Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(3): 1897-1903, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35425151

RESUMO

Polymer-based thermal interface materials (TIMs) have attracted wide attention in the field of thermal management because of their outstanding properties including light weight, low cost, corrosion resistance and easy processing. However, the low thermal conductivity (∼0.2 W m-1 K-1) of the intrinsic polymer matrix largely degrades the overall thermal performance of polymer-based TIMs even those containing highly thermal conductive fillers. Hence, enhancing the intrinsic thermal conductivity of the polymer matrix is one of the most critical problems needed to be solved. This paper studies the thermal conductivity of poly(3,4-ethylenedioxythiophene) (PEDOT) films fabricated via cyclic voltammetry. By controlling the number of cycles in the electrochemical synthesis, different thickness of PEDOT films could be obtained. A time-domain thermoreflectance (TDTR) system was employed to evaluate the thermal performance of such as-prepared PEDOT films. We have demonstrated that a PEDOT film with thickness of 40 nm achieves the highest out-of-plane thermal conductivity of ∼0.60 W m-1 K-1, which is almost three folds the thermal conductivity of commercially available pristine PEDOT:PSS film with similar thickness. The X-ray diffraction spectrum reveals that the PEDOT thin film with high crystallinity at the initial stage of electrochemical synthesis leads to enhanced thermal transportation. The findings in this work not only offer an opportunity to fabricate polymer materials exhibiting enhanced thermal conductivity, but also allow one to adjust the thermal performance of conducting polymers in practical applications.

2.
ACS Appl Mater Interfaces ; 14(18): 21348-21355, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35482578

RESUMO

Vertical graphene nanowalls (VGNs) with excellent heat-transfer properties are promising to be applied in the thermal management of electronic devices. However, high growth temperature makes VGNs unable to be directly prepared on semiconductors and polymers, which limits the practical application of VGNs. In this work, the near room-temperature growth of VGNs was realized by utilizing the hot filament chemical vapor deposition method. Catalytic tantalum (Ta) filaments promote the decomposition of acetylene at ∼1600 °C. Density functional theory calculations proved that C2H* was the main active carbon cluster during VGN growth. The restricted diffusion of C2H* clusters induced the vertical growth of graphene nanoflakes on various substrates below 150 °C. The direct growth of VGNs successfully realized the excellent interfacial contact, and the thermal contact resistance could reach 3.39 × 10-9 m2·K·W-1. The temperature of electronic chips had a 6.7 °C reduction by utilizing directly prepared VGNs instead of thermal conductive tape as thermal-interface materials, indicating the great potential of VGNs to be directly prepared on electronic devices for thermal management.

3.
Water Res ; 213: 118185, 2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35183018

RESUMO

Electroactive biofilms have attracted increasing attention due to their unique ability to exchange electrons with electrodes. Geobacter spp. are widely found to be dominant in biofilms in acetate-rich environments when an appropriate voltage is applied, but it is still largely unknown how these bacteria are selectively enriched. Herein, two key Geobacter spp. that have been demonstrated predominant in wastewater-enriched electroactive biofilm after long-term operation, G. sulfurreducens and G. anodireducens, responded to electric field (EF) differently, leading to a higher abundance of EF-sensitive G. anodireducens in the strong EF region after cocultivation with G. sulfurreducens. Transcriptome analysis indicated that two-component systems containing sensor histidine kinases and response regulators were the key for EF sensing in G. anodireducens rather than in G. sulfurreducens, which are closely connected to chemotaxis, c-di-GMP, fatty acid metabolism, pilus, oxidative phosphorylation and transcription, resulting in an increase in extracellular polymeric substance secretion and rapid cell proliferation. Our data reveal the mechanism by which EF select specific Geobacter spp. over time, providing new insights into Geobacter biofilm formation regulated by electricity.

4.
Int J Biol Sci ; 18(3): 1134-1149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35173544

RESUMO

Metastasis is the main cause of death in patients with nasopharyngeal carcinoma (NPC). The molecular mechanisms underlying the metastasis of NPC remain to be elucidated. TBL1X has been shown abnormally expressed in diverse cancers. However, the role and mechanism of TBL1X in NPC remain unknown. Here, we showed TBL1X expression was significantly higher in metastatic NPC tissues compared to non-metastatic tissues and significantly correlated with TNM stage and metastasis of NPC patients. In addition, NPC patients with high TBL1X expression had a poor prognosis. TBL1X interacted with TCF4 to trans-activate Flot2 expression. TBL1X promoted NPC cell migration and invasion in vitro and in vivo through Flot2. Moreover, Flot2 increased the expression of TBL1X by upregulating c-myc, which was identified to be a positively regulatory transcription factor of TBL1X. TBL1X could restore the functional changes of NPC cells resulting from Flot2 alteration. TBL1X and Flot2 were positively correlated in NPC. Patients with high expression of both TBL1X and Flot2 possessed poorer overall survival (OS) and disease-free survival (DFS) compared to patients with high expression of any single one of the two proteins. Our findings demonstrate that TBL1X and Flot2 positively regulate each other to promote NPC metastasis, which provides novel potential molecular targets for NPC treatment.


Assuntos
Carcinoma , Neoplasias Nasofaríngeas , Carcinoma/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Retroalimentação , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/metabolismo
5.
Micromachines (Basel) ; 13(1)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35056294

RESUMO

High-quality AlN film is a key factor affecting the performance of deep-ultraviolet optoelectronic devices. In this work, high-temperature annealing technology in a nitrogen atmosphere was used to improve the quality of AlN films with different polarities grown by magnetron sputtering. After annealing at 1400-1650 °C, the crystal quality of the AlN films was improved. However, there was a gap between the quality of non-polar and polar films. In addition, compared with the semi-polar film, the quality of the non-polar film was more easily improved by annealing. The anisotropy of both the semi-polar and non-polar films decreased with increasing annealing temperature. The results of Raman spectroscopy, scanning electron microscopy and X-ray photoelectron spectroscopy revealed that the annihilation of impurities and grain boundaries during the annealing process were responsible for the improvement of crystal quality and the differences between the films with different polarities.

6.
Adv Mater ; 34(3): e2105778, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34676925

RESUMO

Interfacial thermal transport plays a prominent role in the thermal management of nanoscale objects and is of fundamental importance for basic research and nanodevices. At metal/insulator interfaces, a configuration commonly found in electronic devices, heat transport strongly depends upon the effective energy transfer from thermalized electrons in the metal to the phonons in the insulator. However, the mechanism of interfacial electron-phonon coupling and thermal transport at metal/insulator interfaces is not well understood. Here, the observation of a substantial enhancement of the interfacial thermal resistance and the important role of surface charges at the metal/ferroelectric interface in an Al/BiFeO3 membrane are reported. By applying uniaxial strain, the interfacial thermal resistance can be varied substantially (up to an order of magnitude), which is attributed to the renormalized interfacial electron-phonon coupling caused by the charge redistribution at the interface due to the polarization rotation. These results imply that surface charges at a metal/insulator interface can substantially enhance the interfacial electron-phonon-mediated thermal coupling, providing a new route to optimize the thermal transport performance in next-generation nanodevices, power electronics, and thermal logic devices.

7.
Environ Res ; 203: 111802, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34343555

RESUMO

Anaerobic ammonium oxidation coupled to Fe(III) reduction, known as Feammox, is a newly discovered nitrogen-cycling process, which serves an important role in the pathways of nitrogen loss in the environment. However, the specific types of microorganisms involved in Feammox currently remain unclear. In this study, we selected two groups of soil samples (paddy and mine), from considerably different habitats in South China, to acclimate Feammox colonies. The Paddy Group had a shorter lag period than the Mine Group, while the ammonium transformation rate was nearly equal in both groups in the mature period. The emergence of the Feammox activity was found to be associated with the increased abundance of iron-reducing bacteria, especially Clostridium_sensu_stricto_12, Desulfitobacterium, Thermoanaerobaculum, Anaeromyxobacter and Geobacter. Ammonium oxidizing archaea and methanogens were dominant among the known archaea. These findings extend our knowledge of the microbial community composition of the potential Feammox microbes from soils under different environmental conditions, which broadens our understanding of this important Fe/N transformation process.


Assuntos
Compostos de Amônio , Solo , Archaea , Bactérias , Compostos Férricos , Nitrogênio/análise , Oxirredução , Microbiologia do Solo
8.
Ultrasonics ; 118: 106567, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34521035

RESUMO

The quality inspection of micro solder joints in laser spot welding (LSW) is a problem of great concern in industrial application. In this paper, a laser ultrasonic technology (LUT) was proposed to inspect the quality of micro solder joints in LSW. Firstly, based on the thermoelastic model of acoustic wave propagation in solid, a theoretical model was built and used to analyze the propagation properties of the Lamb wave in the whole field by finite element method (FEM), the transmitting properties of the excited Lamb wave via solder joint were affected by the effective contacted area of solder joint. Secondly, LUT was used to inspect the 1.2 mm/0.4 mm welding spot of standard/false 304 stainless steel welded components. By comparing the propagating properties of excited ultrasonic wave in different samples with different weld quality, the standard and false welding can be visually distinguished. Finally, a industrial CT was used to check the quality of the samples used in our experiment. Inclusions and pores have been found in the false solder joints, which will reduce the effective contacted area of solder joint, and then affected the propagation of ultrasonic wave. By combining the CT results and the experimental analysis, the experimental results detected by LUT are in good agreement with the simulation results. So, the LUT is a potential method in field of the quality inspection of micro solder joints in LSW.

9.
Theranostics ; 11(20): 9775-9790, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34815785

RESUMO

Rationale: Diffuse glioma patients have high mortality and recurrence despite multimodal therapies. This study aims to identify the potential tumor antigens for mRNA vaccines and subtypes suitable for the immunotherapy of patients with diffuse glioma. Methods: Gene expression profiles and corresponding clinical information were obtained from the Chinese Glioma Genome Atlas (CGGA) and the Cancer Genome Atlas (TCGA) databases. Genetic alterations were extracted from cBioPortal. Differential gene analysis, survival analysis, correlation analysis, consensus clustering analysis, and immune cell infiltration analysis were conducted based on the various databases. Finally, the hub genes, the modules related to tumor antigens, and the immune subtypes were identified using WGCNA method. Results: Three over-expressed, amplified, and mutated tumor antigens, including KDR, COL1A2, and SAMD9, were associated with clinical outcomes. The expression of the three genes had a positive correlation with the abundance of antigen-presenting cells (APCs) and APC marker expression. Subsequently, three immune subtypes (Ims1, Ims2, and Ims3) were distinguished in the TCGA cohort, which exhibited distinct molecular, cellular, and clinical characteristics consistent with the CGGA cohort. Diffuse gliomas with subtype Ims1 were more malignant with immunosuppressive phenotypes and more associated with poor prognosis than the other two subtypes. The three antigens and the immune checkpoints were differentially expressed among the three immune subtypes. Finally, functional enrichment analysis of the genes related to tumor antigens and immune subtypes suggested that they are enriched in many immune-associated processes. Conclusions: KDR, COL1A2, and SAMD9 are potential antigens for developing mRNA vaccines against diffuse glioma. The results suggest that immunotherapy targeting these three antigens is more suitable for patients with subtype Ims1. This study provides insights into immunotherapy for diffuse glioma.


Assuntos
Glioma/imunologia , /farmacologia , Antígenos de Neoplasias/imunologia , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/patologia , Vacinas Anticâncer/imunologia , China , Colágeno Tipo I/genética , Bases de Dados Genéticas , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Glioma/genética , Glioma/terapia , Humanos , Imunoterapia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Prognóstico , RNA Mensageiro/genética , Análise de Sobrevida , Transcriptoma/genética , Microambiente Tumoral/imunologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , /genética
10.
iScience ; 24(11): 103249, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34755091

RESUMO

Diffuse glioma is the most prevalent and malignant brain tumor. The function and significance of CD37 in diffuse gliomas remain largely unknown. Here, we showed CD37 was abnormally expressed in diverse cancers, especially glioma by pan-cancer differential expression analysis. In addition, we found CD37 was upregulated in higher grade and IDH or IDH1-wildtype gliomas, which was further validated by qPCR and IHC. Survival analysis revealed CD37 served as an independent indicator for unfavorable prognosis of patients with diffuse gliomas. Functional enrichment analysis revealed CD37 was associated with immunological processes. Moreover, immune infiltration analyses suggested gliomas with high-expression CD37 had greater infiltration of M2 macrophages and neutrophils, and lower NK cell abundance. CD37 was closely correlated to immune checkpoint molecules, including CD276, CD80, CD86, and PD-L2. Our results indicated CD37 is an independent prognostic factor and plays an immunosuppressive role in diffuse gliomas. Targeting CD37 could be a promising immunotherapeutic strategy for diffuse gliomas.

11.
Environ Sci Technol ; 55(21): 14928-14937, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34676765

RESUMO

Geobacter spp. are well-known exoelectrogenic microorganisms that often predominate acetate-fed biofilms in microbial fuel cells (MFCs) and other bioelectrochemical systems (BESs). By using an amplicon sequence variance analysis (at one nucleotide resolution), we observed a succession between two closely related species (98% similarity in 16S RNA), Geobacter sulfurreducens and Geobacter anodireducens, in the long-term studies (20 months) of MFC biofilms. Geobacter spp. predominated in the near-electrode portion of the biofilm, while the outer layer contained an abundance of aerobes, which may have helped to consume oxygen but reduced the relative abundance of Geobacter. Removal of the outer aerobes by norspermidine washing of biofilms revealed a transition from G. sulfurreducens to G. anodireducens. This succession was also found to occur rapidly in co-cultures in BES tests even in the absence of oxygen, suggesting that oxygen was not a critical factor. G. sulfurreducens likely dominated in early biofilms by its relatively larger cell size and production of extracellular polymeric substances (individual advantages), while G. anodireducens later predominated due to greater cell numbers (quantitative advantage). Our findings revealed the interspecies competition in the long-term evolution of Geobacter genus, providing microscopic insights into Geobacter's niche and competitiveness in complex electroactive microbial consortia.


Assuntos
Fontes de Energia Bioelétrica , Geobacter , Biofilmes , Eletrodos , Geobacter/genética
12.
iScience ; 24(8): 102933, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34409277

RESUMO

The biosynthesis of metal nanoparticles from precious metals has been of wide concern. Their antibacterial activity is a main bottleneck restricting the bacterial activity and reduction performance. Here, bio-electrochemical systems were used to harvest electroactive biofilms (EABs), where bacteria were naturally protected by extracellular polymeric substances to keep activity. The biofilm was further encapsulated with polydopamine (PDA) as additional shield. Silver nanoparticles (AgNPs) were biosynthesized on EABs, whose electroactivity could be fully recovered after Ag+ reduction. The PDA increased bacterial viability by 90%-105%, confirmed as an effective protection against antibacterial activity of Ag+/AgNPs. The biosynthetic process changed the component and function of the microbial community, shifting from bacterial Fe reduction to archaeal methanogenesis. These results demonstrated that the electrochemical acclimation of EABs and encapsulation with PDA were effective protective measures during the biosynthesis of AgNPs. These approaches have a bright future in the green synthesis of nanomaterials, biotoxic wastewater treatment, and sustainable bio-catalysis.

13.
Ultrasonics ; 113: 106374, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33561636

RESUMO

Based on the propagation theory of acoustic waves in anisotropic media, the angular dispersion curves of SAW velocities propagated in some unusual oriented, such as (016)- and (331)-oriented, Body-Centered Cubic (BCC) single crystals are simulated using an optimized numerical method. Meanwhile, the angular dispersion curves of SAW velocities propagated in these unusual oriented BCC single crystals are measured by Impulsive Stimulated Scattering (ISS) laser ultrasonic method, which show that the measurement results are in good agreement with those of the simulations. By the optimized numerical method, the relationships between the temperature and the dispersion curves of SAW velocity propagated in these single crystals are also simulated.

14.
Sci Total Environ ; 774: 145767, 2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-33610993

RESUMO

Electrotrophic bacteria on cathodes are promising substitutes to precious metals as oxygen reduction reaction catalysts in bioelectrochemical systems (BESs). Leading the anodic effluent to the biocathode has additional benefits of neutralizing pH and removing residual pollutants. However, the overflow of excessive organic pollutants inhibits the activity of autotrophic biocathodes. Adding glucose as an organic shock, we confirm that the startup time of biocathodes is initially prolonged by 1.2 times with a decrease in current. However, the currents inversely surpass the control in glucose-added BESs when the biofilm is mature, and the maximum current density increase by 5.5 times with a relatively stable performance. This increase is mainly attributed to the production of agglomerates dominated by polysaccharides and proteins as extracellular polymeric substances. These agglomerates wrap additional redox shuttles that accelerated the electron transfer between electrotrophic bacteria and the cathode. This study demonstrates for the first time that organic shocks enhance the electroactivity of autotrophic biocathodes and provides insights into the feedback mechanisms of electrotrophic microbial community to environmental changes.


Assuntos
Fontes de Energia Bioelétrica , Eletrodos , Elétrons , Matriz Extracelular de Substâncias Poliméricas , Oxirredução , Oxigênio
15.
J Zhejiang Univ Sci B ; 21(2): 122-136, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32115910

RESUMO

Polypyrimidine tract-binding protein 1 (PTBP1) plays an essential role in splicing and is expressed in almost all cell types in humans, unlike the other proteins of the PTBP family. PTBP1 mediates several cellular processes in certain types of cells, including the growth and differentiation of neuronal cells and activation of immune cells. Its function is regulated by various molecules, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and RNA-binding proteins. PTBP1 plays roles in various diseases, particularly in some cancers, including colorectal cancer, renal cell cancer, breast cancer, and glioma. In cancers, it acts mainly as a regulator of glycolysis, apoptosis, proliferation, tumorigenesis, invasion, and migration. The role of PTBP1 in cancer has become a popular research topic in recent years, and this research has contributed greatly to the formulation of a useful therapeutic strategy for cancer. In this review, we summarize recent findings related to PTBP1 and discuss how it regulates the development of cancer cells.


Assuntos
Processamento Alternativo , Carcinogênese , Glicólise , Ribonucleoproteínas Nucleares Heterogêneas/fisiologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/fisiologia , Ribonucleoproteínas Nucleares Heterogêneas/química , Humanos , MicroRNAs/fisiologia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/química , RNA Longo não Codificante/fisiologia
16.
Environ Sci Technol ; 54(5): 3002-3011, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-31891257

RESUMO

Nitrate-N in wastewaters is hard to be recovered because it is difficult to volatilize with an opposite charge to ammonium. Here, we have proved the feasibility of dissimilatory nitrate reduction to ammonia (DNRA) by the easy-acclimated mixed electroactive bacteria, achieving the highest DNRA efficiency of 44%. It was then coupled with microbial electrolysis to concentrate ammonium by a factor of 4 in the catholyte for recovery. The abundance of electroactive bacteria in the biofilm before nitrate addition, especially Geobacter spp., was found to determine the DNRA efficiency. As the main competitors of DNRA bacteria, the growth of denitrifiers was more sensitive to C/N ratios. The DNRA microbial community contrarily showed a stable and recoverable ammoniation performance over C/N ratios ranging from 0.5 to 8.0. A strong competition of the electrode and nitrate on electron donors was observed at the early stage (15 d) of electroactive biofilm formation, which can be weakened when the biofilm was mature on 40 d. Quantitative PCR showed a significant increase in nirS and nrfA transcripts in the ammoniation process. nirS was inhibited significantly after nitrate depletion while nrfA was still upregulated. These findings provided a novel way to recover nitrate-N using organic wastes as both electron donor and power, which has broader implications on the sustainable wastewater treatment and the ecology of nitrogen cycling.


Assuntos
Nitrogênio , Águas Residuárias , Desnitrificação , Eletrólise , Nitratos , Óxidos de Nitrogênio
17.
Front Oncol ; 10: 586019, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425739

RESUMO

Diffuse glioma is one of the most prevalent malignancies of the brain, with high heterogeneity of tumor-infiltrating immune cells. However, immune-associated subtypes of diffuse glioma have not been determined, nor has the effect of different immune-associated subtypes on disease prognosis and immune infiltration of diffuse glioma patients. We retrieved the expression profiles of immune-related genes from The Cancer Genome Atlas (TCGA) (n = 672) and GSE16011 (n = 268) cohorts and used them to identify subtypes of diffuse glioma via Consensus Cluster Plus analysis. We used the limma, clusterProfiler, ESTIMATE, and survival packages of R for differential analysis, functional enrichment, immune and stromal score evaluation respectively in three subtypes, and performed log-rank tests in immune subtypes of diffuse glioma. The immune-associated features of diffuse glioma in the two cohorts were characterized via bioinformatic analyses of the mRNA expression data of immune-related genes. Three subtypes (C1-3) of diffuse glioma were identified from TCGA data, and were verified using the GSE16011 cohort. We then evaluated their immune characteristics and clinical features. Our mRNA profiling analyses indicated that the different subtypes of diffuse glioma presented differential expression profile of specific genes and signal pathways in the TCGA cohort. Patients with subtype C1, who were mostly diagnosed with grade IV glioma, had poorer outcomes than patients with subtype C2 or C3. Subtype C1 was characterized by a higher degree of immune cell infiltration as estimated by GSVA, and more frequent wildtype IDH1. By contrast, subtype C3 included more grade II and IDH1-mutated glioma, and was associated with more infiltration of CD4+T cells. Most subtype C2 had the features between subtypes C1 and C3. Meanwhile, immune checkpoints and their ligand molecules, including PD1/(PD-L1/PDL2), CTLA4/(CD80/CD86), and B7H3/TLT2, were significantly upregulated in subtype C1 and downregulated in subtype C3. In addition, patients with subtype C1 exhibited more frequent gene mutations. Univariate and multivariate Cox regression analyses revealed that diffuse glioma subtype was an effective, independent, and better prognostic factor. Therefore, we established a novel immune-related classification of diffuse glioma, which provides potential immunotherapy targets for diffuse glioma.

18.
J Cell Mol Med ; 23(11): 7180-7189, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31475450

RESUMO

Myoferlin, a protein of the ferlin family, has seven C2 domains and exhibits activity in some cells, including myoblasts and endothelial cells. Recently, myoferlin was identified as a promising target and biomarker in non-small-cell lung cancer, breast cancer, pancreatic adenocarcinoma, hepatocellular carcinoma, colon cancer, melanoma, oropharyngeal squamous cell carcinoma, head and neck squamous cell carcinoma, clear cell renal cell carcinoma and endometrioid carcinoma. This evidence indicated that myoferlin was involved in the proliferation, invasion and migration of tumour cells, the mechanism of which mainly included promoting angiogenesis, vasculogenic mimicry, energy metabolism reprogramming, epithelial-mesenchymal transition and modulating exosomes. The roles of myoferlin in both normal cells and cancer cells are of great significance to provide novel and efficient methods of tumour treatment. In this review, we summarize recent studies and findings of myoferlin and suggest that myoferlin is a novel potential candidate for clinical diagnosis and targeted cancer therapy.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proliferação de Células , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Neoplasias/patologia , Humanos , Neoplasias/metabolismo
19.
Nano Converg ; 5(1): 22, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30148043

RESUMO

Thermoelectric multilayer thin films used in nanoscale energy conversion have been receiving increasing attention in both academic research and industrial applications. Thermal transport across multilayer interface plays a key role in improving thermoelectric conversion efficiency. In this study, the cross-plane thermal conductivities of nano-constructed Sb2Te3/(Cu, Ag, Au, Pt) thermoelectric multilayer thin films have been measured using time-domain thermoreflectance method. The interface morphology features of multilayer thin film samples were characterized by using scanning and transmission electron microscopes. The effects of interface microstructure on the cross-plane thermal conductivities of the multilayer thin films have been extensively examined and the thermal transfer mechanism has been explored. The results indicated that electron-phonon coupling occurred at the semiconductor/metal interface that strongly affected the cross-plane thermal conductivity. By appropriately optimizing the period thickness of the metal layer, the cross-plane thermal conductivity can be effectively reduced, thereby improving the thermoelectric conversion efficiency. This work presents both experimental and theoretical understanding of the thermal transport properties of Sb2Te3/metal multilayer thin film junctions with important implications for exploring a novel approach to improving the thermoelectric conversion efficiency.

20.
ACS Appl Mater Interfaces ; 9(30): 25397-25403, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28699729

RESUMO

Thin films of 0.85BiFe1-2xTixMgxO3-0.15CaTiO3 (x = 0.1 and 0.2, abbreviated to C-1 and C-2, respectively) have been fabricated on (001) SrTiO3 substrate with and without a conductive La0.7Sr0.3MnO3 buffer layer. The X-ray θ-2θ and ϕ scans, atomic force microscopy, and cross-sectional transmission electron microscopy confirm the (001) epitaxial nature of the thin films with very high growth quality. Both the C-1 and C-2 thin films show well-shaped magnetization-magnetic field hysteresis at room temperature, with enhanced switchable magnetization values of 145.3 and 42.5 emu/cm3, respectively. The polarization-electric loops and piezoresponse force microscopy measurements confirm the room-temperature ferroelectric nature of both films. However, the C-1 films illustrate a relatively weak ferroelectric behavior and the poled states are easy to relax, whereas the C-2 films show a relatively better ferroelectric behavior with stable poled states. More interestingly, the room-temperature thermal conductivity of C-1 and C-2 films are measured to be 1.10 and 0.77 W/(m·K), respectively. These self-consistent multiferroic properties and thermal conductivities are discussed by considering the composition-dependent content and migration of Fe-induced electrons and/or charged point defects. This study not only provides multifunctional materials with excellent room-temperature magnetic, ferroelectric, and thermal conductivity properties but may also stimulate further work to develop BiFeO3-based materials with unusual multifunctional properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...