Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.126
Filtrar
1.
Neural Regen Res ; 16(2): 388-393, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32859803

RESUMO

Massage therapy is an alternative treatment for chronic pain that is potentially related to brain plasticity. However, the underlying mechanism remains unclear. We established a peripheral nerve injury model in rats by unilateral sciatic nerve transection and direct anastomosis. The experimental rats were treated over the gastrocnemius muscle of the affected hindlimb with a customized massage instrument (0.45 N, 120 times/min, 10 minutes daily, for 4 successive weeks). Resting-state functional magnetic resonance imaging revealed that compared with control rats, the amplitude of low-frequency fluctuations in the sensorimotor cortex contralateral to the affected limb was significantly lower after sciatic nerve transection. However, amplitudes were significantly higher in the massage group than in a sham-massage group. These findings suggest that massage therapy facilitated adaptive change in the somatosensory cortex that led to the recovery of peripheral nerve injury and repair. This study was approved by the Animal Ethics Committee of Shanghai University of Traditional Chinese Medicine of China (approval No. 201701001) on January 12, 2017.

2.
Pathol Res Pract ; 216(11): 153212, 2020 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-33010698

RESUMO

BACKGROUND: T-cell acute lymphoblastic leukemia (T-ALL) is a malignant tumor of the hematopoietic system, which can develop at any age, with the symptoms of weakness, fatigue, enlarged lymph nodes, or weight loss. Nuclear paraspeckle assembly transcript 1 (NEAT1) is involved in the process of T-ALL, but the regulatory mechanism is still not known clearly. METHODS: The expression levels of NEAT1 and miR-146b-5p in T-ALL cells were performed by qRT-PCR and NOTCH1 protein level- wwWwas determined by western blot assay. Dual-luciferase reporter assay was used to detect the interaction between NEAT1 and miR-146b-5p, as well as miR-146b-5p and NOTCH1. The cell proliferation was measured by using MTT assay and colony formation assay. RESULTS: The expression levels of NEAT1 were markedly increased, but miR-146b-5p levels were reduced in T-ALL cells. Knockdown of NEAT1 or overexpression of miR-146b-5p decreased NOTCH1 expression, inhibited the proliferation of T-ALL cells. MiR-146b-5p bound both NEAT1 and NOTCH1 3'-UTR directly. Finally, inhibition of miR-146b-5p could abrogate the effects of NEAT1 knockdown on the proliferation of T-ALL cells. CONCLUSION: NEAT1 promotes the proliferation of T-ALL cells by sponging miR-146b-5p to upregulate the expression of NOTCH1. The results of this study provide new insight into the action mechanism of NEAT1 modulating T-ALL progression.

3.
Zhongguo Yi Liao Qi Xie Za Zhi ; 44(5): 432-435, 2020 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-33047568

RESUMO

Accidental sharps injuries are a serious problem in healthcare, many healthcare workers acquire infectious diseases from bloodborne pathogens by sharps injuries during their work. The cost of injury and exposure takes an emotional and financial toll, which has attracted worldwide attention. This paper analyzed the regulatory requirements on sharps injury prevention devices in the United States and the European Union, described the classification and basic requirements of sharps injury prevention devices, evaluation of protective functions, risk identification and control to provide references for regulation and development of such products in our country.

