Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.390
Filtrar
1.
Talanta ; 236: 122877, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635257

RESUMO

A covalent organic framework (named as TpDq) linked by ß-ketoamine was prepared by imine condensation reaction with 1,3,5-triformylphloroglucinol (TFP) and 2,6-diaminoanthraquinone (DAAQ) as building blocks. Via employing a functionalized modification strategy, a new lanthanide complex Eu3+-ß-diketone functionalized covalent organic framework hybrid material, Eu-TTA@TpDq (TTA = 2-thenoyltrifluoroacetone), has been synthesized. After post-synthetic modification (PSM), the shape and structure of the parent framework is well preserved and the modified material shows remarkable luminescence properties. Based on this, we designed it as a fluorescent probe and tried to use it to sense common aldehydes. The results indicate that Eu-TTA@TpDq exhibits a turn-off response toward glutaraldehyde which can distinguish from other common aldehydes. The fluorescent probe has the advantages of reusability, pH stability (4.50-8.52), fast luminescence response (<1 min) and low detection limit. The linear range of this method was 0-100 µM; the detection limit was 4.55 µM; the relative standard deviation was 2.16%. Furthermore, it has broad application prospect in both practical sensing of glutaraldehyde in water environment and simple detection of glutaraldehyde vapor. In addition, we preliminarily discussed the possible sensing mechanism.


Assuntos
Elementos da Série dos Lantanídeos , Estruturas Metalorgânicas , Glutaral , Cetonas , Luminescência
2.
Neural Regen Res ; 17(4): 875-880, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34472488

RESUMO

The neutrophil-to-lymphocyte ratio (NLR) is considered a robust prognostic biomarker for predicting patient survival outcomes in many diseases. However, it remains unclear whether it can be used as a biomarker for amyotrophic lateral sclerosis (ALS). To correlate NLR with disease progression and survival in sporadic ALS, 1030 patients with ALS between January 2012 and December 2018 were included in this study. These patients were assigned into three groups according to their NLR values: Group 1 (NLR < 2, n = 544 [52.8%]), Group 2 (NLR = 2-3, n = 314 [30.5%]), and Group 3 (NLR > 3, n = 172 [16.7%]). All patients were followed up until April 2020. Patients in Group 3 had a significantly older onset age, a lower score on the Revised ALS Functional Rating Scale, and rapidly progressing disease conditions. Furthermore, faster disease progression rates were associated with higher NLR values (odds ratio = 1.211, 95% confidence interval [CI]: 1.090-1.346, P < 0.001) after adjusting for other risk factors. Compared with Groups 1 and 2, the survival time in Group 3 was significantly shorter (log-rank P = 0.002). The NLR value was considered an independent parameter for the prediction of survival in ALS patients after normalizing for all other potential parameters (hazard ratio [HR] = 1.079, 95% CI: 1.016-1.146, P = 0.014). The effects on ALS survival remained significant when adjusted for treatment (HR = 1.074, 95% CI: 1.012-1.141, Ptrend = 0.019) or when considering the stratified NLR value (HR = 1.115, 95% CI: 1.009-1.232, Ptrend = 0.033). Thus, the NLR may help to predict the rate of disease progression and survival in patients with sporadic ALS. The study was approved by the Institutional Ethics Committee of West China Hospital of Sichuan University, China (approval No. 2015 (236)) on December 23, 2015.

3.
Int J Med Inform ; 157: 104641, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34785488

RESUMO

INTRODUCTION: Acute pancreatitis (AP) is a common clinical pancreatic disease. Patients with different severity levels have different clinical outcomes. With the advantages of algorithms, machine learning (ML) has gradually emerged in the field of disease prediction, assisting doctors in decision-making. METHODS: A systematic review was conducted using the PubMed, Web of Science, Scopus, and Embase databases, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Publication time was limited from inception to 29 May 2021. Studies that have used ML to establish predictive tools for AP were eligible for inclusion. Quality assessment of the included studies was conducted in accordance with the IJMEDI checklist. RESULTS: In this systematic review, 24 of 2,913 articles, with a total of 8,327 patients and 47 models, were included. The studies could be divided into five categories: 10 studies (42%) reported severity prediction; 10 studies (42%), complication prediction; 3 studies (13%), mortality prediction; 2 studies (8%), recurrence prediction; and 2 studies (8%), surgery timing prediction. ML showed great accuracy in several prediction tasks. However, most of the included studies were retrospective in nature, conducted at a single centre, based on database data, and lacked external validation. According to the IJMEDI checklist and our scoring criteria, two studies were considered to be of high quality. Most studies had an obvious bias in the quality of data preparation, validation, and deployment dimensions. CONCLUSION: In the prediction tasks for AP, ML has shown great potential in assisting decision-making. However, the existing studies still have some deficiencies in the process of model construction. Future studies need to optimize the deficiencies and further evaluate the comparability of the ML systems and model performance, so as to consequently develop high-quality ML-based models that can be used in clinical practice.

4.
J Hazard Mater ; 423(Pt B): 127139, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34537653

RESUMO

Accurate determination of antibiotic resistance genes (ARGs) in environmental DNA molecules (eDNA) is challenging owing to its low abundance in the aquatic environment. Here we report a facile and cost-efficient approach to extract trace amount of eDNAs in the aquatic environment using LnPO4 nanomaterials. Among the nanomaterials, less crystalline TbPO4 nanoneedles was identified as the most prominent candidate for long stranded DNA and short stranded DNA with adsorption efficiency above 97%. The adsorbed DNA was washed off from TbPO4 nanoneedles by optimized eluant (85% PBS, 15% EtOH, 4 g/L glycine, pH 10.0) with an optimal DNA recovery of 78.83%. Our approach showed a comparable or better eDNA extraction efficiency than a commercial extraction method for different environmental samples, but 89% less cost. The high purity of the extracted eDNA was demonstrated by a high A260/280 ratio. Using qPCR experiment, the occurrence of six common ARGs in the eDNA were detected with abundance ranging from 4.06 × 103 to 3.51 × 109 copies/L in river samples. This specific DNA capturer is valuable for the evaluation of spatial and temporal dynamic of ARGs pollution to provide insight into the potential risk with regard to the human health.

5.
Chemosphere ; 287(Pt 3): 132324, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34563777

RESUMO

Biological assays are useful in water quality evaluation by providing the overall toxicity of chemical mixtures in environmental waters. However, it is impossible to elucidate the source of toxicity and some lethal combination of pollutants simply using biological assays. As facile and cost-effective methods, computation model-based toxicity assessments are complementary technologies. Herein, we predicted the human health risk of binary pollutant mixtures (i.e., binary combinations of As(III), Cd(II), Cr(VI), Pb(II) and F(I)) in water using in vitro biological assays and deep learning methods. By employing a human cell panel containing human stomach, colon, liver, and kidney cell lines, we assessed the human health risk mimicking cellular responses after oral exposures of environmental water containing pollutants. Based on the experimental cytotoxicity data in pure water, multi-task deep learning was applied to predict cellular response of binary pollutant mixtures in environmental water. Using additive descriptors and single pollutant toxicity data in pure water, the established deep learning model could predict the toxicity of most binary mixtures in environmental water, with coefficient of determination (R2) > 0.65 and root mean squared error (RMSE) < 0.22. Further combining the experimental data on synergistic and antagonistic effects of pollutant mixtures, deep learning helped improve the predictive ability of the model (R2 > 0.74 and RMSE <0.17). Moreover, predictive models allowed us identify a number of toxicity source-related physiochemical properties. This study illustrates the combination of experimental findings and deep learning methods in the water quality evaluation.


Assuntos
Aprendizado Profundo , Poluentes Ambientais , Poluentes Químicos da Água , Humanos , Fígado , Poluentes Químicos da Água/toxicidade
6.
Chemosphere ; 286(Pt 3): 131836, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34388436

RESUMO

The present study focuses on the successful preparation of microbial palladium nanoparticles (Pd-NPs). The even distribution of Pd in the periplasmic space of B. megaterium Y-4 cells is characterized using a transmission electronic microscopy (TEM) and scanning electron microscope (SEM). X-Ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) revealed the domination of Pd (0) in Pd-NPs. The microbial Pd-NPs were selected to detoxify triclosan (TCS). Liquid chromatography-mass spectrometry (LC-MS) was used to analyze the intermediate products of dechlorination and oxidization. Free radicals quenching and 5,5-dimethyl-1-pyrroline N-oxide (DMPO) capturing experiments confirmed the crucial contribution of atomic H• and O2·- to TCS degradation. Besides, TCS degradation by microbial Pd-NPs could alleviate the cytotoxicity of TCS polluted water. Meanwhile, great circulating utilization of microbial Pd-NPs was obtained in degrading TCS. Corresponding findings in the present study could provide new insight into the role of microbial Pd-NPs in detoxifying pollutants.


Assuntos
Nanopartículas Metálicas , Triclosan , Catálise , Microscopia Eletrônica de Transmissão , Paládio , Triclosan/toxicidade , Difração de Raios X
7.
Chemosphere ; 286(Pt 3): 131758, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34399255

RESUMO

Wasted polyethylene (PE) products caused pollution has become a global issue. Researchers have identified PE-degrading bacteria which have been considered as a sustainable alleviation to this crisis. However, the degradation mechanism employed by currently isolated bacteria is unclear and their degradation efficiencies are insufficient. More importantly, there is little research into bacteria capable of degrading PE mulching film to solve "white" pollution in agriculture. We determined the PE degradation efficiency of two Pseudomonas, identified by 16S rDNA analysis, and elucidated their potential mechanisms through whole genome sequencing. During an 8-week period, PE mulch lost 5.95 ± 0.03% and 3.62 ± 0.32% of its mass after incubated with P. knackmussii N1-2 and P. aeruginosa RD1-3 strains, respectively. Moreover, considerable pits and wrinkles were observed on PE.The hydrophobicity of PE films also decreased, and new oxygenic functional groups were detected on PE mulch by Fourier Transform Infrared Spectrometry (FTIR). Complete genome sequencing analysis indicated that two Pseudomonas strains encode genes for enzymes and metabolism pathways involved in PE degradation. The results provide a theoretical basis for further research that investigates the mechanism driving the degradation and metabolism of discarded PE in the environment.


Assuntos
Polietileno , Pseudomonas , Agricultura , Bactérias , Biodegradação Ambiental , Pseudomonas/genética
8.
Nanoscale ; 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34850792

RESUMO

The wide applications of metal-organic framework (MOF) luminescent materials in the field of optics have attracted the general attention of researchers. Therefore, the development of simple and multifunctional MOF light-emitting platforms have become a research hotspot. The composites (MnO2@ZIF-8-luminol) were prepared by an in situ synthesis method and room-temperature covalent reaction. The composites and o-phenylenediamine (OPD) constitute a dual emission sensor for detecting alanine aminotransferase (ALT). OPD can be oxidized by MnO2 to 2,3-diaminophenazine (DAP) with yellow fluorescence emission, which inhibits the blue emission of luminol through fluorescence resonance energy transfer (FRET). The presence of tiopronin (TP) will destroy the FRET process, extinguishing the yellow fluorescence emission and restoring the blue fluorescence emission. The special effect between ALT and TP will further reverse the changes in the two fluorescent signals. Moreover, in the detection process, when the blue and yellow fluorescence energies in the system are within a certain range, a new white light emission will be generated, which causes the sensing of ALT to present ternary visualization. In addition, a high-security anti-counterfeiting platform is constructed by using the prepared materials and agarose hydrogels. The anti-counterfeiting platform can encrypt information on demand according to the luminous characteristics of different materials. This study not only provides a typical case of ternary visualization sensing by MOF-based materials but also develops a possible method for the construction of a MOF-based hydrogel anti-counterfeiting platform.

9.
Neoplasma ; 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34734530

RESUMO

Emerin (EMD) plays diverse roles in cellular polarity organization, nuclear stability, and cell motility, however, the biological role of EMD relevant to the migration and invasion of hepatocellular carcinoma (HCC) cells has not yet been illustrated. In the present study, we initially found that the upregulation of EMD in HCC tissues, and EMD expression was negatively correlated with the spontaneous metastatic potential of HCC cell lines. Loss of EMD in HCC cells facilitated cell migration and invasion in vitro and metastasis in vivo. Meanwhile, we demonstrated that EMD knockdown induced EMT but enhanced p21 expression in HCC cells. Notably, silencing of EMD in HCC cells increased the cytoplasmic localization of p21 protein, whereas p21 knockdown partially abrogated the migratory and invasive ability, EMT, and the actin cytoskeleton rearrangement induced by EMD knockdown in HCC cells. Our results indicated a significant role of EMD knockdown in the HCC cell motility and metastasis through upregulating the cytoplasmic p21, unveiling a novel mechanism of cell motility regulation induced by EMD.

10.
IBRO Neurosci Rep ; 11: 164-174, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34746914

RESUMO

Exercise can reduce the incidence of stress-related mental diseases, such as depression and anxiety. Control group was neither exposed to CVMS nor TRE (noCVMS/noTRE). Females were tested and levels of serum17-beta-oestradiol (E2), estrogen receptors α immunoreactive neurons (ERα-IRs), estrogen receptors ß immunoreactive neurons (ERß-IRs) and oxytocin immunoreactive neurons (OT-IRs) were measured. The results showed there's increased anxiety-like behaviors for mice from CVMS/noTRE, CVMS/higher speed TRE (CVMS/HTRE) and noCVMS/HTRE groups when they were put in open field and elevated maze tests. They had lower serum E2 levels than mice from CVMS/low-moderate speed TRE (CVMS/LMTRE), noCVMS/LMTRE and noCVMS/noTRE groups. The three groups of CVMS/noTRE, CVMS/HTRE and noCVMS/HTRE mice had more ERα-IRs and less ERß-IRs in the medial preoptic area (mPOA), bed nucleus of the stria terminalis (BNST) and medial amygdala (MeA), hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON). The number of OT-IRs in PVN and SON of CVMS/noTRE, CVMS/HTRE and noCVMS/HTRE mice was also lower than that of mice from CVMS/LMTRE, noCVMS/LMTRE and noCVMS/noTRE groups. Interestingly, CVMS/LMTRE and noCVMS/LMTRE mice were similar to noCVMS/noTRE mice in that they did not show anxiety, while CVMS/HTRE and noCVMS/HTRE mice did not, which were similar to the mice in CVMS/noTRE. We propose that LMTRE instead of HTRE changes the serum concentration of E2. ERß/ERα ratio and OT level in the brain may be responsible for the decrease in anxiety-like behavior in female mice exposed to anxiety-inducing stress conditions.

11.
J Neuroinflammation ; 18(1): 261, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749758

RESUMO

BACKGROUND: The aim of the current study was to investigate the effect of macrophage polarization on the expression of oxytocin (OT) and the oxytocin receptor (OTR) in enteric neurons. METHODS: In this study, we used a classic colitis model and D-mannose model to observe the correlation between macrophage polarization and OT signalling system. In order to further demonstrate the effect of macrophages, we examined the expression of OT signalling system after depletion of macrophages. RESULTS: The data showed that, in vitro, following polarization of macrophages to the M1 type by LPS, the macrophage supernatant contained proinflammatory cytokines (IL-1ß, IL-6 and TNF-α) that inhibited the expression of OT and OTR in cultured enteric neurons; following macrophage polarization to the M2 type by IL4, the macrophage supernatant contained anti-inflammatory cytokines (TGF-ß) that promoted the expression of OT and OTR in cultured enteric neurons. Furthermore, M1 macrophages decreased the expression of the OT signalling system mainly through STAT3/NF-κB pathways in cultured enteric neurons; M2 macrophages increased the expression of the OT signalling system mainly through activation of Smad2/3 and inhibition of the expression of Peg3 in cultured enteric neurons. In a colitis model, we demonstrated that macrophages were polarized to the M1 type during the inflammatory phase, with significant decreased in the expression of OT and OTR. When macrophages were polarized to the M2 type during the recovery phase, OT and OTR expression increased significantly. In addition, we found that D-mannose increased the expression of OT and OTR through polarization of macrophages to the M2 type. CONCLUSIONS: This is the first study to demonstrate that macrophage polarization differentially regulates the expression of OT and OTR in enteric neurons.

12.
Am J Transl Res ; 13(10): 11617-11624, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34786087

RESUMO

PURPOSE: The combined use of drug coated balloon (DCB) and optical coherence tomography (OCT) for the treatment of non-small coronary de novo lesion remains to be evaluated. We investigated the safety and efficacy of OCT-guided DCB in non-small coronary de novo lesion patients with predilation of cutting balloon. METHODS: https://clinicaltrials.gov/, ClinicalTrials.gov Identifier: NCT04795144. This study was a prospective, and open-label study. We enrolled patients with non-small de novo lesions treated with OCT-guided DCB. The non-small de novo lesions indicated vessel lesions with a diameter ≥ 2.5 mm. The primary endpoints were the success rate of the procedure and the occurrence of target lesion revascularization. The secondary endpoints were myocardial infarction, cardiac death, and major adverse cardiac events (MACE) within 3 months after the procedure. RESULTS: At the Second Hospital of Jilin University, we enrolled 54 patients (54 lesions) with non-small de novo lesions who were treated with OCT-guided DCB from October 2018 to June 2019. A total of 52 patients were successfully treated with DCB-only strategy, while 2 patients turned to bailout stenting. A total of 21 patients had undergone angiography 3 months after the procedure with the late lumen loss of 0.24±0.57 mm. There was no statistically significant difference in minimal lumen diameter (MLD) between post-DCB and at 3-month angiographic follow-up (2.25±0.40 mm vs 2.04±0.54 mm; P = 0.110). Only 1 patient developed restenosis with the incidence of MACE rate of only 1.92% (n = 1). There was no significant difference in the stenosis of the lumen diameter of the target lesion vessel between 3 months after operation and immediately after operation. CONCLUSIONS: Our study showed that OCT-guided DCB with cutting balloon under guidance may be a novel approach in non-small de novo coronary artery disease.

13.
Exp Neurol ; 347: 113918, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34748756

RESUMO

In temporal lobe epilepsy (TLE), abnormal axon guidance and synapse formation lead to sprouting of mossy fibers in the hippocampus, which is one of the most consistent pathological findings in patients and animal models with TLE. Glypican 4 (Gpc4) belongs to the heparan sulfate proteoglycan family, which play an important role in axon guidance and excitatory synapse formation. However, the role of Gpc4 in the development of mossy fibers sprouting (MFS) and its underlying mechanism remain unknown. Using a pilocarpine-induced mice model of epilepsy, we showed that Gpc4 expression was significantly increased in the stratum granulosum of the dentate gyrus at 1 week after status epilepticus (SE). Using Gpc4 overexpression or Gpc4 shRNA lentivirus to regulate the Gpc4 level in the dentate gyrus, increased or decreased levels of netrin-1, SynI, PSD-95, and Timm score were observed in the dentate gyrus, indicating a crucial role of Gpc4 in modulating the development of functional MFS. The observed effects of Gpc4 on MFS were significantly antagonized when mice were treated with L-leucine or rapamycin, an agonist or antagonist of the mammalian target of rapamycin (mTOR) signal, respectively, demonstrating that mTOR pathway is an essential requirement for Gpc4-regulated MFS. Additionally, the attenuated spontaneous recurrent seizures (SRSs) were observed during chronic stage of the disease by suppressing the Gpc4 expression after SE. Altogether, our findings demonstrate a novel control of neuronal Gpc4 on the development of MFS through the mTOR pathway after pilocarpine-induced SE. Our results also strongly suggest that Gpc4 may serve as a promising target for antiepileptic studies.

14.
Bioorg Med Chem ; 51: 116493, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34781082

RESUMO

Cancer has become one of the main reasons for human death in recent years. Around 18 million new cancer cases and approximately 9.6 million deaths from cancer reported in 2018, and the annual number of cancer cases will have increased to 22 million in the next two decades. These alarming facts have rekindled researchers' attention to develop and apply different approaches for cancer therapy. Unfortunately, most of the applied methods for cancer therapy not only have adverse side effects like toxicity and damage of healthy cells but also have a short lifetime. To this end, introducing innovative and effective methods for cancer therapy is vital and necessary. Among different potential materials, carbon nanomaterials can cope with the rising threats of cancer. Due to unique physicochemical properties of different carbon nanomaterials including carbon, fullerene, carbon dots, graphite, single-walled carbon nanotube and multi-walled carbon nanotubes, they exhibit possibilities to address the drawbacks for cancer therapy. Carbon nanomaterials are prodigious materials due to their ability in drug delivery or remedial of small molecules. Functionalization of carbon nanomaterials can improve the cancer therapy process and decrement the side effects. These exceptional traits make carbon nanomaterials as versatile and prevalent materials for application in cancer therapy. This article spotlights the recent findings in cancer therapy using carbon nanomaterials (2015-till now). Different types of carbon nanomaterials and their utilization in cancer therapy were highlighted. The plausible mechanisms for the action of carbon nanomaterials in cancer therapy were elucidated and the advantages and disadvantages of each material were also illustrated. Finally, the current problems and future challenges for cancer therapy based on carbon nanomaterials were discussed.

15.
Chem Soc Rev ; 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34812453

RESUMO

Owing to their unique physicochemical properties, ionic liquids (ILs) have been rapidly applied in diverse areas, such as organic synthesis, electrochemistry, analytical chemistry, functional materials, pharmaceutics, and biomedicine. The increase in the production and application of ILs has resulted in their release into aquatic and terrestrial environments. Because of their low vapor pressure, ILs cause very little pollution in the atmosphere compared to organic solvents. However, ILs are highly persistent in aquatic and terrestrial environments due to their stability, and therefore, potentially threaten the safety of eco-environments and human health. Specifically, the environmental translocation and retention of ILs, or their accumulation in organisms, are all related to their physiochemical properties, such as hydrophobicity. Based on results of ecotoxicity, cytotoxicity, and toxicity in mammalian models, the mechanisms involved in IL-induced toxicity include damage of cell membranes and induction of oxidative stress. Recently, artificial intelligence and machine learning techniques have been used in mining and modeling toxicity data to make meaningful predictions. Major future challenges are also discussed. This review will accelerate our understanding of the safety issues of ILs and serve as a guideline for the design of the next generation of ILs.

16.
J Cell Physiol ; 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34812495

RESUMO

Dunaliella salina can accumulate a large amount of ß-carotene which is generally considered to be its terminal product of carotenoid metabolism. In this study, it was proved that D. salina has the ketolase (DsBKT) of catalyzing the synthesis of astaxanthin, the downstream products of ß-carotene. Therefore, the reason why D. salina does not synthesize astaxanthin is the purpose of this study. The enzymatic activity of DsBKT was detected by functional complementation assays in Escherichia coli, results showed that DsBKT had efficient ketolase activity toward ß-carotene and zeaxanthin to produce astaxanthin, indicating that there were complete astaxanthin-producing genes in Dunaliella. Unlike the induced expression of Lycopene cyclase (catalyzing ß-carotene synthesis) under salt stress, the expression of DsBKT was very low under both normal and stress conditions, which may be the main reason why D. salina cannot accumulate astaxanthin. On the contrary, with the astaxanthin-rich Haematococcus pluvialis as a control, its BKT gene was significantly upregulated under salt stress. Further study showed that DsBKT promoter had strong promoter ability and could stably drive the expression of ble-egfp in D. salina. Obviously, DsBKT promoter is not the reason of DsBKT not being expressed which may be caused by Noncoding RNA.

17.
Trials ; 22(1): 761, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724966

RESUMO

BACKGROUND: Sleep deprivation (SD) among young adults is a major public health concern. In humans, it has adverse effects on mood and results in serious health problems. Faced with SD, persons may take precautionary measures to try and reduce their risk. The aim of this study is to evaluate the efficacy and safety of electroacupuncture (EA) for the prevention of negative moods after SD. In addition, we will do a comparison of the effects of EA on mood after SD at different time points. METHODS: This randomized controlled trial (RCT) will be performed at the First Affiliated Hospital of Changchun University of Chinese Medicine in China. The Standards for Reporting Interventions in Clinical Trials of Acupuncture 2010 will be strictly adhered to. Forty-two healthy male volunteers will be distributed into acupoints electroacupuncture (AE) group, non-acupoints electroacupuncture (NAE) control group, or blank control group. This trial will comprise 1-week baseline (baseline sleep), 1-week preventative treatment, 30-h total sleep deprivation (TSD), and 24-h after waking follow-up period. Participants in the AE group and the NAE control group during the preventative treatment period will be administered with EA treatment once daily for 1 week. Participants in the blank control group will not be administered with any treatment. The primary outcome will be the Profile of Mood States (POMS) Scale. Secondary outcome measures will include changes in the Noldus FaceReader (a tool for automatic analysis of facial expressions) and Positive and Negative Affect Schedule (PANAS) Scale. Total sleep deprivation will be 30 h. During the 30-h TSD period, participants will be subjected to 11 sessions of assessment. Adverse events will be recorded. DISCUSSION: This study is designed to evaluate the efficacy and safety of EA for the prevention of negative moods after SD. The results of this trial will allow us to compare the effects of EA on mood after SD at different time points. Moreover, the findings from this trial will be published in peer-reviewed journals. TRIAL REGISTRATION: Chinese Clinical Trial Registry Chi2000039713 . Registered on 06 November 2020.


Assuntos
Eletroacupuntura , Pontos de Acupuntura , Eletroacupuntura/efeitos adversos , Humanos , Masculino , Ensaios Clínicos Controlados Aleatórios como Assunto , Método Simples-Cego , Privação do Sono/diagnóstico , Privação do Sono/etiologia , Privação do Sono/prevenção & controle , Resultado do Tratamento , Adulto Jovem
18.
Hepatology ; 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34735734

RESUMO

BACKGROUND & AIMS: Hepatic ischemia reperfusion (HIR) injury, a common clinical complication of liver transplantation and resection, affects patient prognosis. RNF5 is an E3 ubiquitin ligase that plays important roles in endoplasmic reticulum stress, unfolded protein reactions, and inflammatory responses; however, its role in HIR is unclear. APPROACH & RESULTS: RNF5 expression was significantly downregulated during HIR in mice and hepatocytes. Subsequently, RNF5 knockdown and overexpression cell lines were subjected to hypoxia-reoxygenation challenge. The results shown that RNF5 knockdown significantly increased hepatocyte inflammation and apoptosis, while RNF5 overexpression had the opposite effect. Furthermore, hepatocyte-specific RNF5 knockout and transgenic mice were established and subjected to HIR, and RNF5 deficiency markedly aggravated liver damage, cell apoptosis, and activated hepatic inflammatory responses. While hepatic RNF5 transgenic mice had the opposite effect compared with RNF5 knockout mice. Mechanistically, RNF5 interacted with PGAM5 and mediated the degradation of PGAM5 through K48-linked ubiquitination, thereby inhibiting the activation of ASK1 and its downstream JNK/p38. This eventually suppresses the inflammatory response and cell apoptosis in HIR. CONCLUSION: We revealed that RNF5 protected against HIR via its interaction with PGAM5 to inhibit the activation of ASK1 and the downstream JNK/p38 signaling cascade. Our findings indicate that the RNF5-PGAM5 axis may be a promising therapeutic target for HIR.

19.
Front Med (Lausanne) ; 8: 649408, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722555

RESUMO

Psoriasis is a chronic multisystem inflammatory disease that affects ~0.1-1.5% of the world population. The classic cutaneous manifestation of psoriasis is scaly erythematous plaques, limited or widely distributed. Moreover, psoriasis could be associated with comorbidities like psoriatic arthritis, metabolic syndrome, diabetes, cardiovascular disease, nephropathy, bowel disease, and brain diseases. In this review, we suggest that psoriasis should be classified as cutaneous psoriasis or systemic psoriasis and propose the classification for distinction. This would help to better understand and manage psoriasis.

20.
Artigo em Inglês | MEDLINE | ID: mdl-34836653

RESUMO

Based on the anionic Slug-47 [Gd(bpdc)2-] [NH2(CH3)2+], a multifunctional fluorescent material with ultra-high stability has been fabricated successfully. Firstly, Eu0.04Tb39.96Gd60 with white light emission is prepared by adjusting the doping ratio of Eu3+ ions and Tb3+ ions. Then, the dye acriflavine (ACF) is further introduced into the framework of Eu@ Slug-47 (1) via cation exchange to obtain ACF@1, which can be used as a ratio fluorescence sensor to detect 2-methoxyaceticacid (Maa), a toxic metabolite of glycol monomethyl ether, with the limit of detection (LOD) as low as 0.27 µg/mL. It is impressive that the emissions of ACF and biphenyl-4,4'-dicarboxylicacid ligands are gradually enhanced with the gradual weakening of the emission of Eu3+ ions during the detection of Maa. Under the superposition of three different colors, the sensing process undergoes a distinct color change from red to white and then to blue. These rich and colorful colors provide conditions for accurate visual detection of Maa. In addition, the material can also respond well to the pollutant S2- ions and the LOD can reach 11.3 µmol /L. It is worth mentioning that the available quenching effect can be observed even if Maa and S2- ions are detected in urine and tap water respectively, indicating that the multifunctional material has a brilliant application prospect. Finally, the quenching mechanism of Maa, S2- ions toward ACF@1 is discussed in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...