Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 569(7757): E7, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31065056

RESUMO

Change history: In this Letter, the following text has been added to the Acknowledgements section: "the scanning transmission electron microscopy measurements at the Molecular Foundry were supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract number DE-AC02-05CH11231". See accompanying Amendment.

2.
Nature ; 567(7746): 76-80, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804525

RESUMO

Moiré superlattices enable the generation of new quantum phenomena in two-dimensional heterostructures, in which the interactions between the atomically thin layers qualitatively change the electronic band structure of the superlattice. For example, mini-Dirac points, tunable Mott insulator states and the Hofstadter butterfly pattern can emerge in different types of graphene/boron nitride moiré superlattices, whereas correlated insulating states and superconductivity have been reported in twisted bilayer graphene moiré superlattices1-12. In addition to their pronounced effects on single-particle states, moiré superlattices have recently been predicted to host excited states such as moiré exciton bands13-15. Here we report the observation of moiré superlattice exciton states in tungsten diselenide/tungsten disulfide (WSe2/WS2) heterostructures in which the layers are closely aligned. These moiré exciton states manifest as multiple emergent peaks around the original WSe2 A exciton resonance in the absorption spectra, and they exhibit gate dependences that are distinct from that of the A exciton in WSe2 monolayers and in WSe2/WS2 heterostructures with large twist angles. These phenomena can be described by a theoretical model in which the periodic moiré potential is much stronger than the exciton kinetic energy and generates multiple flat exciton minibands. The moiré exciton bands provide an attractive platform from which to explore and control excited states of matter, such as topological excitons and a correlated exciton Hubbard model, in transition-metal dichalcogenides.

3.
Phys Rev Lett ; 119(8): 087401, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28952768

RESUMO

Optoelectronic excitations in monolayer MoS_{2} manifest from a hierarchy of electrically tunable, Coulombic free-carrier and excitonic many-body phenomena. Investigating the fundamental interactions underpinning these phenomena-critical to both many-body physics exploration and device applications-presents challenges, however, due to a complex balance of competing optoelectronic effects and interdependent properties. Here, optical detection of bound- and free-carrier photoexcitations is used to directly quantify carrier-induced changes of the quasiparticle band gap and exciton binding energies. The results explicitly disentangle the competing effects and highlight longstanding theoretical predictions of large carrier-induced band gap and exciton renormalization in two-dimensional semiconductors.

4.
Adv Mater ; 29(36)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28722188

RESUMO

A monolayer 2D capping layer with high Young's modulus is shown to be able to effectively suppress the dewetting of underlying thin films of small organic semiconductor molecule, polymer, and polycrystalline metal, respectively. To verify the universality of this capping layer approach, the dewetting experiments are performed for single-layer graphene transferred onto polystyrene (PS), semiconducting thienoazacoronene (EH-TAC), gold, and also MoS2 on PS. Thermodynamic modeling indicates that the exceptionally high Young's modulus and surface conformity of 2D capping layers such as graphene and MoS2 substantially suppress surface fluctuations and thus dewetting. As long as the uncovered area is smaller than the fluctuation wavelength of the thin film in a dewetting process via spinodal decomposition, the dewetting should be suppressed. The 2D monolayer-capping approach opens up exciting new possibilities to enhance the thermal stability and expands the processing parameters for thin film materials without significantly altering their physical properties.

5.
ACS Nano ; 11(5): 4686-4693, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28437062

RESUMO

Charge transfer at the interface between dissimilar materials is at the heart of electronics and photovoltaics. Here we study the molecular orientation, electronic structure, and local charge transfer at the interface region of C60 deposited on graphene, with and without supporting substrates such as hexagonal boron nitride. We employ ab initio density functional theory with van der Waals interactions and experimentally characterize interface devices using high-resolution transmission electron microscopy and electronic transport. Charge transfer between C60 and the graphene is found to be sensitive to the nature of the underlying supporting substrate and to the crystallinity and local orientation of the C60. Even at room temperature, C60 molecules interfaced to graphene are orientationally locked into position. High electron and hole mobilities are preserved in graphene with crystalline C60 overlayers, which has ramifications for organic high-mobility field-effect devices.

6.
Nano Lett ; 16(11): 6787-6791, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27704855

RESUMO

We demonstrate an inflatable nanoballoon actuator based on geometrical transitions between the inflated (cylindrical) and collapsed (flattened) forms of a carbon nanotube. In situ transmission electron microscopy experiments employing a nanoelectromechanical manipulator show that a collapsed carbon nanotube can be reinflated by electrically charging the nanotube, thus realizing an electrostatically driven nanoballoon actuator. We find that the tube actuator can be reliably cycled with only modest control voltages (few volts) with no apparent wear or fatigue. A complementary theoretical analysis identifies critical parameters for nanotube nanoballoon actuation.

7.
Adv Mater ; 27(43): 6841-7, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26437308

RESUMO

The elastic modulus of multilayer graphene is found to be more robust to damage created by high-energy α-particle irradiation as compared to monolayer graphene. Theoretical analysis indicates that irradiation of multilayer graphene generates interlayer links that potentially increase the stiffness of the multilayer by passivating local defects.

8.
ACS Nano ; 9(10): 10516-22, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26381227

RESUMO

One-dimensional (1D) zigzag [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) nanoribbons are produced by folding two-dimensional ultrathin PCBM nanosheets in a simple solvent process. The unique 1D PCBM nanostructures exhibit uniform width of 3.8 ± 0.3 nm, equivalent to four PCBM molecules, and lengths of 20-400 nm. These nanoribbons show well-defined crystalline structure, comprising PCBM molecules in a hexagonal arrangement without trapped solvent molecules. First-principle calculations and detailed experimental characterization provide an insight into the structure and formation mechanism of the 1D PCBM nanoribbons. Given their dimensions and physical properties, we foresee that these nanostructures should be ideal as acceptor material in organic solar cells.

9.
Nano Lett ; 15(10): 6324-31, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26317240

RESUMO

Monolayer molybdenum disulfide (MoS2) is a promising two-dimensional direct-bandgap semiconductor with potential applications in atomically thin and flexible electronics. An attractive insulating substrate or mate for MoS2 (and related materials such as graphene) is hexagonal boron nitride (h-BN). Stacked heterostructures of MoS2 and h-BN have been produced by manual transfer methods, but a more efficient and scalable assembly method is needed. Here we demonstrate the direct growth of single- and few-layer MoS2 on h-BN by chemical vapor deposition (CVD) method, which is scalable with suitably structured substrates. The growth mechanisms for single-layer and few-layer samples are found to be distinct, and for single-layer samples low relative rotation angles (<5°) between the MoS2 and h-BN lattices prevail. Moreover, MoS2 directly grown on h-BN maintains its intrinsic 1.89 eV bandgap. Our CVD synthesis method presents an important advancement toward controllable and scalable MoS2-based electronic devices.

10.
Science ; 348(6240): 1230-4, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26068847

RESUMO

Bimetallic platinum-nickel (Pt-Ni) nanostructures represent an emerging class of electrocatalysts for oxygen reduction reaction (ORR) in fuel cells, but practical applications have been limited by catalytic activity and durability. We surface-doped Pt3Ni octahedra supported on carbon with transition metals, termed M-Pt3Ni/C, where M is vanadium, chromium, manganese, iron, cobalt, molybdenum (Mo), tungsten, or rhenium. The Mo-Pt3Ni/C showed the best ORR performance, with a specific activity of 10.3 mA/cm(2) and mass activity of 6.98 A/mg(Pt), which are 81- and 73-fold enhancements compared with the commercial Pt/C catalyst (0.127 mA/cm(2) and 0.096 A/mg(Pt)). Theoretical calculations suggest that Mo prefers subsurface positions near the particle edges in vacuum and surface vertex/edge sites in oxidizing conditions, where it enhances both the performance and the stability of the Pt3Ni catalyst.

11.
Nano Lett ; 15(2): 829-34, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25557832

RESUMO

We examine a variant of so-called carbon nanotube peapods by packing C60 molecules inside the open edge ducts of collapsed carbon nanotubes. C60 insertion is accomplished through a facile single-step solution-based process. Theoretical modeling is used to evaluate favorable low-energy structural configurations. Overfilling of the collapsed tubes allows infiltration of C60 over the full cross-section of the tubes and consequent partial or complete reinflation, yielding few-wall, large diameter cylindrical nanotubes packed with crystalline C60 solid cores.

12.
ACS Nano ; 8(10): 11013-22, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25283720

RESUMO

Aerogels are used in a broad range of scientific and industrial applications due to their large surface areas, ultrafine pore sizes, and extremely low densities. Recently, a large number of reports have described graphene aerogels based on the reduction of graphene oxide (GO). Though these GO-based aerogels represent a considerable advance relative to traditional carbon aerogels, they remain significantly inferior to individual graphene sheets due to their poor crystallinity. Here, we report a straightforward method to synthesize highly crystalline GO-based graphene aerogels via high-temperature processing common in commercial graphite production. The crystallization of the graphene aerogels versus annealing temperature is characterized using Raman and X-ray absorption spectroscopy, X-ray diffraction, and electron microscopy. Nitrogen porosimetry shows that the highly crystalline graphene macrostructure maintains a high surface area and ultrafine pore size. Because of their enhanced crystallinity, these graphene aerogels exhibit a ∼ 200 °C improvement in oxidation temperature and an order of magnitude increase in electrical conductivity.

13.
J Am Chem Soc ; 135(29): 10729-41, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23819580

RESUMO

In oxide semiconductors, such as those based on indium zinc oxide (IXZO), a strong oxygen binding metal ion ("oxygen getter"), X, functions to control O vacancies and enhance lattice formation, hence tune carrier concentration and transport properties. Here we systematically study, in the IXZO series, the role of X = Ga(3+) versus the progression X = Sc(3+) → Y(3+) → La(3+), having similar chemical characteristics but increasing ionic radii. IXZO films are prepared from solution over broad composition ranges for the first time via low-temperature combustion synthesis. The films are characterized via thermal analysis of the precursor solutions, grazing incidence angle X-ray diffraction (GIAXRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and scanning transmission electron microscopy (STEM) with high angle annular dark field (HAADF) imaging. Excellent thin-film transistor (TFT) performance is achieved for all X, with optimal compositions after 300 °C processing exhibiting electron mobilities of 5.4, 2.6, 2.4, and 1.8 cm(2) V(-1) s(-1) for Ga(3+), Sc(3+), Y(3+), and La(3+), respectively, and with I(on)/I(off) = 10(7)-10(8). Analysis of the IXZO TFT positive bias stress response shows X = Ga(3+) to be superior with mobilities (µ) retaining >95% of the prestress values and threshold voltage shifts (ΔV(T)) of <1.6 V, versus <85% µ retention and ΔV(T) ≈ 20 V for the other trivalent ions. Detailed microstructural analysis indicates that Ga(3+) most effectively promotes oxide lattice formation. We conclude that the metal oxide lattice formation enthalpy (ΔH(L)) and metal ionic radius are the best predictors of IXZO oxygen getter efficacy.

14.
ACS Nano ; 7(6): 4879-91, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23713986

RESUMO

Most of recent research on layered chalcogenides is understandably focused on single atomic layers. However, it is unclear if single-layer units are the most ideal structures for enhanced gas-solid interactions. To probe this issue further, we have prepared large-area MoS2 sheets ranging from single to multiple layers on 300 nm SiO2/Si substrates using the micromechanical exfoliation method. The thickness and layering of the sheets were identified by optical microscope, invoking recently reported specific optical color contrast, and further confirmed by AFM and Raman spectroscopy. The MoS2 transistors with different thicknesses were assessed for gas-sensing performances with exposure to NO2, NH3, and humidity in different conditions such as gate bias and light irradiation. The results show that, compared to the single-layer counterpart, transistors of few MoS2 layers exhibit excellent sensitivity, recovery, and ability to be manipulated by gate bias and green light. Further, our ab initio DFT calculations on single-layer and bilayer MoS2 show that the charge transfer is the reason for the decrease in resistance in the presence of applied field.

15.
Adv Mater ; 24(26): 3549-54, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22678832

RESUMO

Room-temperature, bottom-gate, field-effect transistor characteristics of 2D ultrathin layer GaS and GaSe prepared from the bulk crystals using a micromechanical cleavage technique are reported. The transistors based on active GaS and GaSe ultrathin layers demonstrate typical n-and p-type conductance transistor operation along with a good ON/OFF ratio and electron differential mobility.


Assuntos
Gálio/química , Selênio/química , Sulfetos/química , Transistores Eletrônicos , Condutividade Elétrica , Modelos Moleculares , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA