Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32211703

RESUMO

Hybrid organic-inorganic perovskite (HOIP) materials have caught significant attention in photovoltaics and photoelectronics for their outstanding photovoltaic properties. However, their instability to various environment, such as illumination, temperature, moisture and oxygen, hinders their way to commercialization. To figure out the interaction mechanism between H2O and CH3NH3PbI3 (MAPbI3), extensive theoretical studies have been carried out; however, the experimental results are insufficient and inconsistent. Here, we systematically investigate and compare the influence of H2O on MAPbI3 perovskite films with or without DMF) post-annealing in dark or light condition. The interaction between H2O and the surface of pristine MAPbI3 leads to the fusion of grain boundaries thus grain growth into micron level in short-time moisture exposure. While the penetration of H2O into MAPbI3 results in swelled crystalline whisker, cracking into smaller grains in long-time exposure upon the release of H2O. However, no degradation occurs in dark condition. As the DMF post-annealing treatment changes the surface states of MAPbI3, the interactions between the external H2O and internal MAPbI3 significantly varies from the pristine MAPbI3. Three different surface states with different topographies have influence on the interaction process and mechanism with H2O, leading to different decomposition rates, the striped surface that is the most rough among the three and experiencing the minimum change in surface potential with exposure to 80% humidity decomposes into PbI2 fastest. However, the addition of light will once again affect the aforementioned process. It is found that even ambient light could severely speed up the moisture-induced decomposition of MAPbI3, while the N,N-dimethylformamide (DMF) post-annealing treatment significantly improves the stability of MAPbI3 films upon exposure to humidity and illumination, benefiting from the MAI-deficient thus H2O resistant surface.

2.
Nat Commun ; 10(1): 3265, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332198

RESUMO

Molybdenum disulfide is considered one of the most promising anodes for lithium-ion batteries due to its high specific capacity; however, it suffers from an unstable solid electrolyte interphase. Understanding its structural evolution and reaction mechanism upon charging/discharging is crucial for further improvements in battery performance. Herein, the interfacial processes of solid electrolyte interphase film formation and lithiation/delithiation on ultra-flat monolayer molybdenum disulfide are monitored by in situ atomic force microscopy. The live formation of ultra-thin and dense films can be induced by the use of fluoroethylene carbonate as an additive to effectively protect the anode electrodes. The evolution of the fluoroethylene carbonate-derived solid electrolyte interphase film upon cycling is quantitatively analysed. Furthermore, the formation of wrinkle-structure networks upon lithiation process is distinguished in detailed steps, and accordingly, structure-reactivity correlations are proposed. These quantitative results provide an in-depth understanding of the interfacial mechanism in molybdenum disulfide-based lithium-ion batteries.

3.
ACS Appl Mater Interfaces ; 11(24): 21627-21633, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31136145

RESUMO

Organic-inorganic halide perovskite materials are emerging as a new class of photoelectric materials for its low cost, easy preparation, and, especially, outstanding optoelectronic properties. Although tremendous efforts have been made on the regulation and optimization of perovskite materials and their microscopic electrical properties for high-efficiency solar cells, few reports focus on the evolution of electrical properties with temperature changes, especially at the microscopic scale, which will directly affect the device performances at varying temperatures. Here, we map the contact potential difference and photocurrent distribution of MAPbI3 at different temperatures in situ by Kelvin probe force microscopy and conductive atomic force microscopy, emphasizing the different influences of variable temperature and phase transition on the photoelectric properties of grains and grain boundaries (GBs). It is discovered that both the Fermi level and photocurrent decrease as the sample is heated from 30 to 80 °C gradually because of the variation of effective carrier concentration and the degradation of carrier mobility implicated by lattice vibration scattering. The difference between the Fermi level at GBs and that on the grains ascends first and then descends, peaking at 50 °C, near which MAPbI3 transforms from a tetragonal phase to a cubic phase. This peak is speculated as a comprehensive consequence of the increasing difference of the Fermi level of semiconductors with different doping concentrations and the converging properties of grains and GBs with the temperature rising because the lower ion activation energy of the cubic phase at higher temperatures facilitates greatly the ions' movement between grains and GB. The variation trend of the difference of the photocurrent is the same. These findings advance the knowledge on the temperature-induced variations of microscopic photoelectrical properties of organic-inorganic hybrid perovskite materials, which may guide the development of strategies for improving their thermal stability.

4.
Chem Commun (Camb) ; 55(9): 1326-1329, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30637430

RESUMO

Three types of well-ordered covalent two-dimensional tilings including triangular, rhombille and semi-regular Archimedean tilings were successfully constructed via on-surface Schiff base reaction. Among them, the covalent organic framework (COF) constructed from a C6 symmetry monomer and C3 symmetry monomer is the first reported COF with kgd (rhombille tiling) topology.

5.
Sci Data ; 6: 180305, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30620341

RESUMO

Hog deer (Axis porcinus) is a small deer species in family Cervidae and has been undergoing a serious and global decline during the past decades. Chengdu Zoo currently holds a captive population of hog deer with sufficient genetic diversity in China. We sequenced and de novo assembled its genome sequence in the present study. A total of six different insert-size libraries were sequenced and generated 395 Gb of clean data in total. With aid of the linked reads of 10X Genomics, genome sequence was assembled to 2.72 Gb in length (contig N50, 66.04 Kb; scaffold N50, 20.55 Mb), in which 94.5% of expected genes were detected. We comprehensively annotated 22,473 protein-coding genes, 37,019 tRNAs, and 1,058 Mb repeated sequences. The newly generated reference genome is expected to significantly contribute to comparative analysis of genome biology and evolution within family Cervidae.


Assuntos
Cervos/genética , Genoma , Animais , China , Anotação de Sequência Molecular , Análise de Sequência de DNA
6.
J Microbiol Biotechnol ; 29(3): 410-418, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30518022

RESUMO

To investigate a novel ß-glucosidase from Bifidobacterium breve ATCC 15700 (BbBgl) to produce compound K (CK) via ginsenoside F2 by highly selective and efficient hydrolysis of the C-3 glycoside from ginsenoside Rd, the BbBgl gene was cloned and expressed in E. coli BL21. The recombinant BbBgl was purified by Ni-NTA magnetic beads to obtain an enzyme with specific activity of 37 U/mg protein using pNP-Glc as substrate. The enzyme activity was optimized at pH 5.0, 35°C, 2 or 6 U/ml, and its activity was enhanced by Mn2+ significantly. Under the optimal conditions, the half-life of the BbBgl is 180 h, much longer than the characterized ß-glycosidases, and the Km and Vmax values are 2.7 mM and 39.8 µmol/mg/min for ginsenoside Rd. Moreover, the enzyme exhibits strong tolerance against high substrate concentration (up to 40 g/l ginsenoside Rd) with a molar biotransformation rate of 96% within 12 h. The good enzymatic properties and gram-scale conversion capacity of BbBgl provide an attractive method for large-scale production of rare ginsenoside CK using a single enzyme or a combination of enzymes.


Assuntos
Bifidobacterium breve/metabolismo , Ginsenosídeos/metabolismo , Glucose/metabolismo , Monossacarídeos/metabolismo , beta-Glucosidase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bifidobacterium breve/genética , Biotransformação , Clonagem Molecular , Ensaios Enzimáticos , Estabilidade Enzimática , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Ginsenosídeos/biossíntese , Ginsenosídeos/química , Glicosídeos , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , beta-Glucosidase/genética , beta-Glucosidase/isolamento & purificação
7.
Chem Commun (Camb) ; 54(58): 8052-8055, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-29971277

RESUMO

Here we show a conceptual approach to realize the scanning tunneling microscopy based induced-assembly of fullerene (C60) molecules on top of a buffer organic adlayer at room temperature in a solution environment. The realization of spatially-defined C60 assembly is attributed to the modulation of substrate-molecular interactions with the assistance of a buffer layer.

8.
Nanoscale ; 10(7): 3438-3443, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29393947

RESUMO

We report the potential and concentration controlled assembly of an alkyl-substituted benzo[1,2-b:4,5-b']dithiophene (DDBDT) on an Au(111) electrode by in situ electrochemical scanning tunneling microscopy (ECSTM). It is found that a lamellar structure is formed at low concentrations, while herringbone-like and rhombus structures are obtained at high concentrations. In situ STM results reveal that herringbone-like and rhombus structures could transform into lamellar structures when the electrode potential is tuned negatively. A phase diagram is obtained to illustrate the relationship and effects of concentration and substrate potential on the interfacial structures of DDBDT. Both the substrate potential and the solute concentration can modulate the self-assembly structure through changing the molecular surface density. The results provide important insights into the understanding and precise control of molecular self-assembly on solid surfaces through a combination of different approaches.

9.
ACS Appl Mater Interfaces ; 9(26): 22063-22067, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28594541

RESUMO

An understanding of the formation mechanism of solid electrolyte interphase (SEI) film at the nanoscale is paramount because it is one of the key issues at interfaces in lithium-ion batteries (LIBs). Herein, we explored the nucleation, growth, and formation of SEI film on highly oriented pyrolytic graphite (HOPG) substrate in ionic liquid-based electrolytes 1-butyl-1-methyl-pyrrolidinium bis(fluorosulfonyl)imide ([BMP]+[FSI]-) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([BMP]+[TFSI]-) by in situ atomic force microscopy (AFM) and found that the types of anions have significant influence on the structure of the formed SEI. In [BMP]+[FSI]- containing LiFSI, a compact and thin SEI film prefers to grow in the plane of HOPG substrate, while a rough and loose film tends to form in [BMP]+[TFSI]- containing LiTFSI. On the basis of in situ AFM observations, the relationship between the SEI structure and the electrochemical performance was clarified.

10.
Phys Chem Chem Phys ; 19(1): 539-543, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27910969

RESUMO

The introduction of intramolecular H-bonding by adding -OH functionalities adjacent to the Schiff base centers is considered to be a useful strategy to enhance the stability and crystallinity of bulk covalent organic frameworks (COFs). However, the influence of intramolecular H-bonding on the synthesis of surface COFs (SCOFs) have been barely explored. Herein, SCOFs based on the Schiff-base reaction between 1,3,5-tris(4-aminophenyl)benzene (TAPB) and terephthalaldehydes with symmetry or asymmetrically substituted hydroxyl functional groups are designed. In the absence of a solvent, hydroxyl substituents can be easily oxidized; thus argon protection is required to obtain high-quality SCOFs. Besides, an extended network with uniform pores can be achieved in spite of the symmetry of substituents. Both experimental results and theoretical calculations show that the influence of intramolecular hydrogen bonding on surface synthesis is not as important as that in bulk phase synthesis because the substrate itself can lead to the complanation of adsorbed molecules. The existence of intramolecular H-bonding can enhance the stability of the network in both acid and alkali environments.

11.
Chem Commun (Camb) ; 53(2): 428-431, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-27959371

RESUMO

Double-walled nanoporous networks based on the Schiff base reaction of nonplanar tripodic building blocks and subsequent dipole-directed self-assembly were fabricated on highly oriented pyrolytic graphite (HOPG) at the gas-solid interface. This is the first example of nonplanar molecules exploited as precursors for a surface reaction.

12.
J Am Chem Soc ; 138(50): 16196-16199, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-27998083

RESUMO

Organic-inorganic hybrid perovskite single-crystalline thin films (SCTFs) are promising for enhancing photoelectric device performance due to high carrier mobility, long diffusion length, and carrier lifetime. However, bulk perovskite single crystals available today are not suitable for practical device application due to the unfavorable thickness. Herein, we report a facile space-confined solution-processed strategy to on-substrate grow various hybrid perovskite SCTFs in a size of submillimeter with adjustable thicknesses from nano- to micrometers. These SCTFs exhibit photoelectric properties comparable to bulk single crystals with low defect density and good air stability. The clear thickness-dependent colors allow fast visual selection of SCTFs with a suitable thickness for specific device application. The present substrate-independent growth of perovskite SCTFs opens up opportunities for on-chip fabrication of diverse high-performance devices.

13.
Chem Commun (Camb) ; 52(81): 12088-12091, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27709213

RESUMO

We systematically studied the operation of coadsorber-induced surface chirality in a series of enantiomeric surface supramolecular assemblies. The correlation of chiral amplification degree with the proportion of enantiomeric interaction in the total intermolecular interaction is deduced.

14.
J Am Chem Soc ; 137(19): 6128-31, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25948133

RESUMO

Halogen bonding has attracted much attention recently as an important driving force for supramolecular assembly and crystal engineering. Herein, we demonstrate for the first time the formation of a halogen bond-based open porous network on a graphite surface using ethynylpyridine and aryl-halide based building blocks. We found that the electrical stimuli of a scanning tunneling microscopy (STM) tip can induce the formation of a binary supramolecular structure on the basis of halogen bond formation between terminal pyridyl groups and perfluoro-iodobenzene. This electrical manipulation method can be applied to engineer a series of linear or porous structures by selecting halogen bond donor and acceptor fragments with different symmetries, as the directional interactions ultimately determine the structural outcome.

15.
Chem Asian J ; 10(6): 1311-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25827351

RESUMO

Heterocyclic aromatic compounds have attracted considerable attention because of their high carrier mobility that can be exploited in organic field-effect transistors. This contribution presents a comparative study of the packing structure of 3,6-didodecyl-12-(3,6-didodecylphenanthro[9,10-b]phenazin-13-yl)phenanthro[9,10-b]phenazine (DP), an N-heterocyclic aromatic compound, on Au(111) and highly ordered pyrolytic graphite (HOPG). High-resolution scanning tunneling microscopy (STM) combined with atomistic simulations provide a picture of the interface of this organic semiconductor on an electrode that can have an impact on the field-effect transistor (FET) performance. DP molecules adsorb with different conformational isomers (R/S: trans isomers; C: cis isomer) on HOPG and Au(111) substrates. All three isomers are found in the long-range disordered lamella domains on Au(111). In contrast, only the R/S trans isomers self-assemble into stable chiral domains on the HOPG surface. The substrate-dependent adsorption configuration selectivity is supported by theoretical calculations. The van der Waals interaction between the molecules and the substrate dominates the adsorption binding energy of the DP molecules on the solid surface. The results provide molecular evidence of the interface structures of organic semiconductors on electrode surfaces.

16.
Angew Chem Int Ed Engl ; 53(49): 13395-9, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25376428

RESUMO

The construction of a spatially defined assembly of molecular building blocks, especially in the vertical direction, presents a great challenge for surface molecular engineering. Herein, we demonstrate that an electric field applied between an STM tip and a substrate triggered the formation of a bilayer structure at the solid-liquid interface. In contrast to the typical high electric-field strength (10(9)  V m(-1) ) used to induce structural transitions in supramolecular assemblies, a mild electric field (10(5)  V m(-1) ) triggered the formation of a bilayer structure of a polar molecule on top of a nanoporous network of trimesic acid on graphite. The bilayer structure was transformed into a monolayer kagome structure by changing the polarity of the electric field. This tailored formation and large-scale phase transformation of a molecular assembly in the perpendicular dimension by a mild electric field opens perspectives for the manipulation of surface molecular nanoarchitectures.

17.
Chem Commun (Camb) ; 50(99): 15756-9, 2014 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-25371348

RESUMO

A facile protocol is developed for the direct observation and characterization of a single particle electrode during the lithium ion battery operation by using in situ AFM. The SEI formation on the LiNi0.5Mn1.5O4 particle cathode surface is found to be highly related to the exposed planes.

18.
ACS Appl Mater Interfaces ; 6(22): 20317-23, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25380518

RESUMO

Silicon nanowires (SiNWs) have attracted great attention as promising anode materials for lithium ion batteries (LIBs) on account of their high capacity and improved cyclability compared with bulk silicon. The interface behavior, especially the solid electrolyte interphase (SEI), plays a significant role in the performance and stability of the electrodes. We report herein an in situ single nanowire atomic force microscopy (AFM) method to investigate the interface electrochemistry of silicon nanowire (SiNW) electrode. The morphology and Young's modulus of the individual SiNW anode surface during the SEI growth were quantitatively tracked. Three distinct stages of the SEI formation on the SiNW anode were observed. On the basis of the potential-dependent morphology and Young's modulus evolution of SEI, a mixture-packing structural model was proposed for the SEI film on SiNW anode.

19.
Small ; 10(23): 4934-9, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25048172

RESUMO

With graphene-like topology and designable functional moieties, single-layered covalent organic frameworks (sCOFs) have attracted enormous interest for both fundamental research and application prospects. As the growth of sCOFs involves the assembly and reaction of precursors in a spatial defined manner, it is of great importance to understand the kinetics of sCOFs formation. Although several large families of sCOFs and bulk COF materials based on different coupling reactions have been reported, the synthesis of isomeric sCOFs by exchanging the coupling reaction moieties on precursors has been barely explored. Herein, a series of isomeric sCOFs based on Schiff-base reaction is designed to understand the effect of monomer structure on the growth kinetics of sCOFs. The distinctly different local packing motifs in the mixed assemblies for the two isomeric routes closely resemble to those in the assemblies of monomers, which affect the structural evolution process for highly ordered imine-linked sCOFs. In addition, surface diffusion of monomers and the molecule-substrate interaction, which is tunable by reaction temperature, also play an important role in structural evolutions. This study highlights the important roles of monomer structure and reaction temperature in the design and synthesis of covalent bond connected functional nanoporous networks.

20.
Langmuir ; 30(12): 3502-6, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24611792

RESUMO

Hybrid bilayers consisting of 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) and meso-tetra(4-pyridyl)porphine (TPyP) have been successfully constructed on Au(111) and investigated by electrochemical scanning tunneling microscopy (ECSTM). Under the guidance of the electrostatic interaction between negatively charged sulfonate groups and positively charged pyridyl groups, the underlying HPTS arrays act as templates for the deposition of cationic TPyPs, forming two types of TPyP/HPTS complex bilayers. The present work provides a feasible way to fabricate hybrid multilayers on the electrode surface via electrostatic interaction, which has great significance for the design of molecular nanodevices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA