Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35591366

RESUMO

The precise determination of atomic position of materials is critical for understanding the relationship between structure and properties, especially for compounds with light elements of boron and single or multiple transition metals. In this work, the single crystal X-ray diffraction is employed to analyze the atomic positions of Co2MoB4 and Fe2MoB4 with a Ta3B4-type structure, and it is found that the lengths of B-B bonds connecting the two zig-zag boron chains are 1.86 Å and 1.87 Å, but previously unreported 1.4 Å. Co and Fe atoms occupy the same crystallographic position in lattice for the doped samples and the valence is close to the metal itself, and Co/Fe K-edge X-ray Absorption Fine Structure(XAFS) spectra of borides with different ratios of Co to Fe are collected to detect the local environment and chemical valence of Co and Fe. Vickers hardness and nano indentation measurements are performed, together with the Density Functional Theory (DFT) calculations. Finally, Co2MoB4 possess better thermal stability than Fe2MoB4 evaluated by Thermogravimetric Differential Thermal Analysis (TG-DTA) results.

2.
Nature ; 601(7891): 69-73, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34987213

RESUMO

The 660-kilometre seismic discontinuity is the boundary between the Earth's lower mantle and transition zone and is commonly interpreted as being due to the dissociation of ringwoodite to bridgmanite plus ferropericlase (post-spinel transition)1-3. A distinct feature of the 660-kilometre discontinuity is its depression to 750 kilometres beneath subduction zones4-10. However, in situ X-ray diffraction studies using multi-anvil techniques have demonstrated negative but gentle Clapeyron slopes (that is,  the ratio between pressure and temperature changes) of the post-spinel transition that do not allow a significant depression11-13. On the other hand, conventional high-pressure experiments face difficulties in accurate phase identification due to inevitable pressure changes during heating and the persistent presence of metastable phases1,3. Here we determine the post-spinel and akimotoite-bridgmanite transition boundaries by multi-anvil experiments using in situ X-ray diffraction, with the boundaries strictly based on the definition of phase equilibrium. The post-spinel boundary has almost no temperature dependence, whereas the akimotoite-bridgmanite transition has a very steep negative boundary slope at temperatures lower than ambient mantle geotherms. The large depressions of the 660-kilometre discontinuity in cold subduction zones are thus interpreted as the akimotoite-bridgmanite transition. The steep negative boundary of the akimotoite-bridgmanite transition will cause slab stagnation (a stalling of the slab's descent) due to significant upward buoyancy14,15.

3.
Natl Sci Rev ; 8(4): nwaa098, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34691606

RESUMO

Understanding the mineralogy of the Earth's interior is a prerequisite for unravelling the evolution and dynamics of our planet. Here, we conducted high pressure-temperature experiments mimicking the conditions of the deep lower mantle (DLM, 1800-2890 km in depth) and observed surprising mineralogical transformations in the presence of water. Ferropericlase, (Mg, Fe)O, which is the most abundant oxide mineral in Earth, reacts with H2O to form a previously unknown (Mg, Fe)O2H x (x ≤ 1) phase. The (Mg, Fe)O2H x has a pyrite structure and it coexists with the dominant silicate phases, bridgmanite and post-perovskite. Depending on Mg content and geotherm temperatures, the transformation may occur at 1800 km for (Mg0.6Fe0.4)O or beyond 2300 km for (Mg0.7Fe0.3)O. The (Mg, Fe)O2H x is an oxygen excess phase that stores an excessive amount of oxygen beyond the charge balance of maximum cation valences (Mg2+, Fe3+ and H+). This important phase has a number of far-reaching implications including extreme redox inhomogeneity, deep-oxygen reservoirs in the DLM and an internal source for modulating oxygen in the atmosphere.

4.
Rev Sci Instrum ; 92(10): 103902, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717412

RESUMO

We attempted to generate ultrahigh pressure and temperature simultaneously using a multi-anvil apparatus by combining the technologies of ultrahigh-pressure generation using sintered diamond (SD) anvils, which can reach 120 GPa, and ultrahigh-temperature generation using a boron-doped diamond (BDD) heater, which can reach 4000 K. Along with this strategy, we successfully generated a temperature of 3300 K and a pressure of above 50 GPa simultaneously. Although the high hardness of BDD significantly prevents high-pressure generation at low temperatures, its high-temperature softening allows for effective pressure generation at temperatures above 1200 K. High temperature also enhances high-pressure generation because of the thermal pressure. We expect to generate even higher pressure in the future by combining SD anvils and a BDD heater with advanced multi-anvil technology.

5.
Nat Commun ; 11(1): 4702, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943627

RESUMO

High pressure can drastically alter chemical bonding and produce exotic compounds that defy conventional wisdom. Especially significant are compounds pertaining to oxygen cycles inside Earth, which hold key to understanding major geological events that impact the environment essential to life on Earth. Here we report the discovery of pressure-stabilized divalent ozonide CaO3 crystal that exhibits intriguing bonding and oxidation states with profound geological implications. Our computational study identifies a crystalline phase of CaO3 by reaction of CaO and O2 at high pressure and high temperature conditions; ensuing experiments synthesize this rare compound under compression in a diamond anvil cell with laser heating. High-pressure x-ray diffraction data show that CaO3 crystal forms at 35 GPa and persists down to 20 GPa on decompression. Analysis of charge states reveals a formal oxidation state of -2 for ozone anions in CaO3. These findings unravel the ozonide chemistry at high pressure and offer insights for elucidating prominent seismic anomalies and oxygen cycles in Earth's interior. We further predict multiple reactions producing CaO3 by geologically abundant mineral precursors at various depths in Earth's mantle.

6.
Nanoscale ; 11(24): 11660-11670, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31173625

RESUMO

Mn2+:CsPbCl3 nanocrystals (NCs) were synthesized using a modified one-pot injection method, which exhibits significantly improved thermal stability. For the first time, the pressure-treated optical and structural properties of synthetic Mn2+:CsPbCl3 NCs were further investigated, and their associated intriguing electrical and photoelectric properties were revealed from impedance spectra and photocurrent measurements under compression. The pressure-dependent photoluminescence experienced an initial redshift before 1.7 GPa followed by a continuous blueshift, as evidenced by the bandgap shifts. High-pressure XRD spectra uncovered a cubic-to-orthorhombic structural transition at about 1.1 GPa and subsequent amorphization upon further compression, which was fully reversible. Furthermore, the sample annealing from 340 K drove grain growth and decreased grain boundary resistance at ambient pressure. The compression further decreased the grain boundary barrier and improved the electrical conductivity (up to ∼10-2Ω-1 cm-1) of the thermally annealed Mn2+:CsPbCl3 NC surface. Simultaneous photocurrent enhancement of thermally annealed NCs was also achieved as expected, and reached optimal performance at 0.7 GPa. Strikingly, after the pressure cycling (loading-releasing), the results show that thermally annealed Mn2+:CsPbCl3 NCs gained preservable higher electrical conductivity (∼10 times increase) and an improved photoelectric response compared to the ambient state before compression. This work proves that high pressure is useful for opening the versatility in the structure and properties of metal-halide perovskite nanocrystals leading to a promising way for superior optoelectronic materials-by-design.

7.
ACS Appl Mater Interfaces ; 10(49): 42856-42864, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30431260

RESUMO

The structural phase transition of synthetic ZnFe2O4 nanoparticles (ZFO NPs) is investigated as a function of pressure up to 40.6 GPa at room temperature for the first time, and its associated intriguing electrical transport properties are resolved from in situ impedance spectra and magnetoresistivity measurements. Significant anomalies are observed in the properties of the grain boundary resistance ( Rgb), the relaxation frequency ( fmax), and the relative permittivity (εr) in the ZFO NPs under the pressures around 17.5-21.5 GPa. These anomalies are believed to be correlated with a cubic-to-orthorhombic phase transition of ZnFe2O4 at the pressures between 21.9 and 25.7 GPa, which is found to be partially reversible. The pressure-tuned dielectric properties are measured for the cubic and the orthorhombic phases of ZFO, respectively. Remarkably, Rgb decreases up to 6 orders of magnitude as a function of pressure in the cubic phase. The dielectric polarization is obviously strengthened with increased fmax and decreased εr with pressure in the orthorhombic phase. Furthermore, it is confirmed that the external pressure effectively improves the electrochemical stability of the sample based on the cycled measurements of the impedance spectra at various pressures. The changes in the complex permittivity (ε', ε″) and the dielectric loss tangent (tan δ) with frequency reveal the irreversible increase in the dielectric loss accompanied by phase transition. The MR measurements indicate that ZFO NPs are superparamagnetic under high pressure of up to 40 GPa. The transmission electron microscopy images reflect the decrease in the grain boundary number and some local amorphization of grains after compression, which provides good explanations for the changes in the electrical transport properties as a function of pressure. Herein, the structural and electrical properties of ZnFe2O4 NPs generated are preserved by quenching the high-pressure phase to ambient conditions, thus providing great choices of ferrites materials for a variety of applications.

8.
Adv Sci (Weinh) ; 5(11): 1800666, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30479920

RESUMO

The discovery of electrides, in particular, inorganic electrides where electrons substitute anions, has inspired striking interests in the systems that exhibit unusual electronic and catalytic properties. So far, however, the experimental studies of such systems are largely restricted to ambient conditions, unable to understand their interactions between electron localizations and geometrical modifications under external stimuli, e.g., pressure. Here, pressure-induced structural and electronic evolutions of Ca2N by in situ synchrotron X-ray diffraction and electrical resistance measurements, and density functional theory calculations with particle swarm optimization algorithms are reported. Experiments and computation are combined to reveal that under compression, Ca2N undergoes structural transforms from R 3 ¯ m symmetry to I 4 ¯ 2d phase via an intermediate Fd 3 ¯ m phase, and then to Cc phase, accompanied by the reductions of electronic dimensionality from 2D, 1D to 0D. Electrical resistance measurements support a metal-to-semiconductor transition in Ca2N because of the reorganizations of confined electrons under pressure, also validated by the calculation. The results demonstrate unexplored experimental evidence for a pressure-induced metal-to-semiconductor switching in Ca2N and offer a possible strategy for producing new electrides under moderate pressure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...