Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 9(9)2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540315

RESUMO

Two-dimensional (2D) tungsten disulfide (WS2) has inspired great efforts in optoelectronics, such as in solar cells, light-emitting diodes, and photodetectors. However, chemical vapor deposition (CVD) grown 2D WS2 domains with the coexistence of a discontinuous single layer and multilayers are still not suitable for the fabrication of photodetectors on a large scale. An emerging field in the integration of organic materials with 2D materials offers the advantages of molecular diversity and flexibility to provide an exciting aspect on high-performance device applications. Herein, we fabricated a photodetector based on a 2D-WS2/organic semiconductor materials (mixture of the (Poly-(N, N'-bis-4-butylphenyl-N, N'-bisphenyl) benzidine and Phenyl-C61-butyric acid methyl ester (Poly-TPD/PCBM)) heterojunction. The application of Poly-TPD/PCBM organic blend film enhanced light absorption, electrically connected the isolated WS2 domains, and promoted the separation of electron-hole pairs. The generated exciton could sufficiently diffuse to the interface of the WS2 and the organic blend layers for efficient charge separation, where Poly-TPD was favorable for hole carrier transport and PCBM for electron transport to their respective electrodes. We show that the photodetector exhibited high responsivity, detectivity, and an on/off ratio of 0.1 A/W, 1.1 × 1011 Jones, and 100, respectively. In addition, the photodetector showed a broad spectral response from 500 nm to 750 nm, with a peak external quantum efficiency (EQE) of 8%. Our work offers a facile solution-coating process combined with a CVD technique to prepare an inorganic/organic heterojunction photodetector with high performance on silicon substrate.

2.
Materials (Basel) ; 12(12)2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31212730

RESUMO

Monolayer tungsten disulfide (2D WS2) films have attracted tremendous interest due to their unique electronic and optoelectronic properties. However, the controlled growth of monolayer WS2 is still challenging. In this paper, we report a novel method to grow WS2 through chemical vapor deposition (CVD) with ZnO crystalline whisker as a growth promoter, where partially evaporated WS2 reacts with ZnO to form ZnWO4 by-product. As a result, a depletion region of W atoms and S-rich region is formed which is favorable for subsequent monolayer growth of WS2, selectively positioned on the silicon oxide substrate after the CVD growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA