Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(38): 14976-14980, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31523954

RESUMO

The traditional NH3 production method (Haber-Bosch process) is currently complemented by electrochemical synthesis at ambient conditions, but the rather low selectivity (as indicated by the Faradaic efficiency) for the electrochemical reduction of molecular N2 into NH3 impedes the progress. Here, we present a powerful method to significantly boost the Faradaic efficiency of Au electrocatalysts to 67.8% for the nitrogen reduction reaction (NRR) by increasing their electron density through the construction of inorganic donor-acceptor couples of Ni and Au nanoparticles. The unique role of the electron-rich Au centers in facilitating the fixation and activation of N2 was also investigated via theoretical simulation methods and then confirmed by experimental results. The highly coupled Au and Ni nanoparticles supported on nitrogen-doped carbon are stable for reuse and long-term performance of the NRR, making the electrochemical process more sustainable for practical application.

2.
Nat Commun ; 10(1): 4380, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31558716

RESUMO

Production of ammonia is currently realized by the Haber-Bosch process, while electrochemical N2 fixation under ambient conditions is recognized as a promising green substitution in the near future. A lack of efficient electrocatalysts remains the primary hurdle for the initiation of potential electrocatalytic synthesis of ammonia. For cheaper metals, such as copper, limited progress has been made to date. In this work, we boost the N2 reduction reaction catalytic activity of Cu nanoparticles, which originally exhibited negligible N2 reduction reaction activity, via a local electron depletion effect. The electron-deficient Cu nanoparticles are brought in a Schottky rectifying contact with a polyimide support which retards the hydrogen evolution reaction process in basic electrolytes and facilitates the electrochemical N2 reduction reaction process under ambient aqueous conditions. This strategy of inducing electron deficiency provides new insight into the rational design of inexpensive N2 reduction reaction catalysts with high selectivity and activity.

3.
Chem Commun (Camb) ; 55(76): 11394-11397, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31482882

RESUMO

A nitrogen-thermal approach via the reaction between transition metal species and N dopants affords us the ability to optimize the tradeoff between the number of exposed transition metal/carbon (exemplified by cobalt in this work) boundaries and the most pronounced interfacial rectifying contact to achieve the highly efficient and selective hydrogenation and dehydrogenation of N-heterocycle compounds in a reversible manner.

4.
J Am Chem Soc ; 141(1): 38-41, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30525578

RESUMO

Highly efficient fixation of CO2 for the synthesis of useful organic carbonates has drawn much attention. The design of sustainable Lewis acid-base pairs, which has mainly relied on expensive organic ligands, is the key challenge in the activation of the substrate and CO2 molecule. Here, we report the application of Mott-Schottky type nanohybrids composed of electron-deficient Cu and electron-rich N-doped carbon for CO2 fixation. A ligand-free and additive-free method was used to boost the basicity of the carbon supports and the acidity of Cu by increasing the Schottky barrier at their boundary, mimicking the beneficial function of organic ligands acting as the Lewis acid and base in metal-organic frameworks (MOFs) or polymers and simultaneously avoiding the possible deactivation associated with the necessary stability of a heterogeneous catalyst. The optimal Cu/NC-0.5 catalyst exhibited a remarkably high turnover frequency (TOF) value of 615 h-1 at 80 °C, which is 10 times higher than that of the state-of-the-art metal-based heterogeneous catalysts in the literature.

5.
Angew Chem Int Ed Engl ; 57(38): 12563-12566, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30070752

RESUMO

The exploitation of metal-free organic polymers as electrodes for water splitting reactions is limited by their presumably low activity and poor stability, especially for the oxygen evolution reaction (OER) under more critical conditions. Now, the thickness of a cheap and robust polymer, poly(p-phenylene pyromellitimide) (PPPI) was rationally engineered by an in situ polymerization method to make the metal-free polymer available for the first time as flexible, tailorable, efficient, and ultra-stable electrodes for water oxidation over a wide pH range. The PPPI electrode with an optimized thickness of about 200 nm provided a current density of 32.8 mA cm-2 at an overpotential of 510 mV in 0.1 mol L-1 KOH, which is even higher than that (31.5 mA cm-2 ) of commercial IrO2 OER catalyst. The PPPI electrodes are scalable and stable, maintaining 92 % of its activity after a 48-h chronoamperometric stability test.

6.
Angew Chem Int Ed Engl ; 57(10): 2697-2701, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29341380

RESUMO

Engineering the adsorption of molecules on active sites is an integral and challenging part for the design of highly efficient transition-metal-based catalysts for methanol dehydrogenation. A Mott-Schottky catalyst composed of Ni nanoparticles and tailorable nitrogen-doped carbon-foam (Ni/NCF) and thus tunable adsorption energy is presented for highly efficient and selective dehydrogenation of gas-phase methanol to hydrogen and CO even under relatively high weight hourly space velocities (WHSV). Both theoretical and experimental results reveal the key role of the rectifying contact at the Ni/NCF boundaries in tailoring the electron density of Ni species and enhancing the absorption energies of methanol molecules, which leads to a remarkably high turnover frequency (TOF) value (356 mol methanol mol-1 Ni h-1 at 350 °C), outpacing previously reported bench-marked transition-metal catalysts 10-fold.

7.
Talanta ; 110: 15-20, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23618169

RESUMO

In this paper, coenzyme Q10 (Ubiquinone, CoQ10) was used for the first time as a transducer to construct electrochemical biosensor for effectively detecting γ-L-glutamyl-L-cysteinyl-glycine (glutathione, GSH). CoQ10 modified electrode was fabricated by attaching its gel mixed with multi-walled carbon nanotubes (MWNTs)/ionic liquid (IL). In the optimum conditions, based on the increasing of reduction peak current of CoQ10 caused by GSH through voltammetric technology, it was found that the peak current of CoQ10 was linear with the concentration of GSH in the range from 4.0×10(-9) to 2.0×10(-7)mol L(-1) at the pH 7.00, and the limit of detection was 3.2×10(-10)mol L(-1) (S/N=3). The results revealed that this method could be used to determine GSH in actual blood samples with the superiority of excellent selectivity, high stability and sensitivity. The strategy explored here might provide a new pathway to design novel multi-function transducers for detecting GSH, which has unique characteristic and potential application in the fields of sensor and medical diagnosis.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas/instrumentação , Glutationa/análise , Ubiquinona/química , Humanos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA