) activity in vitro, whereas 10 DBA binders displayed Pce activity (the remaining two strains were DBA binders with no Pce activity in vitro). The pcegene sequence for 10 representative strains revealed two functional pce alleles, the previously recognized "allele A" and a newly discovered "allele B" (with 12 additional nucleotides). Isolates with allele B showed no Pce activity in vitro but did bind to DBA, indicating allele B Pce is functional in vivo. Genetic transfer experiments confirmed that either allele is sufficient (and necessary) for DBA binding. The three DBA nonbinders had various mutations that affected Pce function. Observations with HPA were identical to those with DBA. We show that DBA and HPA bind only to the WTA/LTA of pneumococcal isolates with a functional Pce enzyme. A newly discovered Pce variant (allele B) is functional in vivo but nonfunctional when assayed in vitro.


Assuntos
Lectinas/metabolismo , Lectinas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Streptococcus pneumoniae/metabolismo , Alelos , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Mutação , Receptores de Superfície Celular/genética , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/genética , Ácidos Teicoicos/metabolismo
20.
Front Microbiol ; 11: 1320, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612597

RESUMO

Candida parapsilosis is an important species causing invasive candidiasis (IC) in China. The present survey was a national multicenter study of the molecular epidemiology and antifungal susceptibility profiles of C. parapsilosis. Non-duplicate C. parapsilosis isolates were collected from 10 hospitals across China in the CHIF-NET program 2016-2017. Isolates were genotyped using four highly polymorphic microsatellite markers, and susceptibility profiles determined using Sensititre YeastOneTM YO10. A total of 319 C. parapsilosis from separate patients with IC were studied; 49.2, 17.9, and 10.3% isolates were from patients in surgical departments, general intensive care units (ICUs) and neonatal ICUs (NICU), respectively. C. parapsilosis showed good susceptibility to nine antifungal drugs. Microsatellite analysis identified 122 microsatellite (MT) types. Most MT types had sporadic distribution. However, we identified 32 clusters across 10 hospitals; seven clusters were caused by seven endemic genotypes involving five or more isolates in hospitals designated as H01, H02, H06, and H10. These clusters mainly affected surgical departments and ICUs, except for genotype MT42 which was seen in 22 patients from NICU (hospital H06). Of 16 fluconazole-resistant isolates, seven from hospital H02 shared the same genotype MT70, and three from hospital H04 were of genotype MT47. For 37 isolates with non-wild type MICs to 5-flucytosine, 29 were from hospital H01 (genotype MT48). Here we present the first nationwide molecular epidemiology study of C. parapsilosis in China, identified several previously unrecognized clusters, which included antifungal drug resistant isolates. These findings provide important data for control of IC in China.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...