4.
J Biol Chem ; 2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33100268

RESUMO

Post-transcriptional modifications of pre-mRNAs expand the diversity of proteomes in higher eukaryotes. In brain, these modifications diversify the functional output of many critical neuronal signal molecules. In this study, we identified a brain-specific A-to-I RNA editing that changed glutamine to arginine (Q/R) at exon 20 and an alternative splicing of exon 4 in Tmem63b, which encodes a ubiquitously expressed osmosensitive cation channel. The channel isoforms lacking exon 4 occurred in ~80% of Tmem63b mRNAs in the brain but were not detected in other tissues, suggesting a brain-specific splicing. We found that the Q/R editing was catalyzed by Adar2 (Adarb1) and required an editing site complementary sequence located in the proximal 5' end of intron 20. Moreover, the Q/R editing was almost exclusively identified in the splicing isoform lacking exon 4, indicating a coupling between the editing and the splicing. Elimination of the Q/R editing in brain-specific Adar2 knockout mice did not affect the splicing efficiency of exon 4. Furthermore, transfection with the splicing isoform containing exon 4 suppressed the Q/R editing in primary cultured cerebellar granule neurons. Thus, our study revealed a coupling between an RNA editing and a distant alternative splicing in the Tmem63b pre-mRNA, in which the splicing plays a dominant role. Finally, physiological analysis showed that the splicing and the editing coordinately regulate Ca2+ permeability and osmosensitivity of channel proteins, which may contribute to their functions in brain.

5.
Mol Genet Genomic Med ; : e1539, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33095980

RESUMO

BACKGROUND: Hearing loss (HL) is a common sensory disorder in humans characterized by extreme clinical and genetic heterogeneity. In recent years, next-generation sequencing (NGS) technologies have proven to be highly effective and powerful tools for population genetic studies of HL. Here, we analyzed clinical and molecular data from 21 Chinese deaf families who did not have hotspot mutations in the common deafness genes GJB2,SLC26A4,GJB3, and MT-RNR1. METHOD: Targeted next-generation sequencing (TGS) of 127 known deafness genes was performed in probands of 12 families, while whole-exome sequencing (WES) or trio-WES was used for the remaining nine families. RESULTS: Potential pathogenic mutations in a total of 12 deafness genes were identified in 13 probands; the mutations were observed in GJB2,CDH23,EDNRB,MYO15A,OTOA,OTOF,TBC1D24,SALL1,TMC1,TWNK,USH1C, and USH1G, with eight of the identified mutations being novel. Further, a copy number variant (CNV) was detected in one proband with heterozygous deletion of chromosome 4p16.3-4p15.32. Thus, the total diagnostic rate using NGS in our deafness patients reached 66.67% (14/21). CONCLUSIONS: These results expand the mutation spectrum of deafness-causing genes and provide support for the use of NGS detection technologies for routine molecular diagnosis in Chinese deaf populations.

6.
Clin Interv Aging ; 15: 1767-1778, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061328

RESUMO

Purpose: Injurious falls seriously threaten the safety of elderly patients. Identifying risk factors for predicting the probability of injurious falls is an important issue that still needs to be solved urgently. We aimed to identify predictors and develop a nomogram for distinguishing populations at high risk of injurious falls from older adults in acute settings. Patients and Methods: A retrospective case-control study was conducted at three hospitals in Shanghai, China. Elderly patients with injurious falls from January 2014 to December 2018 were taken as cases, and control patients who did not have falls were randomly matched based on the admission date and the department. The data were collected through a medical record review and adverse events system. The original data set was randomly divided into a training set and a validation set at a 7:3 ratio. A nomogram was established based on the results of the univariate analysis and multivariate logistic regression analysis, and its discrimination and calibration were verified to confirm the accuracy of the prediction. The cut-off value of risk stratification was determined to help medical staff identify the high-risk groups. Results: A total of 115 elderly patients with injurious falls and 230 controls were identified. History of fractures, orthostatic hypotension, functional status, sedative-hypnotics and level of serum albumin were independent risk factors for injurious falls in elderly patients. The C-indexes of the training and validation sets were 0.874 (95% CI: 0.784-0.964) and 0.847 (95% CI: 0.771-0.924), respectively. Calibration curves were drawn and showed acceptable predictive performance. The cut-off values of the training and validation sets were 146.3 points (sensitivity: 73.7%; specificity: 87.5%) and 157.2 points (sensitivity: 69.2%; specificity: 85.5%), respectively. Conclusion: The established nomogram facilitates the identification of high-risk populations among elderly patients, providing a new assessment tool to forecast the individual risk of injurious falls.

7.
Biomed Res Int ; 2020: 3812671, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33083463

RESUMO

The aim of this study was to examine the cerebrospinal fluid (CSF) concentrations of proinflammatory and anti-inflammatory cytokines in neurosyphilis (NS), analyze the differences between asymptomatic NS (ANS) and symptomatic NS (SNS), and explore the diagnostic value of these cytokines. We enrolled 45 patients with a diagnosis of NS, including 18 patients with ANS and 27 patients with SNS, whose cerebrospinal fluid (CSF) samples were collected before penicillin therapy. Twelve patients with syphilis but non-NS (NNS) were also included. We measured the CSF levels of interleukin- (IL-) 1ß, IL-4, IL-6, IL-10, IL-17A, IL-21, and tumor necrosis factor- (TNF-) α; the CSF levels of the microglial activation marker soluble triggering receptor expressed on myeloid cells 2 (sTREM2); and the CSF levels of the neuronal injury marker neurofilament light proteins (NFL) using the human cytokine multiplex assay or ELISA. Of the measured cytokines in the CSF, only IL-10 levels were significantly increased in NS patients compared to NNS patients (p < 0.001). In a subgroup analysis, the CSF levels of IL-10 were significantly elevated in SNS patients compared to ANS and NNS patients (p = 0.024 and p < 0.001, respectively). The CSF IL-10 levels had a significant correlation with the markers of microglial activation and neuronal injury, and they also correlated with CSF rapid plasma reagin (RPR) titer, CSF white blood cell (WBC) count, and CSF protein concentration. The areas under the ROC curve (AUC) of CSF IL-10 in the diagnosis of NS and ANS were 0.920 and 0.891, respectively. The corresponding sensitivities/specificities were 86.7%/91.7% and 83.3%/91.7%, respectively. Therefore, the excessive production of IL-10 might facilitate bacterial persistent infection, play an important role in the pathogenesis of NS, and associate with the progression of the disease. CSF IL-10 concentration had a useful value in the diagnosis of NS, especially in ANS.

8.
J Biomed Nanotechnol ; 16(5): 603-615, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32919481

RESUMO

The goal of this study was to examine the impact of the mitochondrial-targeted antioxidant peptide, SS31, and its role in promoting autophagy in cone photoreceptor 661W cells that were subjected to oxidative damage. To do so, we examined the viability of 661W cells in the presence of increasing concentrations of H2O2 with or without SS31 pre-treatment using the MTT assay and by expression of autophagy and apoptosis-associated proteins LC3-II/I, P62, and caspase-3. Autophagy was evaluated by fluorescence microscopy in cells stained with monodansyl cadaverine (MDC). Autophagy was induced with rapamycin (Rap) and inhibited with bafamycin A1 (bafA1) followed by examination of Reactive oxygen species (ROS) levels in target 661W cells by fluorescence microscopy and flow cytometry. Annexin V/PI staining was used to evaluate the rate of apoptosis and mRNA sequencing (mRNA-seq) analysis (Illumina platform) was performed on H2O2-exposed 661W cells treated with SS31. Among our results, we observed a substantial and concentration-dependent decrease in 661W cell viability in response to H2O2-exposure; production of ROS, autophagy and apoptosis were induced at 8 h in response to exposure to 100 µM of H2O2. Pre-treatment with 100 nM SS31 resulted in significant attenuation of H2O2-mediated cytotoxicity, together with reduced ROS production and enhanced autophagy observed in response to oxidative stress. Both Rap and bafA1 were used to modulate SS31-mediated autophagy; the impact of Rap was similar to that of SS31. By contrast, administration of bafA1 counteracted autophagy induced by SS31. Furthermore, mRNAseq analysis revealed that SS31 promoted significant alterations in gene expression in 661W cells and suggested that autophagy was induced via the mTORC1-mediated signaling. In conclusion, our results indicate that exposure to H2O2 resulted in reduced 661W cell viability via mechanisms associated with oxidative damage, apoptosis, and autophagy. Notably, we demonstrated that pre-treatment with SS31 protects 661W cells from H2O2-induced oxidative damage that may result in part from induction of autophagy via mTORC1-mediated signaling pathways.


