Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.493
Filtrar
1.
Neural Regen Res ; 18(1): 183-188, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35799540

RESUMO

Icariin, a major prenylated flavonoid found in Epimedium spp., is a bioactive constituent of Herba Epimedii and has been shown to exert neuroprotective effects in experimental models of Alzheimer's disease. In this study, we investigated the neuroprotective mechanism of icariin in an APP/PS1/Tau triple-transgenic mouse model of Alzheimer's disease. We performed behavioral tests, pathological examination, and western blot assay, and found that memory deficits of the model mice were obviously improved, neuronal and synaptic damage in the cerebral cortex was substantially mitigated, and amyloid-ß accumulation and tau hyperphosphorylation were considerably reduced after 5 months of intragastric administration of icariin at a dose of 60 mg/kg body weight per day. Furthermore, deficits of proteins in the insulin signaling pathway and their phosphorylation levels were significantly reversed, including the insulin receptor, insulin receptor substrate 1, phosphatidylinositol-3-kinase, protein kinase B, and glycogen synthase kinase 3ß, and the levels of glucose transporter 1 and 3 were markedly increased. These findings suggest that icariin can improve learning and memory impairments in the mouse model of Alzheimer's disease by regulating brain insulin signaling and glucose transporters, which lays the foundation for potential clinical application of icariin in the prevention and treatment of Alzheimer's disease.

2.
Nat Commun ; 13(1): 4468, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918309

RESUMO

Bacteria-based tumor therapy has recently attracted wide attentions due to its unique capability in targeting tumors and preferentially colonizing the core area of the tumor. Various therapeutic genes are also harbored into these engineering bacteria to enhance their anti-tumor efficacy. However, it is difficult to spatiotemporally control the expression of these inserted genes in the tumor site. Here, we engineer an ultrasound-responsive bacterium (URB) which can induce the expression of exogenous genes in an ultrasound-controllable manner. Owing to the advantage of ultrasound in tissue penetration, an acoustic remote control of bacterial gene expression can be realized by designing a temperature-actuated genetic switch. Cytokine interferon-γ (IFN-γ), an important immune regulatory molecule that plays a significant role in tumor immunotherapy, is used to test the system. Our results show that brief hyperthermia induced by focused ultrasound promotes the expression of IFN-γ gene, improving anti-tumor efficacy of URB in vitro and in vivo. Our study provides an alternative strategy for bacteria-mediated tumor immunotherapy.


Assuntos
Interferon gama , Neoplasias , Bactérias/metabolismo , Citocinas , Humanos , Imunoterapia/métodos , Interferon gama/genética , Interferon gama/metabolismo , Neoplasias/genética , Neoplasias/terapia
3.
Biomater Adv ; 136: 212781, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35929331

RESUMO

Application of adipose-derived mesenchymal stromal cells (AMSCs)-derived extracellular vesicles (EVs) in skin wound healing has been documented. In this study, we investigated the therapeutic potential of AMSCs-derived EVs in skin wound healing through delivery of microRNA-10b (miR-10b). HaCaT cells were treated with H2O2 to establish the skin wound cell models. Next, the binding affinity between miR-194, PEA15, and CDK6 was identified. Additionally, EVs were isolated from the culture medium of AMSC sheets, followed by incubation with H2O2-treated HaCaT cells to detect cell proliferation, migration, and apoptosis using gain- or loss-of-function experiments. Lastly, the mice skin wound models were also established to assess skin wound healing ability. miR-10b was down-regulated in the skin trauma models and enriched in the EVs of AMSC sheets. Moreover, miR-10b derived from EVs targeted PEA15 to promote CDK6 expression, thereby stimulating the proliferation and migration of H2O2-damaged HaCaT cells but inhibiting apoptosis. In vivo experiments further ascertained the therapeutic functionality of AMSC sheets-derived EVs-miR-10b. In summary, AMSC sheets-derived EVs carrying miR-10b promoted CDK6 expression to intensify skin wound healing by regulating PEA15.

4.
Arch Virol ; 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35925395

RESUMO

The complete genome sequence of a virus from lily (Lilium lancifolium Thunb.) growing in Huoshan County, Anhui Province, China, was determined. The whole genome consists of 9558 nucleotides, excluding the poly(A) tail, and encodes a 3061-amino-acid polyprotein (GenBank number ON365558) typical of potyviruses. This is the first complete genome sequence of iris potyvirus B (IPB), for which only a partial sequence from Iris domestica was reported previously. Comparative analysis of this genome sequence with those of closely related potyviruses identified nine cleavage sites and the conserved motifs typical of potyviruses. The complete polyprotein ORF shares 73.6% nucleotide and 81.6% amino acid sequence identity with that of iris potyvirus A (IPA, GenBank number MH898493). Phylogenetic analysis showed that IPB is related to IPA and clusters in a group with lily yellow mosaic virus (LYMV). This is the first report of IPB infecting lily plants.

5.
Polymers (Basel) ; 14(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35808668

RESUMO

Carbon fiber reinforced polymer (CFRP) blades are often exposed to wild and even harsh environments. The durability of the blade can be greatly improved by adhesively bonding a Ni erosion shield to the leading edge. In a traditional bonding process, the permeation of adhesive is poor at the interface, which gives an insufficient micromechanical interlocking. In this study, ultrasonic vibration was applied during the bonding process of sandblasted Ni plates and CFRP laminates. The values of shear strength were measured by tensile tests to verify the strengthening effect of applying ultrasonication. The cross-section of the bonded interface was characterized by scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS), and the surfaces with different treatments were explored by atomic force microscopy (AFM). The cross-sectional morphology and failure model of the samples were investigated. The strengthening mechanism was then studied by a molecular dynamics method. For the simulation of molecular dynamics, the CFRP/Ni bonding interface model was designed using the Materials Studio software package. The Perl scripts were used to simulate the ultrasonic vibration with different frequencies and amplitudes. The results showed that the ultrasonic process could improve the permeability and uniformity of the adhesive, enhancing the micromechanical interlocking effect.

6.
Front Genet ; 13: 919301, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812749

RESUMO

Purpose: Recurrent implantation failure (RIF) is an enormous challenge for in vitro fertilization (IVF) clinicians. An understanding of the molecular mechanisms of RIF helps to predict prognosis and develop new therapeutic strategies. The study is designed to identify diagnostic biomarkers for RIF as well as the potential mechanisms underlying RIF by utilizing public databases together with experimental validation. Methods: Two microarray datasets of RIF patients and the healthy control endometrium were downloaded from the Gene Expression Omnibus (GEO) database. First, differentially expressed microRNAs (miRNAs) (DEMs) were identified and their target genes were predicted. Then, we identified differentially expressed genes (DEGs) and selected hub genes through protein-protein interaction (PPI) analyses. Functional enrichment analyses of DEGs and DEMs were conducted. Furthermore, the key DEMs which targeted these hub genes were selected to obtain the key miRNA-target gene network. The key genes in the miRNA-target gene network were validated by a single-cell RNA-sequencing dataset of endometrium from GEO. Finally, we selected two miRNA-target gene pairs for further experimental validation using dual-luciferase assay and quantitative polymerase chain reaction (qPCR). Results: We identified 49 DEMs between RIF patients and the fertile group and found 136,678 target genes. Then, 325 DEGs were totally used to construct the PPI network, and 33 hub genes were selected. Also, 25 DEMs targeted 16 key DEGs were obtained to establish a key miRNA-target gene network, and 16 key DEGs were validated by a single-cell RNA-sequencing dataset. Finally, the target relationship of hsa-miR-199a-5p-PDPN and hsa-miR-4306-PAX2 was verified by dual-luciferase assay, and there were significant differences in the expression of those genes between the RIF and fertile group by PCR (p < 0.05). Conclusion: We constructed miRNA-target gene regulatory networks associated with RIF which provide new insights regarding the underlying pathogenesis of RIF; hsa-miR-199a-5p-PDPN and hsa-miR-4306-PAX2 could be further explored as potential biomarkers for RIF, and their detection in the endometrium could be applied in clinics to estimate the probability of successful embryo transfer.

7.
Bioorg Chem ; 128: 106055, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35905693

RESUMO

In this study, we constructed and displayed a ratiometric fluorescent probe JQ-2 for detecting ONOO-. The probe JQ-2 showed a ratiometric signal for visualizing ONOO- with a rapid response and high selectivity over a panel of biological analytes. Moreover, the JQ-2 has near-infrared emission (657 nm), which provides an excellent basis for the practical application in biological systems. The probe JQ-2 possessed low cytotoxicity and excellent cell membrane permeability, which can specifically visualize the exogenous and endogenous ONOO- in vitro and vivo by emission in two channels. Meanwhile, JQ-2 can be used for diagnosing drug-induced liver injury by visualizing and monitoring the fluctuations of endogenous ONOO-. Therefore, JQ-2 provided a potential tool for precisely detecting the fluctuation of ONOO- in biological systems to understand physiological and pathological process.

8.
Biosens Bioelectron ; 215: 114563, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35870336

RESUMO

Ultrasensitive, specific, and early identification of Coronavirus Disease (2019) (COVID-19) infection is critical to control virus spread and remains a global public health problem. Herein, we present a novel solid-state electrochemiluminescence (ECL) platform targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody with rapidity and ultrahigh sensitivity, in which a bipolar silica nanochannel array (bp-SNA) is fabricated on indium tin oxide (ITO) electrode for the first time to stably confine the ECL probe of tris(2,2'-bipyridyl) ruthenium (Ru(bpy)32+) under dual electrostatic force. The bp-SNA consists of tightly packed bilayer silica nanochannel array (SNA) with asymmetric surface charges, namely an inner negatively charged SNA (n-SNA) and an outer positively charged SNA (p-SNA), serving as an "electrostatic lock" to enrich and stabilize the cationic Ru(bpy)32+ probe without leakage from the electrode surface. The detection of SARS-CoV-2 IgG antibody could be realized via immobilization of SARS-CoV-2 spike protein on the utmost of Ru(bpy)32+-confined solid-state ECL platform (Ru@bp-SNA). Upon the capture of target SARS-CoV-2 IgG by immune recognition, the formed immunocomplex will block the nanochannel, leading to the hindered diffusion of the co-reactant (tri-n-propylamine, TPrA) and further producing a decreased ECL signal. The developed solid-stated ECL immunosensor is able to determine SARS-CoV-2 IgG with a wide linear range (5 pg mL-1 to 1 µg mL-1), a low limit-of-detection (2.9 pg mL-1), and a short incubation time (30 min). Furthermore, accurate analysis of SARS-CoV-2 IgG in real serum samples is also obtained by the sensor.

9.
G3 (Bethesda) ; 12(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35775933

RESUMO

Neotoxoptera formosana (Takahashi), the onion aphid, is an oligophagous pest that mainly feeds on plants from the Allium genus. It sucks nutrients from the plants and indirectly acts as a vector for plant viruses. This aphid causes severe economic losses to Allium tuberosum agriculture in China. To better understand the host plant specificity of N. formosana on Allium plants and provide essential information for the control of this pest, we generated the entire genome using Pacific Biosciences long-read sequencing and Hi-C data. Six chromosomes were assembled to give a final size of 372.470 Mb, with an N50 scaffold of 66.911 Mb. The final draft genome assembly, from 192 Gb of raw data, was approximately 371.791 Mb in size, with an N50 contig of 24.99 Kb and an N50 scaffold of 2.637 Mb. The average GC content was 30.96%. We identified 73 Mb (31.22%) of repetitive sequences, 14,175 protein-coding genes, and 719 noncoding RNAs. The phylogenetic analysis showed that N. formosana and Pentalonia nigronervosa are sister groups. We found significantly expanded gene families that were involved in the THAP domain, the DDE superfamily endonuclease, zinc finger, immunity (ankyrin repeats), digestive enzyme (serine carboxypeptidase) and chemosensory receptor. This genome assembly could provide a solid foundation for future studies on the host specificity of N. formosana and pesticide-resistant aphid management.


Assuntos
Afídeos , Animais , Afídeos/genética , Cromossomos , Genoma , Anotação de Sequência Molecular , Filogenia , Sequências Repetitivas de Ácido Nucleico
10.
Front Chem ; 10: 952936, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844646

RESUMO

Rapid and simple determination of mercury ion (Hg2+) in pharmaceuticals and soil samples is vital for human health and the environmental monitoring. Vertically-ordered mesoporous silica films (VMSF) supported by the indium tin oxide (ITO) electrode surface were prepared by electrochemically assisted self-assembly method and utilized for electrochemical detection of Hg2+. Owing to the negatively charged channel walls and ultrasmall pore diameter, VMSF displays obvious cationic selectivity and has highly electrostatic interaction for Hg2+, giving rise to the strong electrochemical signals. By recording the anodic stripping signals of adsorbed Hg2+ using differential pulse voltammetry, quantitative detection of Hg2+ was achieved with a wide linear range (0.2 µM-20 µM) and a low limit of detection (3 nM). Furthermore, considering the anti-fouling and anti-interference capacity of VMSF, the proposed VMSF/ITO sensor has been successfully applied to detect Hg2+ in pharmaceuticals and soil samples without tedious pretreatment processes of samples.

12.
J Asian Nat Prod Res ; : 1-8, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35852115

RESUMO

Four new ionones and ionone glycosides (1-4) were isolated from the whole plant of Rehmannia piasezkii Maxim. Their planar structures as well as absolute configuration were confirmed via spectroscopic analysis, ECD calculation, and X-ray crystallography. Compounds 1-4 were tested for their cytotoxicity against five human tumor cell lines and ability to inhibit LPS-activated NO production in the BV2 cell line.

13.
Pharmaceutics ; 14(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35890278

RESUMO

The epithelial-mesenchymal transition (EMT), a process in which epithelial cells undergo a series of biochemical changes to acquire a mesenchymal phenotype, has been linked to tumor metastasis. Here, we present a novel strategy for knocking out the EMT-related Cdh2 gene, which encodes N-cadherin through CRISPR/Cas9-mediated gene editing by an ultrasound combined with biosynthetic nanobubbles (Gas Vesicles, GVs). Polyethyleneimine were employed as a gene delivery vector to deliver sgRNA into 4T1 cells that stably express the Cas9 protein, resulting in the stable Cdh2 gene- knockout cell lines. The Western blotting assay confirmed the absence of an N-cadherin protein in these Cdh2 gene-knockout 4T1 cell lines. Significantly reduced tumor cell migration was observed in the Cdh2 gene-knockout 4T1 cells in comparison with the wild-type cells. Our study demonstrated that an ultrasound combined with GVs could effectively mediate CRISPR/Cas9 gene editing of a Cdh2 gene to inhibit tumor invasion and metastasis.

14.
Front Chem ; 10: 939510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903187

RESUMO

Carbendazim (CBZ), a kind of widely used pesticide, is harmful to human health and environmental ecology. Therefore, it is of great importance to detect CBZ in real samples. Herein we report the stable growth of vertically-ordered mesoporous silica films (VMSF) on the glassy carbon electrode (GCE) using boron nitride-reduced graphene oxide (BN-rGO) nanocomposite as an adhesive and electroactive layer. Oxygen-containing groups of rGO and 2D planar structure of BN-rGO hybrid favor the stable growth of VMSF via the electrochemically assisted self-assembly (EASA) method. Combining the good electrocatalytic activity of BN-rGO and the enrichment effect of VMSF, the proposed VMSF/BN-rGO/GCE can detect CBZ with high sensitivity (3.70 µA/µM), a wide linear range (5 nM-7 µM) and a low limit of detection (2 nM). Furthermore, due to the inherent anti-fouling and anti-interference capacity of VMSF, direct and rapid electrochemical analyses of CBZ in pond water and grape juice samples are also achieved without the use of complicated sample treatment processes.

15.
Small ; : e2202575, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35908160

RESUMO

Owing to the current global scenario of environmental pollution and the energy crisis, the development of new dielectrics using lead-free ceramics for application in advanced electronic and energy storage systems is essential because of the high power density and excellent stability of such ceramics. Unfortunately, most of them have low breakdown strength and/or low maximum polarization, resulting in low energy density and efficiency. To overcome this limitation here, lead-free ceramics comprising a layered structure are designed and fabricated. By optimizing the distribution of the layered structure, a large maximum polarization and high applied electric field (>500 kV cm-1 ) can be achieved; these result in an ultrahigh recoverable energy storage density (≈7 J cm-3 ) and near ideal energy storage efficiency (≈95%). Furthermore, the energy storage performance without obvious deterioration over a broad range of operating frequencies (1-100 Hz), working temperatures (30-160 °C), and fatigue cycles (1-104 ). In addition, the prepared ceramics exhibit extremely high discharge energy density (4.52 J cm-3 ) and power density (405.50 MW cm-3 ). Here, the results demonstrate that the strategy of layered structure design and optimization is promising for enhancing the energy storage performance of lead-free ceramics.

16.
Chem Sci ; 13(26): 7892-7899, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35865886

RESUMO

Photoisomeric supramolecular assemblies have drawn enormous attention in recent years. Although it is a general rule that photoisomerization from a less to a more distorted isomer causes the destruction of assemblies, this photoisomerization process inducing a converse transition from irregular aggregates to regular assemblies is still a great challenge. Here, we report a converse sol-to-gel transition derived from the planar to nonplanar photoisomer conversion, which is in sharp contrast to the conventional light-induced gel collapse. A well-designed acylhydrazone-linked monomer is exploited as a photoisomer to realize the above-mentioned phase transition. In the monomer, imine is responsible for trans-cis interconversion and amide generates intermolecular hydrogen bonds enabling the photoisomerization-driven self-assembly. The counterintuitive feature of the sol-to-gel transition is ascribed to the partial trans → cis photoisomerization of acylhydrazone causing changes in stacking mode of monomers. Furthermore, the reversible phase transition is applied in the valves formed in situ in microfluidic devices, providing fascinating potential for miniature materials.

17.
Plant Biotechnol J ; 2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35781755

RESUMO

Thermosensitive genic male sterility (TGMS) lines serve as the major genetic resource for two-line hybrid breeding in rice. However, their unstable sterility under occasional low temperatures in summer highly limits their application. In this study, we identified a novel rice TGMS line, ostms18, of cultivar ZH11 (Oryza sativa ssp. japonica). ostms18 sterility is more stable in summer than the TGMS line carrying the widely used locus tms5 in the ZH11 genetic background, suggesting its potential application for rice breeding. The ostms18 TGMS trait is caused by the point mutation from Gly to Ser in a glucose-methanol-choline (GMC) oxidoreductase; knockout of the oxidoreductase was previously reported to cause complete male sterility. Cellular analysis revealed the pollen wall of ostms18 to be defective, leading to aborted pollen under high temperature. Further analysis showed that the tapetal transcription factor OsMS188 directly regulates OsTMS18 for pollen wall formation. Under low temperature, the flawed pollen wall in ostms18 is sufficient to protect its microspore, allowing for development of functional pollen and restoring fertility. We identified the orthologous gene in Arabidopsis. Although mutants for the gene were fertile under normal conditions (24°C), fertility was significantly reduced under high temperature (28°C), exhibiting a TGMS trait. A cellular mechanism integrated with genetic mutations and different plant species for fertility restoration of TGMS lines is proposed.

18.
Women Health ; 62(6): 565-575, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35818166

RESUMO

Common genes mutation was demonstrated associating with the risk of breast cancer (BC) recently, while the role of long non-coding RNA (lncRNA) polymorphism is still controversial. A meta-analysis was designed to discuss the association between lncRNA H19 polymorphisms and susceptibility to BC. The related databases were systematically reviewed up to April 13, 2021. Estimates were summarized as ORs and 95 percent CIs for each included study. The heterogeneity was assessed by the I2 test and subgroup analysis. Ten studies with 10354 BC patients and 11,177 control cases were included in our study. LncRNA H19 single nucleotide polymorphism (SNP) rs2839698 C/T significantly increases the susceptibility of BC (OR = 1.717 , 95 percent CI = 1.052-2.803, P = 0.031). LncRNA H19 polymorphism rs3741219 and rs217727 also increase the risk of ER-positive BC (OR = 1.128 , 95 percent CI = 1.010-1.259, P = 0.0032 for rs3741219, and OR = 1.297, 95 percent CI = 1.027-1.639, P = 0.029 for rs217727). Our results demonstrated that lncRNA H19 SNP rs2839698 C/T was significantly associated with the susceptibility of BC. LncRNA H19 SNP rs217727 and rs3741219 were associated with the risks of ER-positive BC. However, further studies are needed to reach a robust conclusion.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Neoplasias da Mama/genética , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/genética
19.
Proc Inst Mech Eng H ; : 9544119221106829, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35821632

RESUMO

It is preliminarily acknowledged that multilayer stent (MS) is a promising alternative technology in the treatment of visceral branched aneurysms, but hemodynamic consequences of eccentricity in such aneurysms with MS are less examined. In this work, we performed a time-dependent simulation of branched aneurysms of various eccentricities with different stent layers, and thrombosis-related parameters, such as time-averaged wall shear stress (TAWSS), oscillating shear index (OSI), and relative residence time (RRT), were also analyzed. Our results revealed that MS can generally restore laminar flow inside the stent, and allow proper perfusion to vital organs while also fostering a relatively secluded hemodynamic environment for thrombosis formation. Particularly, a flow in the aneurysm sac communicating between the main artery and side branch forms at early systole. However, MS fails to completely eliminate detrimental flow impingement after peak systole, which may hinder aneurysm recovery, especially in the cases of eccentric aneurysms. Therefore, saccular aneurysms should be treated with more caution than fusiform aneurysms. And further therapeutic attempts to keep both perfusion in the proximal region of the aneurysm and isolation in the distal region of the aneurysm should be considered.

20.
Artigo em Inglês | MEDLINE | ID: mdl-35805804

RESUMO

Antibiotic resistance is a global health challenge that threatens human and animal lives, especially among low-income and vulnerable populations in less-developed countries. Its multi-factorial nature requires integrated studies on antibiotics and resistant bacteria in humans, animals, and the environment. To achieve a comprehensive understanding of the situation and management of antibiotic use and environmental transmission, this paper describes a study protocol to document human exposure to antibiotics from major direct and indirect sources, and its potential health outcomes. Our mixed-methods approach addresses both microbiological and pathogen genomics, and epidemiological, geospatial, anthropological, and sociological aspects. Implemented in two rural residential areas in two provinces in Eastern China, linked sub-studies assess antibiotic exposure in population cohorts through household surveys, medicine diaries, and biological sampling; identify the types and frequencies of antibiotic resistance genes in humans and food-stock animals; quantify the presence of antibiotic residues and antibiotic resistance genes in the aquatic environment, including wastewater; investigate the drivers and behaviours associated with human and livestock antibiotic use; and analyse the national and local policy context, to propose strategies and systematic measurements for optimising and monitoring antibiotic use. As a multidisciplinary collaboration between institutions in the UK and China, this study will provide an in-depth understanding of the influencing factors and allow comprehensive awareness of the complexity of AMR and antibiotic use in rural Eastern China.


Assuntos
Antibacterianos , Águas Residuárias , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/genética , China , Farmacorresistência Bacteriana/genética , Resistência Microbiana a Medicamentos/genética , Humanos , Águas Residuárias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...