Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
J Clin Lab Anal ; : e24196, 2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-34997978

RESUMO

BACKGROUND: Proline-rich transmembrane protein 2 (PRRT2) is a neuron-specific protein associated with seizures, dyskinesia, and intelligence deficit. Previous studies indicate that PRRT2 regulates neurotransmitter release from presynaptic membranes. However, PRRT2 can also bind AMPA-type glutamate receptors (AMPARs), but its postsynaptic functions remain unclear. METHODS AND RESULTS: Whole-exome sequencing used to diagnose a patient with mental retardation identified a nonsense mutation in the PRRT2 gene (c.649C>T; p.R217X). To understand the pathology of the mutant, we cloned mouse Prrt2 cDNA and inserted a premature stop mutation at Arg223, the corresponding site of Arg217 in human PRRT2. In mouse hippocampal tissues, Prrt2 interacted with GluA1/A2 AMPAR heteromers but not GluA2/A3s, via binding to GluA1. Additionally, Prrt2 suppressed GluA1 expression and localization on cell membranes of HEK 293T cells. However, when Prrt2 was overexpressed in individual hippocampal neurons using in utero electroporation, AMPAR-mediated synaptic transmission was unaffected. Deletion of Prrt2 with the CRIPR/Cas9 technique did not affect AMPAR-mediated synaptic transmission. Furthermore, deletion or overexpression of Prrt2 did not affect GluA1 expression and distribution in primary neuronal culture. CONCLUSIONS: The postsynaptic functions of Prrt2 demonstrate that Prrt2 specifically interacts with the AMPAR subunit GluA1 but does not regulate AMPAR-mediated synaptic transmission. Therefore, our study experimentally excluded a postsynaptic regulatory mechanism of Prrt2. The pathology of PRRT2 variants in humans likely originates from defects in neurotransmitter release from the presynaptic membrane as suggested by recent studies.

2.
Neurol Genet ; 7(6): e635, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34841066

RESUMO

Background and Objectives: The aim of this study was to uncover the genetic cause of delayed psychomotor development and variable intellectual disability in a proband whose previous genetic analyses, including chromosome microarray and whole exome sequencing, had been negative. Methods: Long-read sequencing Oxford Nanopore Technology and RNA-seq analysis were performed on peripheral blood mononuclear cells. Genes with a fold change ≥ 1.5 and p ≤ 0.05 were identified as differentially expressed. Results: Clinical examinations showed that the proband's features were similar to a rare autosomal-dominant neurodevelopmental syndrome, Shashi-Pena syndrome (MIM #617190). Karyotyping showed that a chromosomal balanced translocation t(2; 11) (p23; q23) was detected in the proband, her father, and her grandmother. Meanwhile, long-read sequencing identified 102 balanced translocations and 145 inversions affecting ASXL2 at an average of 15×. Combined with the family's RNA-seq results, the average mRNA expression of ASXL2 decreased in the patients. Discussion: We identified a complex chromosomal rearrangement affecting ASXL2 as a pathogenic mechanism of Shashi-Pena syndrome in a Chinese family. This case study suggests that nanopore sequencing is suitable for pathogenic analysis of complex rearrangements, providing new avenues for the diagnosis of genetic diseases.

3.
CNS Neurosci Ther ; 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34767694

RESUMO

AIMS: This study aimed to explore the pathomechanism of a mutation on the leucine-rich glioma inactivated 1 gene (LGI1) identified in a family having autosomal dominant lateral temporal lobe epilepsy (ADLTE), using a precise knock-in mouse model. METHODS AND RESULTS: A novel LGI1 mutation, c.152A>G; p. Asp51Gly, was identified by whole exome sequencing in a Chinese family with ADLTE. The pathomechanism of the mutation was explored by generating Lgi1D51G knock-in mice that precisely phenocopied the epileptic symptoms of human patients. The Lgi1D51G / D51G mice showed spontaneous recurrent generalized seizures and premature death. The Lgi1D51G /+ mice had partial epilepsy, with half of them displaying epileptiform discharges on electroencephalography. They also showed enhanced sensitivity to the convulsant agent pentylenetetrazole. Mechanistically, the secretion of Lgi1 was impaired in the brain of the D51G knock-in mice and the protein level was drastically reduced. Moreover, the antiepileptic drugs, carbamazepine, oxcarbazepine, and sodium valproate, could prolong the survival time of Lgi1D51G / D51G mice, and oxcarbazepine appeared to be the most effective. CONCLUSIONS: We identified a novel epilepsy-causing mutation of LGI1 in humans. The Lgi1D51G /+ mouse model, precisely phenocopying epileptic symptoms of human patients, could be a useful tool in future studies on the pathogenesis and potential therapies for epilepsy.

4.
BMC Genomics ; 22(1): 721, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615484

RESUMO

BACKGROUND: The American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen) presented technical standards for interpretation and reporting of constitutional copy-number variants in 2019 (the standards). Although ClinGen developed a web-based CNV classification calculator based on scoring metrics, it can only track and tally points that have been assigned based on observed evidence. Here, we developed AutoCNV (a semiautomatic automated CNV interpretation system) based on the standards, which can automatically generate predictions on 18 and 16 criteria for copy number loss and gain, respectively. RESULTS: We assessed the performance of AutoCNV using 72 CNVs evaluated by external independent reviewers and 20 illustrative case examples. Using AutoCNV, it showed that 100 % (72/72) and 95 % (19/20) of CNVs were consistent with the reviewers' and ClinGen-verified classifications, respectively. AutoCNV only required an average of less than 5 milliseconds to obtain the result for one CNV with automated scoring. We also applied AutoCNV for the interpretation of CNVs from the ClinVar database and the dbVar database. We also developed a web-based version of AutoCNV (wAutoCNV). CONCLUSIONS: AutoCNV may serve to assist users in conducting in-depth CNV interpretation, to accelerate and facilitate the interpretation process of CNVs and to improve the consistency and reliability of CNV interpretation.


Assuntos
Variações do Número de Cópias de DNA , Genômica , Humanos , Reprodutibilidade dos Testes
5.
Clin Chim Acta ; 523: 267-272, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34653385

RESUMO

BACKGROUND AND AIMS: Hyperphenylalaninemia (HPA) is a common autosomal recessive disorder of phenylalanine metabolism, mainly caused by the deficiency of phenylalanine hydroxylase gene (PAH). A simple, fast, and accurate assay to achieve early diagnosis for children with HPA is required. MATERIALS AND METHODS: In the present study, we established a SNaPshot-based assay that allows the simultaneous genotyping of 96 hotspot variants in the PAH gene. First, 18 Chinese HPA patients were analyzed by next generation sequencing (NGS) and SNaPshot in parallel. Then, the SNaPshot assay was performed to analyze the mutational spectrum of the PAH in 4,276 individuals in Eastern China. RESULTS: A total of 36 variants in the PAH gene were successfully identified by NGS, while the SNaPshot assay identified 34 PAH variants in these patients. Thus, the SNaPshot assay achieved the sensitivity and specificity of 91.6% and 100.0%, respectively. Furthermore, the carrier rate was approximately 1 in 58 (1.73%) in 4,276 individuals, and c.728G > A was the most common variant. CONCLUSION: In summary, SNaPshot can accurately and rapidly detect PAH gene variants at a comparable performance and lower cost as compared with NGS. Our results suggest that SNaPshot may serve as a promising approach for a routine genetic test in clinical practice.

6.
BMC Pregnancy Childbirth ; 21(1): 638, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34537001

RESUMO

BACKGROUND: Amniotic fluid (AF) provides vital information on fetal development, which is also valuable in identifying fetal abnormalities during pregnancy. However, the relationship between the metabolic profile of AF in the second trimester of a normal pregnancy with several maternal-fetal parameters remains poorly understood, which therefore limits its application in clinical practice. The aim of this study was to explore the association between the metabolic profile of AF with fetal gender, maternal age, and gestational week using an untargeted metabolomics method. METHODS: A total of 114 AF samples were analyzed in this study. Clinical data on fetal gender, maternal age, and gestational week of these samples were collected. Samples were analyzed by gas chromatography/time-of-flight-mass spectrometry (GC-TOF/MS). Principal component analysis(PCA), orthogonal partial least square discrimination analysis(OPLS-DA) or partial least square discrimination analysis (PLS-DA) were conducted to compare metabolic profiles, and differential metabolites were obtained by univariate analysis. RESULTS: Both PCA and OPLS-DA demonstrated no significant separation trend between the metabolic profiles of male and female fetuses, and there were only 7 differential metabolites. When the association between the maternal age on AF metabolic profile was explored, both PCA and PLS-DA revealed that the maternal age in the range of 21 to 40 years had no significant effect on the metabolic profile of AF, and only four different metabolites were found. There was no significant difference in the metabolic profiles of AF from fetuses of 17-22 weeks, and 23 differential metabolites were found. CONCLUSIONS: In the scope of our study, there was no significant correlation between the AF metabolic profile and the fetal gender, maternal age and gestational week of a small range. Nevertheless, few metabolites appeared differentially expressed.

8.
Org Biomol Chem ; 19(26): 5827-5835, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34113943

RESUMO

Phenylalanine hydroxylase (PAH) deficiency (PAHD) is an autosomal recessive disorder that causes severe injury to the nervous system, the treatment of which mainly depends on dietary therapy. The limited treatment options for PAHD are an incentive to develop new methods to identify more efficient therapeutic drugs, such as agonists which could improve PAH activity. In this study, we aimed to establish a rapid and convenient method for the screening and verification of PAH agonists. We compared fluorospectrophotometry and tandem mass spectrometry for detection of enzymatic formation of tyrosine, finding that the latter was a more sensitive method. We optimized immunoprecipitation purification conditions and measurement conditions of PAH activity. The optimal ratio between PAH protein and magnetic beads was 500 µg protein per 20 µL beads, and the optimized conditions for the detection of PAH enzymatic activity included the presence of 75 µM coenzyme ((6R)-l-erythro-5,6,7,8-tetrahydrobiopterin) and 30 min reaction time. Based on virtual screening, we screened ten candidate agonists from the FDA drug library. Three of these (nefopam, fluocinonide, and risperidone) were found to activate the enzyme in a dose-dependent manner (0.1-10 µM) by the joint method. We tested the efficacy of the three agonists on three PAH mutations (p.I65T, p.H107R, and p.D101N) that influence enzyme activity, and found that risperidone could specifically activate D101N-mutated enzyme. In conclusion, we established a joint method that is highly reliable, cost-effective, labor-saving, and time-saving. And we also found a specific agonist for D101N-mutated PAH by this joint method which may assist the development of clinical treatment for PAHD patients with different enzyme deficiencies.

9.
Front Cardiovasc Med ; 8: 671191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34164441

RESUMO

Congenital heart disease (CHD) is the most common birth defect. The prenatal diagnosis of fetal CHD is completely dependent on ultrasound testing, but only ~40% of CHD can be detected. The purpose of this study is to find good biomarkers in amniotic fluid (AF) to detect CHD in the second trimester, so as to better manage this group of people and reduce the harm of CHD to the fetus. Metabolites analysis were performed in two separate sets. The discovery set consisted of 18 CHD fetal maternal AF samples and 35 control samples, and the validation set consisted of 53 CHD fetal maternal AF samples and 114 control samples. Untargeted metabolite profiles were analyzed by gas chromatography/time-of-flight-mass spectrometry (GC-TOF/MS). Orthogonal partial least square discrimination analysis (OPLS-DA) demonstrated that CHD and control samples had significantly different metabolic profiles. Two metabolites, uric acid and proline, were significantly elevated in CHD and verified in two data sets. Uric acid was associated with CHD [odds ratio (OR): 7.69 (95% CI: 1.18-50.13) in the discovery set and 3.24 (95% CI:1.62-6.48) in the validation set]. Additionally, uric acid showed moderate predictive power; the area under curve (AUC) was 0.890 in the discovery set and 0.741 in the validation set. The sensitivity and specificity of uric acid to detect CHD was, respectively, 94.4 and 74.3% in the discovery set and 67.9 and 71.9% in the validation set. The identification of uric acid as a biomarker for CHD has the potential to stimulate research on the pathological mechanism of CHD and the development of a diagnostic test for clinical applications.

10.
Chin Med J (Engl) ; 134(12): 1416-1421, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33989228

RESUMO

BACKGROUND: One inevitable shortcoming of non-invasive prenatal screening (NIPS)/cell-free DNA (cfDNA) sequencing is the uninterpretable ("no-call") result, which is mainly caused by an insufficient fetal fraction. This study was performed to investigate the factors associated with a successful second NIPS in these cases and determine the optimal management for women with initial no-call results. METHODS: We retrospectively analyzed the data of women who underwent NIPS with initial no-call results due to an insufficient fetal fraction from 2017 to 2019 in our center. We compared these women's maternal and pregnancy information with the data of women who had attained a successful second NIPS result and women who had received no-call results for a second time. RESULTS: Among the 33,684 women who underwent NIPS, 137 with a no-call result underwent a retest. Comparison between the 87 (63.50%) women with a successful retest and the other 50 (36.50%) women showed a significant difference in both the initial fetal fraction and maternal body mass index (BMI), whereas the other factors showed no significant differences. In addition, with an initial fetal fraction of < 2.00%, the retest success rate was very limited. CONCLUSIONS: We identified two major factors associated with a successful NIPS retest: the initial fetal fraction and the maternal BMI. These findings suggest the need for specialized management for this subset of women and would be instructional for the counseling for these women.


Assuntos
Ácidos Nucleicos Livres , Diagnóstico Pré-Natal , China , Feminino , Feto , Humanos , Gravidez , Estudos Retrospectivos
11.
Front Endocrinol (Lausanne) ; 12: 679582, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025588

RESUMO

Gestational diabetes mellitus (GDM) is associated with an increased risk of adverse pregnancy outcomes. Increasing evidence shows that placentation defects may play important roles in GDM. However, our understanding of the human placenta remains limited. In this study, we generated a comprehensive transcriptomic profile of cellular signatures and transcriptomes in the human placenta in GDM using single-cell RNA sequencing (scRNA-seq), constructed a comprehensive cell atlas, and identified cell subtypes and subtype-specific marker genes. In addition, we investigated the placental cellular function and intercellular interactions in GDM. These findings help to elucidate the molecular mechanisms of GDM, and may facilitate the development of new approaches to GDM treatment and prevention.

12.
Front Genet ; 12: 628890, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33633789

RESUMO

Cornelia de Lange syndrome (CdLS) is a genetically heterogeneous disorder characterized by a wide spectrum of abnormalities, including craniofacial dysmorphism, upper limb anomalies, pre- and post-natal growth restrictions, hirsutism and intellectual disability. Approximately 60% of cases are caused by NIPBL variants. Herein we report on a prenatal case presented with bilateral upper-extremity malformations and cardiac defects. Whole-exome sequencing (WES) was performed on the fetus-parental trio and a de novo heterozygous synonymous variant in NIPBL [chr5:37020979; NM_133433.4: c.5328G>A, p. (Gln1776=)] was identified. Reverse transcriptase-polymerase chain reaction (RT-PCR) was conducted to evaluate the potential splicing effect of this variant, which confirmed that the variant caused a deletion of exon 27 (103 bp) by disrupting the splice-donor site and changed the reading frame with the insertion of at least three stop codons. Our finding not only expands the mutation spectrum of NIPBL gene but also establishes the crucial role of WES in searching for underlying genetic variants. In addition, our research raises the important issue that synonymous mutations may be potential pathogenic variants and should not be neglected in clinical diagnoses.

13.
J Assist Reprod Genet ; 38(3): 697-707, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33409754

RESUMO

PURPOSE: A growing number of Chinese individuals of reproductive age will face the choice of accepting or refusing expanded carrier screening (ECS). This study aimed to explore the awareness, wishes, and possible misconceptions of ECS among this population, as well as factors affecting their decision-making. METHODS: Chinese reproductive-aged individuals in Eastern China who sought cell-free fetal DNA screening and peripheral blood karyotype were invited to complete a 31-item ECS survey by scanning a specific quick response code. We evaluated the relationship between awareness, attitudes, and intentions to participate in ECS, along with possible misconceptions. RESULTS: Overall, 93.1% of participants intended to undergo ECS at their expenses, and 53.6% indicated they would pay less than 1000 CNY (approximately 145 USD) for the test. Around 96.5% of participants had misconceptions about ECS and genetic diseases. Participants whose first reaction was interest, who had prior awareness of the test, or who perceived benefits were more likely to intend to use ECS (p < 0.001). Participants with a bachelor's degree or above or with a household income over 150,000 CNY (approximately 21,700 USD) would be more likely to pay ≥ 1000 CNY (p < 0.05). CONCLUSIONS: Our study indicates that overall, the Eastern Chinese reproductive-aged population has positive attitudes towards ECS, although there are some misconceptions about ECS and genetic disorders. Population-based ECS appears to be desired by the reproductive-aged people in Eastern China. Steps should be taken to offer ECS along with pre- and post-test education and genetic counseling to raise awareness and to reduce misconceptions.


Assuntos
Atitude Frente a Saúde , Tomada de Decisões , Triagem de Portadores Genéticos/tendências , Testes Genéticos/tendências , Conhecimentos, Atitudes e Prática em Saúde , Cuidado Pré-Concepcional/estatística & dados numéricos , Reprodução , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inquéritos e Questionários , Adulto Jovem
14.
J Mol Diagn ; 23(1): 38-45, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33069876

RESUMO

Embryonic chromosomal abnormalities are the major cause of miscarriage. An accurate, rapid, and cheap method of chromosome analysis in miscarriage is warranted in clinical practice. Thus, a high-throughput ligation-dependent probe amplification (HLPA)-based method of detecting aneuploidies and copy number variations in miscarriage was developed. A total of 1060 cases of miscarriage were assessed. Each specimen was subjected to quantitative fluorescence (QF)-PCR/HLPA and chromosomal microarray analysis (CMA) in parallel. All 1060 samples were successfully analyzed using both methods; of these samples, 1.7% (18/1060) were identified as having significant maternal cell contamination. Among the remaining 1042 cases without significant maternal cell contamination, QF-PCR/HLPA reached a diagnostic yield of 59.6% (621/1042), which is comparable to the yield of 60.3% (628/1042) with CMA. Compared with CMA results, the sensitivity and specificity of QF-PCR/HLPA in the identification of total pathogenic chromosomal abnormalities were 98.9% and 100%, respectively. Furthermore, the overall prevalence of chromosomal abnormalities in cases of spontaneous abortion was not significantly different from that in cases of recurrent miscarriage (61.3% versus 58.5%). In summary, QF-PCR/HLPA rapidly and accurately identified chromosomal abnormalities at a comparable performance and lower cost as compared with CMA. Combining simplicity and accuracy with cost-effectiveness, QF-PCR/HLPA may serve as a promising approach to routine genetic testing in miscarriage in clinical practice.


Assuntos
Aborto Espontâneo/genética , Aberrações Cromossômicas , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Diagnóstico Pré-Natal/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Aborto Espontâneo/patologia , Adolescente , Adulto , Aneuploidia , Variações do Número de Cópias de DNA , Confiabilidade dos Dados , Método Duplo-Cego , Feminino , Humanos , Cariotipagem/métodos , Pessoa de Meia-Idade , Gravidez , Estudos Prospectivos , Sensibilidade e Especificidade , Adulto Jovem
15.
Reprod Sci ; 28(2): 585-594, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33025530

RESUMO

Premature rupture of membranes (PROM) is usually associated with pregnant and neonatal complications. Most of the PROM cases are caused by ascending asymptomatic genital infection. In China, PROM (15.3%) is more common than spontaneous preterm labor (7.3%) and leads to more adverse pregnancy outcomes. Here, we designed a prospective cohort study to measure the metabolomics changes in vaginal swab samples and explored their potential contribution to PROM. A total of 260 differentially expressed metabolites were identified and further analyzed. In the PROM group, N-acetyl-D-galactosamine and sucrose were downregulated (P = 0.0025, P = 0.0195, respectively), both of which are the upstream metabolites of the glycolysis pathway. Furthermore, estriol 3-sulfate 16-glucuronide (P = 0.0154) and 2-methoxy-17beta-estradiol 3-glucosiduronic acid (P = 0.004), two final metabolites in steroid hormone biosynthesis, were both downregulated in the PROM group. Finally, we found two catechin metabolites (epigallocatechin-7-glucuronide, P = 0.0009; 4'-methyl-epigallocatechin-7-glucuronide, P = 0.01) as well as DL-citrulline (P = 0.0393) were also significantly downregulated in the PROM group compared with the healthy control (HC) group, which are related to important antioxidant and anti-inflammatory activities in the human body. Altogether, metabolite changes in glycolysis, steroid hormone biosynthesis, and antioxidant/anti-inflammatory pathways may contribute to (or be a consequence of) vaginal dysbiosis and PROM. Metabolite pathway analysis is a new and promising approach to further investigate the mechanism of PROM and help prevent its unfavorable pregnant outcomes at a functional level. Trial registration number: ChiCTR2000034721.


Assuntos
Ruptura Prematura de Membranas Fetais/metabolismo , Metaboloma , Vagina/metabolismo , Adulto , Antioxidantes/metabolismo , Bactérias/metabolismo , Estudos de Casos e Controles , China , Disbiose , Feminino , Ruptura Prematura de Membranas Fetais/diagnóstico , Ruptura Prematura de Membranas Fetais/microbiologia , Glicólise , Hormônios Esteroides Gonadais/biossíntese , Humanos , Mediadores da Inflamação/metabolismo , Metabolômica , Microbiota , Trabalho de Parto Prematuro/metabolismo , Trabalho de Parto Prematuro/microbiologia , Gravidez , Terceiro Trimestre da Gravidez/metabolismo , Estudos Prospectivos , Vagina/microbiologia , Adulto Jovem
17.
J Clin Lab Anal ; 34(11): e23480, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32779812

RESUMO

BACKGROUND: In prenatal care, accumulating evidences has demonstrated that whole-exome sequencing (WES) expedites the genetic diagnosis of fetal structural anomalies. However, the clinical value of WES in the diagnosis of prenatal isolated congenital anomalies of the kidney and urinary tract (CAKUT) is unknown. METHODS: Forty-one fetuses with unexplained isolated CAKUT, normal karyotype and negative chromosomal microarray analysis (CMA) results, underwent WES and were accordingly grouped as (a) Group 1: complex cases with bilateral renal abnormalities (N = 19); and (b) Group 2: cases with isolated unilateral fetal renal abnormalities (N = 22). RESULTS: The detection rate of WES for pathogenic variants and incidental variants was 7.32% (3/41) and 2.4% (1/41), respectively. The three pathogenic variants were identified in the genes ACTA2 (multisystem smooth muscle dysfunction syndrome), PKHD1 (autosomal recessive form of polycystic kidney disease), and PKD1 (autosomal dominant polycystic kidney disease type 1). The incidental variants were detected in genes PPM1D (syndromic neurodevelopmental disorders). Furthermore, all above fetuses carrying pathogenic variants came from bilateral kidney anomalies. Thus, the detection rate was 0 for fetuses with unilateral fetal renal abnormalities and 15.7% (3/19) for bilateral renal abnormalities. CONCLUSION: This cohort shows that prenatal WES is a supplementary approach for the etiologic diagnosis of unexplained isolated CAKUT with negative CMA, especially for fetuses with bilateral renal abnormality.


Assuntos
Técnicas de Diagnóstico Molecular/métodos , Diagnóstico Pré-Natal/métodos , Anormalidades Urogenitais/diagnóstico , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/diagnóstico , Refluxo Vesicoureteral/genética , Sequenciamento Completo do Exoma/métodos , Feminino , Feto/anormalidades , Feto/patologia , Humanos , Gravidez , Sistema Urinário/anormalidades , Sistema Urinário/patologia , Anormalidades Urogenitais/patologia , Refluxo Vesicoureteral/patologia
18.
Clin Biochem ; 84: 93-98, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32553579

RESUMO

BACKGROUND: Primary coenzyme Q10 deficiency refers to a group of diseases characterised by reduced levels of coenzyme Q10 in related tissues or cultured cells associated with the 9 genes involved in the biosynthesis of coenzyme Q10. A biallelic pathogenic variant of COQ8A gene causes the occurrence of the primary coenzyme Q10 deficiency type 4. The objective of this study was to investigate the genetic cause of muscle weakness in a proband who had a negative DMD gene test for Becker muscular dystrophy. METHODS: The DNA of the proband was sequenced using whole exome sequencing. With the help of the Human Phenotype Ontology (HPO), the range of related candidate pathogenic genes has been reduced to a certain extent based on "muscle weakness" (HP:0001324). In addition, family linkage analysis, phenotypic-genotype check and protein structure modeling were used to explore the genetic cause of the proband. RESULTS: The compound heterozygous variant c.836A > C (p.Gln279Pro) and c.1228C > T (p.Arg410Ter) in the COQ8A gene was identified in the proband. According to the 2015 American College of Medical Genetics and Genomics (ACMG) standards and guidelines for the interpretation of sequence variants, the novel variant c.836A > C could be classified as "likely pathogenic" for the proband. CONCLUSION: The p.Gln279Pro was detected in the KxGQ motif and the QKE triplet of the COQ8A protein, whose structures were crucial for the structure and function of the COQ8A protein associated with the biosynthesis of coenzyme Q10 and the proband's clinical symptoms were relatively milder than those previously reported.


Assuntos
Ataxia/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Debilidade Muscular/genética , Ubiquinona/deficiência , Ataxia/metabolismo , Criança , Humanos , Masculino , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Debilidade Muscular/metabolismo , Mutação de Sentido Incorreto/genética , Linhagem , Ubiquinona/análogos & derivados , Ubiquinona/genética , Ubiquinona/metabolismo , Sequenciamento Completo do Exoma
19.
Cell Rep ; 31(5): 107596, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32375046

RESUMO

Hypotonic stress causes the activation of swelling-activated nonselective cation channels (NSCCs), which leads to Ca2+-dependent regulatory volume decrease (RVD) and adaptive maintenance of the cell volume; however, the molecular identities of the osmosensitive NSCCs remain unclear. Here, we identified TMEM63B as an osmosensitive NSCC activated by hypotonic stress. TMEM63B is enriched in the inner ear sensory hair cells. Genetic deletion of TMEM63B results in necroptosis of outer hair cells (OHCs) and progressive hearing loss. Mechanistically, the TMEM63B channel mediates hypo-osmolarity-induced Ca2+ influx, which activates Ca2+-dependent K+ channels required for the maintenance of OHC morphology. These findings demonstrate that TMEM63B is an osmosensor of the mammalian inner ear and the long-sought cation channel mediating Ca2+-dependent RVD.


Assuntos
Audição/efeitos dos fármacos , Soluções Hipotônicas/farmacologia , Transporte de Íons/fisiologia , Concentração Osmolar , Canais de Potássio/metabolismo , Animais , Cálcio/metabolismo , Cátions/metabolismo , Tamanho Celular/efeitos dos fármacos , Camundongos Knockout , Potássio/metabolismo , Canais de Potássio/genética , Transdução de Sinais/efeitos dos fármacos
20.
J Mol Diagn ; 22(6): 817-822, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32205292

RESUMO

Spinal muscular atrophy (SMA) is a relatively common, life-shortening, autosomal recessive neuromuscular disease. The carrier frequency of SMA ranges from approximately 0.98% to 2.02%, depending on ethnicity. The American College of Medical Genetics has therefore recommended population screening for SMA carrier status, regardless of race or ethnicity. We performed the largest-scale carrier screening for SMA carriers in mainland China. Carrier screening was offered to 36,470 pregnant women between July 2017 and June 2019, of whom 13,069 women accepted the screening program [35.83%; 95% credibility interval (CI), 35.34%-36.33%]. Copy numbers of exons 7 and 8 in the SMN1 gene were detected by real-time quantitative PCR, and the results were confirmed by multiplex ligation-dependent probe amplification. A total of 231 women were identified as carriers (1.77%; 95% CI, 1.56%-2.01%), indicating a carrier prevalence of approximately 1:56 in the population. After detailed genetic counseling, 207 paternal partners were recalled and tested. Both partners were carriers in 10 couples, of whom prenatal diagnosis was implemented in seven, and one fetus was diagnosed with SMA. Carrier screening could provide couples with informed reproductive choices. Our workflow and experience of carrier screening may facilitate the popularization of SMA carrier screening in mainland China.


Assuntos
Portador Sadio/diagnóstico , Portador Sadio/epidemiologia , Triagem de Portadores Genéticos/métodos , Programas de Rastreamento/métodos , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/epidemiologia , Diagnóstico Pré-Natal/métodos , Adulto , China/epidemiologia , Éxons , Feminino , Dosagem de Genes , Aconselhamento Genético , Humanos , Masculino , Atrofia Muscular Espinal/sangue , Mutação , Gravidez , Prevalência , Reação em Cadeia da Polimerase em Tempo Real , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...