Assuntos
Autofagia , Animais , Peróxido de Hidrogênio , Camundongos , Mitocôndrias , Estresse Oxidativo , Espécies Reativas de Oxigênio
9.
Dig Dis Sci ; 2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32920660

RESUMO

BACKGROUND: Long non-coding RNAs have been acknowledged as the crucial regulators in the progression of human cancers, including gastric cancer (GC). Small nucleolar RNA host gene 10 (SNHG10) has been identified as an oncogene in several cancer types. Nonetheless, it is unclear whether SNHG10 exerts functions in GC cells. AIMS: The aims of the current study were to explore the function and underlying mechanism of SNHG10 in GC. METHODS: The expression levels of SNHG10, miR-495-3p and catenin beta 1 (CTNNB1) were detected by RT-qPCR. Loss-of-function assays, including CCK-8, colony formation assay, flow cytometry analysis and transwell assays, were conducted to verify the effect of SHNG10 on the proliferation, apoptosis, migration and invasion of GC cells. Mechanism experiments were performed to identify the downstream molecular mechanism of SNHG10. RESULTS: SNHG10 was expressed at a high level in GC cells. Knockdown of SNHG10 inhibited the proliferation, migration and invasion of GC cells. Silencing of SNHG10 led to the downregulation of core factors of WNT signaling pathway. Knockdown of SNHG10 could decline the expression of CTNNB1 through sequestering miR-495-3p. CONCLUSIONS: SNHG10 promotes the procession of GC through targeting miR-495-3p/CTNNB1 and activating WNT signaling pathway.

10.
Org Lett ; 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32966085

RESUMO

A copper-catalyzed anti-Markovnikov hydrosilylation of alkynes with PhSiH3 was reported. This reaction represents a notable and efficient example on copper-catalyzed hydrosilylatioin of alkynes, which shows excellent recognition between the terminal and internal triple bonds. Various (hetero)aromatic and aliphatic substituted terminal alkynes underwent this reaction to afford the (E)-vinylsilanes in high yields and with excellent regioselectivity.

11.
J Food Sci ; 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32990386

RESUMO

Sea urchin Mesocentrotus nudus, Glyptocidaris crenularis, and Strongylocentrotus intermedius gonad protein isolates (mnGPIs, gcGPIs, and siGPIs) were extracted by isoelectric solubilization/precipitation (ISP) from the defatted gonads, and their functional properties were compared. Sodium dodecyl sulfate polyacrylamide gel electrophoresis results showed the similar protein pattern between each protein isolate and defatted gonad, indicating the high efficiency of ISP processing for protein recovery. Amino acid profileconfirmed that the mnGPIs and siGPIs could be potential sources of essential amino acid in nature. As regard to functional properties, mnGPIs showed higher water- and oil- holding capacities followed bysiGPIs and gcGPIs and all protein isolates presented great foaming property. As for emulsifying activity index (EAI), mnGPIs, gcGPIs, and siGPIs showed the minimum solubility and EAI at pH 5, 3, and 4, respectively, and behaved a pH-dependent manner. The gcGPIs revealed the highest EAI from pH 6 to 8 among the samples. In addition, circular dichroism showed increased content of ß-sheet at the expense of α-helix and ß-turn, suggesting the structure denaturation of the protein isolates. Indeed, no statistical difference was observed between secondary structure of mnGPIs and siGPIs. Moreover, ISP processing increased free sulfhydryl content of sea urchin protein isolates, but no difference was observed among the samples. Furthermore, siGPIs revealed the highest amount of total sulfhydryl and disulfide bonds, whereas both defatted gonads and protein isolates from G. crenularis presented the maximum surface hydrophobicity. These results suggest that gonad protein isolates from three species of sea urchin possess various functionalities and therefore can be potentially applied in food system. PRACTICAL APPLICATION: Sea urchin M. nudus, G. crenularis, and S. intermedius gonads are edible, whereas the functional properties of protein isolates from sea urchin gonad remain unknown. In this case, the extraction and comparison of three species of sea urchin gonad protein isolates will not only confirm functional properties but also screen food ingredients with suitable functions. In this study, functionalities of protein isolates derived from M. nudus, G. crenularis, and S. intermedius gonads would provide potential application in bakery food and meat products or as emulsifier candidates in food system.

12.
Nat Commun ; 11(1): 4504, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908131

RESUMO

The strategies concerning modification of the complex immune pathological inflammatory environment during acute spinal cord injury remain oversimplified and superficial. Inspired by the acidic microenvironment at acute injury sites, a functional pH-responsive immunoregulation-assisted neural regeneration strategy was constructed. With the capability of directly responding to the acidic microenvironment at focal areas followed by triggered release of the IL-4 plasmid-loaded liposomes within a few hours to suppress the release of inflammatory cytokines and promote neural differentiation of mesenchymal stem cells in vitro, the microenvironment-responsive immunoregulatory electrospun fibers were implanted into acute spinal cord injury rats. Together with sustained release of nerve growth factor (NGF) achieved by microsol core-shell structure, the immunological fiber scaffolds were revealed to bring significantly shifted immune cells subtype to down-regulate the acute inflammation response, reduce scar tissue formation, promote angiogenesis as well as neural differentiation at the injury site, and enhance functional recovery in vivo. Overall, this strategy provided a delivery system through microenvironment-responsive immunological regulation effect so as to break through the current dilemma from the contradiction between immune response and nerve regeneration, providing an alternative for the treatment of acute spinal cord injury.


Assuntos
Microambiente Celular/imunologia , Sistemas de Liberação de Medicamentos/instrumentação , Fator de Crescimento Neural/administração & dosagem , Regeneração Nervosa/efeitos dos fármacos , Traumatismos da Medula Espinal/terapia , Tecidos Suporte , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Preparações de Ação Retardada/administração & dosagem , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Feminino , Humanos , Concentração de Íons de Hidrogênio , Interleucina-4/administração & dosagem , Lipossomos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Fator de Crescimento Neural/farmacocinética , Regeneração Nervosa/imunologia , Ratos , Recuperação de Função Fisiológica/imunologia , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Traumatismos da Medula Espinal/imunologia
13.
Theranostics ; 10(21): 9644-9662, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32863951

RESUMO

Rationale: It is known that neuroinflammation plays a critical and detrimental role in the development of cerebral ischemia/reperfusion (I/R), but the regulation of the cyclic GMP-AMP synthase (cGAS)-mediated innate immune response in I/R-induced neuroinflammation is largely unexplored. This study aimed to investigate the function and regulatory mechanism of cGAS in I/R-induced neuroinflammation and brain injury, and to identify possible strategies for the treatment of ischemic stroke. Methods: To demonstrate that microglial histone deacetylase 3 (HDAC3) regulates the microglial cGAS-stimulator of interferon genes (cGAS-STING) pathway and is involved in I/R-induced neuroinflammation and brain injury, a series of cell biological, molecular, and biochemical approaches were utilized. These approaches include transient middle cerebral artery occlusion (tMCAO), real-time polymerase chain reaction (PCR), RNA sequencing, western blot, co-immunoprecipitation, chromosome-immunoprecipitation, enzyme-linked immunosorbent assay (ELISA), dual-luciferase reporter assay, immunohistochemistry, and confocal imaging. Results: The microglial cGAS- STING pathway was activated by mitochondrial DNA, which promoted the formation of a pro-inflammatory microenvironment. In addition, we revealed that HDAC3 transcriptionally promoted the expression of cGAS and potentiated the activation of the cGAS-STING pathway by regulating the acetylation and nuclear localization of p65 in microglia. Our in vivo results indicated that deletion of cGAS or HDAC3 in microglia attenuated I/R-induced neuroinflammation and brain injury. Conclusion: Collectively, we elucidated that the HDAC3-p65-cGAS-STING pathway is involved in the development of I/R-induced neuroinflammation, identifying a new therapeutic avenue for the treatment of ischemic stroke.

14.
J Magn Reson Imaging ; 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32996183

RESUMO

BACKGROUND: Impaired cerebrovascular reactivity (CVR) plays an important role in the pathophysiology of white matter hyperintensities (WMHs). The pathogenesis of CVR in the development of WMH-related cognitive impairment (CI) remains poorly understood. PURPOSE: To detect the CVR status in WMH subjects with/without CI by using a resting-state blood oxygenation level-dependent (BOLD) approach and to explore the mediating relationships among CVR, WMH, and cognitive level. STUDY TYPE: Prospective. SUBJECTS: Subjects with moderate to severe WMH (with CI [WMH-CI], n = 68; without CI [WMH-no-CI, n = 63) as well as normal controls (NCs, n = 87). FIELD STRENGTH/SEQUENCE: 3.0T with gradient-recalled echoplanar imaging and 3D fluid-attenuated inversion recovery. ASSESSMENT: The CVR, WMH volume, and cognitive level were assessed. The CVR map was derived using BOLD signal obtained from resting-state functional MRI data. STATISTICAL TESTS: CVR maps were compared among the three groups. Partial correlation analyses were performed to correlate impaired CVR with WMH volume and cognitive test scores. Mediation analysis was conducted to determine whether WMH acted as a mediating factor between CVR and cognitive function. RESULTS: Compared with the NC group, both WMH groups showed reduced CVR in the left hemisphere (P < 0.05). The WMH-CI group showed further decreased CVR in the left frontal area, when compared with the WMH-no-CI group (P < 0.05). In the WMH-CI group, the lower CVR in left frontal area was a strong indicator of poor performance on general cognition (r = 0.311), executive function (r = 0.362), and information processing speed (r = 0.399) (all P < 0.05). Periventricular WMH (PWMH) volume mediated these correlations, the ß and 95% bootstrap confidence intervals were (0.5097, [0.1498,1.1385]), (-0.4081, [-1.0256,-0.1363]), and (-0.5576, [-1.4666,-0.1538]), respectively. DATA CONCLUSION: WMH-CI subjects showed a greater reduction of CVR derived from a resting-state BOLD approach in the left frontal area than WMH-no-CI subjects. Cognition was highly dependent on the integrity of cerebrovascular reactivity and mediated by PWMH burden. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: Stage 2.

15.
Med Sci Monit ; 26: e924756, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32996472

RESUMO

BACKGROUND This study aimed to establish a prediction model based on the maternal laboratory index score (Lab-score) for histologic chorioamnionitis (HCA) in patients with prelabor rupture of membranes (PROM) during late pregnancy. MATERIAL AND METHODS Sixty-nine cases of pregnant women with PROM were retrospectively analyzed. The general information and laboratory indicators were compared between the HCA (n=22) and non-HCA (n=47) groups. A multivariate logistic regression method was used to establish the prediction model. We plotted the receiver operating characteristic curve and calculated the area under the curve (AUC). The clinical effectiveness of each model was compared by decision curve analysis. RESULTS Only C-reactive protein (CRP) in the laboratory index predicted HCA, but its diagnostic efficacy was not ideal (AUC=0.651). Then, we added CRP to the platelet/white blood cell count ratio and triglyceride level to construct the Lab-score. Based on the Lab-score, important clinical parameters, including body mass index, diastolic blood pressure, and preterm birth, were introduced to construct a complex joint prediction model. The AUC of this model was significantly larger than that of CRP (0.828 vs. 0.651, P=0.035), but not significantly different from that of Lab-score (0.828 vs. 0.724, P=0.120). Considering the purpose of HCA screening, the net benefit of the complex model was better than that of Lab-score and CRP. CONCLUSIONS The complex model based on Lab-score is useful in the clinical screening of high-risk populations with PROM and HCA during late pregnancy.

16.
Mol Ther ; 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32950103

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disorder leading to dementia in the elderly, and the mechanisms of AD are not fully defined. MicroRNAs (miRNAs) have been shown to contribute to memory deficits in AD. In this study, we identified that miR-204-3p was downregulated in the hippocampus and plasma of 6-month-old APPswe/PS1dE9 (APP/PS1) mice. miR-204-3p overexpression attenuated memory and synaptic deficits in APP/PS1 mice. The amyloid levels and oxidative stress were decreased in the hippocampus of APP/PS1 mice after miR-204-3p overexpression. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (Nox4) was a target of miR-204-3p, and Nox4 inhibition by GLX351322 protected neuronal cells against Aß1-42-induced neurotoxicity. Furthermore, GLX351322 treatment rescued synaptic and memory deficits, and decreased oxidative stress and amyloid levels in the hippocampus of APP/PS1 mice. These results revealed that miR-204-3p attenuated memory deficits and oxidative stress in APP/PS1 mice by targeting Nox4, and miR-204-3p overexpression and/or Nox4 inhibition might be a potential therapeutic strategy for AD treatment.

17.
J Clin Endocrinol Metab ; 105(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32898218

RESUMO

CONTEXT: The significance of an early diagnosis of gestational diabetes mellitus (GDM) with oral glucose tolerance test (OGTT) has not been determined. OBJECTIVE: The objective of this work is to investigate GDM diagnosed by early and standard OGTTs and determine adverse maternal and neonatal outcomes associated with early GDM diagnosis. RESEARCH DESIGN AND METHODS: The Early Diagnosis of Gestational Diabetes Mellitus study is a prospective cohort study. Each participant in the study underwent 2 OGTTs, an early OGTT at 18 to 20 gestational weeks (gws) and a standard OGTT at 24 to 28 gws. The reproduciblity between early and standard OGTT were analyzed. Maternal and neonatal metabolic disorders and pregnancy outcomes were compared across groups. RESULTS: A total of 522 participants completed both the early and standard OGTTs. The glucose values in the early OGTT were not significantly different from those in the standard OGTT (fasting: 4.31 ± 0.41 mmol/L vs 4.29 ± 0.37 mmol/L, P = .360; 1-hour: 7.68 ± 1.71 mmol/L vs 7.66 ± 1.59 mmol/L, P = .826; 2-hour: 6.69 ± 1.47 mmol/L vs 6.71 ± 1.39 mmol/L, P = .800). The reproducibility of early and standard OGTT results was 74.9%. Pregnant women in the GDM group had higher glycated hemoglobin, C-peptide, and homeostasis model assessment of insulin resistance in the late gestational period. Neonates born to mothers in the GDM group were at a higher risk of being large for gestational age (odds ratio [OR]: 3.665; 95% CI, 1.006-11.91) and were also more prone to neonatal hyperinsulinemia (OR: 3.652; 95% CI, 1.152-10.533). CONCLUSION: Early-onset GDM diagnosed by OGTT at 18 to 20 gws is associated with maternal and neonatal metabolic disorders and adverse pregnancy outcomes. Further randomized controlled trials on the therapeutic efficacy for early-onset GDM will confirm the significance of early screening for GDM.

18.
J Colloid Interface Sci ; 581(Pt A): 362-373, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32771745

RESUMO

Exploiting low cost and durable electrocatalysts with high efficiency for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) is of great significance for energy conversion and storage applications. Herein, a hybrid electrocatalyst of FeCo alloy nanoparticles embedded in a porous N-doped carbon was prepared via a pyrolysis process of low-cost melamine sponge and mass-produced metal-polyphenol network. Benefting from the metal coordination of metal-polyphenol network and abundant N source of melamine sponge, the metal-N moiety and FeCo alloy nanoparticles (wtih a diameter around 50 nm) encapsulated in a N-doped graphene-like carbon layer were formed in-situ. Such intimate integration of graphene-like carbon-encapsulated FeCo alloys, metal-N active species, and porous structure is conducive to improve the catalytic activity and increase the catalytic durability in alkaline media. As a consequence, the as-prepared electrocatalyst exhibits the pronounced activity toward ORR, OER, and HER simultaneously under alkaline condition, particularly on the performances of potential, stability, and methanol tolerance.

19.
Photodiagnosis Photodyn Ther ; : 101974, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32835877

RESUMO

OBJECTIVE: To investigate the efficacy of 5-aminoketovalic acid (5-ALA) photodynamic therapy (PDT) in the treatment of patients with low cervical intraepithelial neoplasia (CINI) combined with high-risk human papillomavirus ((HR-HPV), and the factors affecting the efficacy. METHODS: 80 patients with CINI and HR-HPV infection were selected for the study. They received once weekly 5-ALA-PDT for either three or six treatments. To evaluate the clinical efficacy of 5-ALA-PDT treatment, follow-up evaluations were conducted at 3, 6 and 12 months, utilizing thinPrep cytology test(TCT)and colposcopic histopathological biopsy for the detection of HPV_DNA. RESULTS: Following PDT, HR-HPV remission rates at 3, 6 and 12 months were 75.32%, 80.52%, and 81.82%, respectively. Complete remission rate of CINI was 94.81% (73/77 patients). There was no statistically significant difference in the remission rate of HR-HPV between 3 and 6 treatments with PDT (P > 0.05). Likewise, there was no difference in the remission rate comparing patients ≤40 years old and those >40 years old (P > 0.05). However, the remission rate was statistically greater in patients with normal vaginal microecology compared to patients with vaginal microecologic imbalance (P = 0.004). CONCLUSIONS: Not only can 5-ALA-PDT effectively clear CINI, but it also can clear HR-HPV. Vaginal microecological imbalance can reduce the effect of PDT on HR-HPV, whereas differences in age or frequency of PDT do not affect the remission rate of PDT on HR-HPV.

20.
Kaohsiung J Med Sci ; 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32841515

RESUMO

Osteogenesis induced by mechanical stretch is the main factor affecting the orthodontic treatment. Due to the masticatory force transmitted by tooth, human periodontal ligament fibroblasts (hPDLFs) could enhance osteogenic differentiation, and remolding of periodontal. Therefore, in-depth study of hPDLFs osteogenic differentiation and its regulatory mechanism is helpful in the understanding of periodontal remolding promoted by orthodontic force. In the present study, 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide showed that miR-140 inhibited the viability of hPDLFs cells. Moreover, we provided evidence that miR-140 inhibited alkaline phosphatase (ALP) activity, Alizarin Red S (ARS) activity and the mRNA expression of osteogenesis associated genes, including ALP, runt-related transcription factor 2, collagen 1, and osteocalcin. Besides, double-luciferase reporter result demonstrated that Ras homolog gene family, member A (RhoA) was a downstream target gene of miR-140, and by inhibiting RhoA-transcriptional co-activator with PDZ-binding motif (TAZ) signaling pathway, miR-140 suppressed the osteogenesis differentiation of hPDLFs. Furthermore, overexpression of RhoA or TAZ promoted ALP activity, ARS activity and osteogenesis associated genes expression, which was inhibited by miR-140 mimics. Our findings not only provided a possible mechanism of hPDLFs osteogenic differentiation but also proposed the clinical application of miR-140 inhibitor to target RhoA-TAZ for orthodontic treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA