Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 22(8): 1289-1305, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31285612

RESUMO

The effects of autonomic innervation of tumors on tumor growth remain unclear. Here we developed a series of genetic techniques to manipulate autonomic innervation in a tumor- and fiber-type-specific manner in mice with human breast cancer xenografts and in rats with chemically induced breast tumors. Breast cancer growth and progression were accelerated following stimulation of sympathetic nerves in tumors, but were reduced following stimulation of parasympathetic nerves. Tumor-specific sympathetic denervation suppressed tumor growth and downregulated the expression of immune checkpoint molecules (programed death-1 (PD-1), programed death ligand-1 (PD-L1), and FOXP3) to a greater extent than with pharmacological α- or ß-adrenergic receptor blockers. Genetically induced simulation of parasympathetic innervation of tumors decreased PD-1 and PD-L1 expression. In humans, a retrospective analysis of breast cancer specimens from 29 patients revealed that increased sympathetic and decreased parasympathetic nerve density in tumors were associated with poor clinical outcomes and correlated with higher expression of immune checkpoint molecules. These findings suggest that autonomic innervation of tumors regulates breast cancer progression.

2.
J Vis Exp ; (148)2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31233034

RESUMO

The overall goal of this protocol is to generate purified neuronal cultures derived from either GABAergic or glutamatergic neurons. Purified neurons can be cultured in defined media for 16 days in vitro and are amenable to any analyses typically performed on dissociated cultures, including electrophysiological, morphological and survival analyses. The major advantage of these cultures is that specific cell types can be selectively studied in the absence of complex external influences, such as those arising from glial cells or other neuron types. When planning experiments with purified cells, however, it is important to note that neurons strongly depend on glia-conditioned media for their growth and survival. In addition, glutamatergic neurons further depend on glia-secreted factors for the establishment of synaptic transmission. We therefore also describe a method for co-culturing neurons and glial cells in a non-contact arrangement. Using these methods, we have identified major differences between the development of GABAergic and glutamatergic neuronal networks. Thus, studying cultures of purified neurons has great potential for furthering our understanding of how the nervous system develops and functions. Moreover, purified cultures may be useful for investigating the direct action of pharmacological agents, growth factors or for exploring the consequences of genetic manipulations on specific cell types. As more and more transgenic animals become available, labeling additional specific cell types of interest, we expect that the protocols described here will grow in their applicability and potential.

3.
Eur J Neurosci ; 50(6): 2970-2987, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31012509

RESUMO

Feedback regulation from the higher association areas is thought to control the primary sensory cortex, contribute to the cortical processing of sensory information, and work for higher cognitive functions such as multimodal integration and attentional control. However, little is known about the underlying neural mechanisms. Here, we show that the posterior parietal cortex (PPC) persistently inhibits the activity of the primary visual cortex (V1) in mice. Activation of the PPC causes the suppression of visual responses in V1 and induces the short-term depression, which is specific to visual stimuli. In contrast, pharmacological inactivation of the PPC or disconnection of cortical pathways from the PPC to V1 results in an effect of transient enhancement of visual responses in V1. Two-photon calcium imaging demonstrated that the cortical disconnection caused V1 excitatory neurons an enhancement of visual responses and a reduction of orientation selectivity index (OSI). These results show that the PPC regulates the response properties of V1 excitatory neurons. Our findings reveal one of the functions of the PPC, which may contribute to higher brain functions in mice.

4.
Mol Neurobiol ; 56(9): 6276-6292, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30746640

RESUMO

Cultured hippocampal neurons represent the most widely used experimental substrate for in vitro electrophysiological studies. Nevertheless, in most cases, the nature of neuron under study is not identified as excitatory or inhibitory, or even worse, recorded neurons are considered as excitatory because of the paucity of GABAergic interneurons. Thus, the definition of reliable criteria able to guarantee an unequivocal identification of excitatory and inhibitory cultured hippocampal neurons is an unmet need. To reach this goal, we compared the electrophysiological properties and the localization and size of the axon initial segment (AIS) of cultured hippocampal neurons, taking advantage from GAD67-GFP knock-in mice, which expressing green fluorescent protein (GFP) in gamma-aminobutyric acid (GABA)-containing cells, allowed to unambiguously determine the precise nature of the neuron under study. Our results demonstrate that the passive electrophysiological properties, the localization and size of the AIS, and the shape and frequency of the action potential (AP) are not reliable to unequivocally identify neurons as excitatory or inhibitory. The only parameter, related to the shape of the single AP, showing minimal overlap between the sample-point distributions of the two neuronal subpopulations, was the AP half-width. However, the estimation of the AP failure ratio evoked by a short train of high-current steps applied at increasing frequency (40-140 Hz) resulted to be indisputably the safer and faster way to identify the excitatory or inhibitory nature of an unknown neuron. Our findings provide a precise framework for further electrophysiological investigations of in vitro hippocampal neurons.

5.
Neuroscience ; 401: 73-83, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30654002

RESUMO

The amygdala is concerned with the emotional memory consolidation, and is known as a stress-vulnerable region of the brain. Slow network oscillation is considered to play roles in memory consolidation during sleep. We investigated the relationship between the sleep and oscillation in the basolateral nucleus (BL) of the amygdala, in which burst firing is preferentially observed during sleep and the slow inhibitory oscillation is recorded from projection neuron. We examined whether sleep deprivation (SD) alters the properties of the network inhibition by whole-cell recordings from BL projection neurons and interneurons of the slice preparation of the juvenile rats. The level of the oscillatory network inhibition, measured as summed power of the spectral density between 0.1 and 3 Hz of the synaptic currents in the projection neurons, was significantly attenuated by acute (3 h) SD in older (P20-24) but not in younger (P15-19) animals. This reduction was mainly derived from the reduced peak amplitude of periodic IPSC bursts. In inhibitory interneurons in BL, spontaneous firings were reduced in older SD rats. The spike threshold of interneurons was increased and the power of the periodic excitatory transmission was reduced in the SD rats. Moreover, a reduction in input resistance in projection neurons was observed in SD rats without significant difference in the excitability which was measured by the spike number induced by depolarizing currents. These results suggest that SD stress affects the network oscillatory property accompanied by changes of individual neuronal excitability and synaptic communications.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Interneurônios/fisiologia , Privação do Sono/fisiopatologia , Potenciais de Ação/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Transmissão Sináptica/fisiologia
6.
Cell Rep ; 25(10): 2704-2715.e4, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30517859

RESUMO

The supramammillary nucleus (SuM) of the hypothalamus projects to the dentate gyrus (DG) and the CA2 region of the hippocampus. Although the SuM-to-hippocampus circuits have been implicated in spatial and emotional memory formation, little is known about precise neural connections between the SuM and hippocampus. Here, we report that axons of SuM neurons make monosynaptic connections to granule cells (GCs) and GABAergic interneurons, but not to hilar mossy cells, in the DG and co-release glutamate and γ-aminobutyric acid (GABA) at these synapses. Although inputs from the SuM can excite some interneurons, the inputs alone fail to generate spikes in GCs. However, despite the insufficient excitatory drive and GABAergic co-transmission, SuM inputs have net excitatory effects on GCs and can potentiate GC firing when temporally associated with perforant path inputs. Our results indicate that the SuM influences DG information processing by modulating GC outputs.

7.
Nat Commun ; 9(1): 5400, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30573727

RESUMO

Abnormalities in synaptic inhibition play a critical role in psychiatric disorders, and accordingly, it is essential to understand the molecular mechanisms linking components of the inhibitory postsynapse to psychiatrically relevant neural circuits and behaviors. Here we study the role of IgSF9b, an adhesion protein that has been associated with affective disorders, in the amygdala anxiety circuitry. We show that deletion of IgSF9b normalizes anxiety-related behaviors and neural processing in mice lacking the synapse organizer Neuroligin-2 (Nlgn2), which was proposed to complex with IgSF9b. This normalization occurs through differential effects of Nlgn2 and IgSF9b at inhibitory synapses in the basal and centromedial amygdala (CeM), respectively. Moreover, deletion of IgSF9b in the CeM of adult Nlgn2 knockout mice has a prominent anxiolytic effect. Our data place IgSF9b as a key regulator of inhibition in the amygdala and indicate that IgSF9b-expressing synapses in the CeM may represent a target for anxiolytic therapies.


Assuntos
Tonsila do Cerebelo/metabolismo , Transtornos de Ansiedade/genética , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Sinapses/metabolismo , Tonsila do Cerebelo/fisiologia , Animais , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/fisiologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Interferência de RNA , Transmissão Sináptica/genética
8.
Front Neuroanat ; 12: 87, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30429777

RESUMO

The thalamic reticular nucleus (TRN) is the main source of inhibition to the somatosensory thalamus (ventrobasal nucleus, VB) in mice. However, the functional topography and development of these projections with respect to the VB barreloids has been largely unexplored. In this respect, to assist in the study of these projections, we have utilized a vesicular gamma-aminobutryic acid (GABA) transporter (VGAT)-Venus transgenic mouse line to develop a brain slice preparation that enables the rapid identification of inhibitory neurons and projections. We demonstrate the utility of our in vitro brain slice preparation for physiologically mapping inhibitory reticulothalamic (RT) topography, using laser-scanning photostimulation via glutamate uncaging. Furthermore, we utilized this slice preparation to compare the development of excitatory and inhibitory projections to VB. We found that excitatory projections to the barreloids, created by ascending projections from the brain stem, develop by postnatal day 2-3 (P2-P3). By contrast, inhibitory projections to the barreloids lag ~5 days behind excitatory projections to the barreloids, developing by P7-P8. We probed this lag in inhibitory projection development through early postnatal whisker lesions. We found that in whisker-lesioned animals, the development of inhibitory projections to the barreloids closed by P4, in register with that of the excitatory projections to the barreloids. Our findings demonstrate both developmental and topographic organizational features of the RT projection to the VB barreloids, whose mechanisms can now be further examined utilizing the VGAT-Venus mouse slice preparation that we have characterized.

9.
Brain Res Bull ; 144: 39-45, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30448454

RESUMO

Preinspiratory (Pre-I) neurons in the parafacial respiratory group (pFRG) comprise one of the respiratory rhythm generators in the medulla of the neonatal rat. A subgroup of pFRG/Pre-I neurons expresses the transcription factor Phox2b. To further analyze detailed neuronal mechanisms of respiratory rhythm generation in the neonatal rat, we developed a transgenic (Tg) rat line in which Phox2b-positive cells expressed archaerhodopsin-3 (Arch). Brainstem-spinal cord preparations were isolated from 0-2-day-old Tg newborn rats and were superfused with artificial cerebrospinal fluid equilibrated with 95% O2 and 5% CO2, pH 7.4, at 25-26 °C. Inspiratory fourth cervical ventral root (C4) activity was monitored, and membrane potentials of neurons in the pFRG including Pre-I and inspiratory neurons were recorded. Phox2b-positive cells in the Tg rats were essentially positive for enhanced green fluorescent protein (EGFP) signals (reporter for Arch) in the pFRG. Continuous photo-stimulation of the rostral ventral medulla for up to 90 s by covering the pFRG with green laser light (532 nm) induced a decrease of respiratory rate measured at C4 accompanied by membrane hyperpolarization of Phox2b-positive pFRG/Pre-I neurons. In contrast, Phox2b-negative inspiratory neurons were not hyperpolarized during the photo-stimulation. Our findings showed that Phox2b-expressing pFRG/Pre-I neurons are involved in the maintenance of the basic respiratory rhythm in neonatal rat.

10.
Genes Cells ; 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30422377

RESUMO

The layer structure has been intensively characterized in the developing neocortex and cerebellum based on the various molecular markers. However, as to the developing dorsal midbrain, comprehensive analyses have not been intensely carried out, and thus, the name as well as the definition of each layer is not commonly shared. Here, we redefined the three layers, such as the ventricular zone, intermediate zone and marginal zone, based on various markers for proliferation and differentiation in embryonic dorsal midbrain. Biphasic Ki67 expression defines the classical VZ, in which there is clear separation of the mitotic and interphase zones. Next, we mapped the distribution of immature neurons to the defined layers, based on markers for glutamatergic and GABAergic lineage. Interestingly, Tbr2 and Neurog2 were expressed in the postmitotic neurons. We also report that active (phosphorylated) JNK is a useful marker to demarcate layers during the embryonic stage. Finally, we validated the final arrival layers of the migratory glutamatergic and GABAergic neurons. These results form a foundation for analyses of brain development, especially in the proliferation and migration of excitatory and inhibitory neurons in the dorsal midbrain.

11.
J Neurosci ; 38(49): 10411-10423, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30341178

RESUMO

Polyunsaturated fatty acids (PUFAs) are essential for brain development and function. Increasing evidence has shown that an imbalance of PUFAs is associated with various human psychiatric disorders, including autism and schizophrenia. Fatty acid-binding proteins (FABPs), cellular chaperones of PUFAs, are involved in PUFA intracellular trafficking, signal transduction, and gene transcription. In this study, we show that FABP3 is strongly expressed in the GABAergic inhibitory interneurons of the male mouse anterior cingulate cortex (ACC), which is a component of the limbic cortex and is important for the coordination of cognitive and emotional behaviors. Interestingly, Fabp3 KO male mice show an increase in the expression of the gene encoding the GABA-synthesizing enzyme glutamic acid decarboxylase 67 (Gad67) in the ACC. In the ACC of Fabp3 KO mice, Gad67 promoter methylation and the binding of methyl-CpG binding protein 2 (MeCP2) and histone deacetylase 1 (HDAC1) to the Gad67 promoter are significantly decreased compared with those in WT mice. The abnormal cognitive and emotional behaviors of Fabp3 KO mice are restored by methionine administration. Notably, methionine administration normalizes Gad67 promoter methylation and its mRNA expression in the ACC of Fabp3 KO mice. These findings demonstrate that FABP3 is involved in the control of DNA methylation of the Gad67 promoter and activation of GABAergic neurons in the ACC, thus suggesting the importance of PUFA homeostasis in the ACC for cognitive and emotional behaviors.SIGNIFICANCE STATEMENT The ACC is important for emotional and cognitive processing. However, the mechanisms underlying its involvement in the control of behavioral responses are largely unknown. We show the following new observations: (1) FABP3, a PUFA cellular chaperone, is exclusively expressed in GABAergic interneurons in the ACC; (2) an increase in Gad67 expression is detected in the ACC of Fabp3 KO mice; (3) the Gad67 promoter is hypomethylated and the binding of transcriptional repressor complexes is decreased in the ACC of Fabp3 KO mice; and (4) elevated Gad67 expression and abnormal behaviors seen in Fabp3 KO mice are mostly recovered by methionine treatment. These suggest that FABP3 regulates GABA synthesis through transcriptional regulation of Gad67 in the ACC.

12.
Sci Rep ; 8(1): 15156, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30310105

RESUMO

Targeting gene expression to a particular subset of neurons helps study the cellular function of the nervous system. Although neuron-specific promoters, such as the synapsin I promoter and the α-CaMKII promoter, are known to exhibit selectivity for excitatory glutamatergic neurons in vivo, the cell type-specificity of these promoters has not been thoroughly tested in culture preparations. Here, by using hippocampal culture preparation from the VGAT-Venus transgenic mice, we examined the ability of five putative promoter sequences of glutamatergic-selective markers including synapsin I, α-CaMKII, the vesicular glutamate transporter 1 (VGLUT1), Dock10 and Prox1. Among these, a genomic fragment containing a 2.1 kb segment upstream of the translation start site (TSS) of the VGLUT1 implemented in a lentiviral vector with the Tet-Off inducible system achieved the highest preferential gene expression in glutamatergic neurons. Analysis of various lengths of the VGLUT1 promoter regions identified a segment between -2.1 kb and -1.4 kb from the TSS as a responsible element for the glutamatergic selectivity. Consistently, expression of channelrhodopsin under this promoter sequence allowed for selective light-evoked activation of excitatory neurons. Thus, the lentiviral system carrying the VGLUT1 promoter fragment can be used to effectively target exogenous gene expression to excitatory glutamatergic neurons in cultures.

13.
Front Cell Neurosci ; 12: 284, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233323

RESUMO

Exposure to prenatal stress (PS) and mutations in Gad1, which encodes GABA synthesizing enzyme glutamate decarboxylase (GAD) 67, are the primary risk factors for psychiatric disorders associated with abnormalities in parvalbumin (PV)-positive GABAergic interneurons in the medial prefrontal cortex (mPFC). Decreased expression of extracellular matrix (ECM) glycoproteins has also been reported in patients with these disorders, raising the possibility that ECM abnormalities may play a role in their pathogenesis. To elucidate pathophysiological changes in ECM induced by the gene-environment interaction, we examined heterozygous GAD67-GFP (Knock-In KI; GAD67+/GFP) mice subjected to PS from embryonic day 15.0 to 17.5. Consistent with our previous study, we confirmed a decrease in the density of PV neurons in the mPFC of postnatal GAD67+/GFP mice with PS, which was concurrent with a decrease in density of PV neurons surrounded by perineuronal nets (PNNs), a specialized ECM important for the maturation, synaptic stabilization and plasticity of PV neurons. Glycosylation of α-dystroglycan (α-DG) and its putative mediator fukutin (Fktn) in the ECM around inhibitory synapses has also been suggested to contribute to disease development. We found that both glycosylated α-DG and the mRNA level of Fktn were reduced in GAD67+/GFP mice with PS. None of these changes were detected in GAD67+/GFP naive mice or wild type (GAD67+/+) mice with PS, suggesting that both PS and reduced Gad1 gene expression are prerequisites for these changes. When assessing the function of interneurons in the mPFC of GAD67+/GFP mice with PS through evoked inhibitory post-synaptic currents (eIPSCs) in layer V pyramidal neurons, we found that the threshold stimulus intensity for eIPSC events was reduced and that the eIPSC amplitude was increased without changes in the paired-pulse ratio (PPR). Moreover, the decay rate of eIPSCs was also slowed. In line with eIPSC, spontaneous IPSC (sIPSC) amplitude, frequency and decay tau were altered. Thus, our study suggests that alterations in the ECM mediated by gene-environment interactions might be linked to the enhanced and prolonged GABA action that compensates for the decreased density of PV neurons. This might be one of the causes of the excitatory/inhibitory imbalance in the mPFC of psychiatric patients.

14.
eNeuro ; 5(4)2018 Jul-Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30225347

RESUMO

Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) is a key mediator of activity-dependent neuronal modifications and has been implicated in the molecular mechanisms of learning and memory. Indeed, several types of CaMKIIα knock-in (KI) and knock-out (KO) mice revealed impairments in hippocampal synaptic plasticity and behavioral learning. On the other hand, a similar role for CaMKIIα has been implicated in amygdala-dependent memory, but detailed analyses have not much been performed yet. To better understand its involvement in amygdala-dependent memory as compared to hippocampus-dependent memory, here we performed biochemical analyses and behavioral memory tests using the kinase-dead CaMKIIα (K42R)-KI mouse. In the Morris water maze tasks, homozygous mutants performed well in the visible platform trials, while they failed to form spatial memory in the hippocampus-dependent hidden platform trials. In fear conditioning, these mice were impaired but showed a certain level of amygdala-dependent cued fear memory, which lasted four weeks, while they showed virtually no hippocampus-dependent context discrimination. Neither stronger stimulation nor repetitive stimulation compensated for their memory deficits. The differential outcome of hippocampus- and amygdala-dependent memory in the mutant mouse was not due to differential expression of CaMKIIα between the hippocampus and the amygdala, because biochemical analyses revealed that both kinase activity and protein levels of CaMKII were indistinguishable between the two brain regions. These results indicate that kinase activity of CaMKIIα is indispensable for hippocampus-dependent memory, but not necessarily for amygdala-dependent memory. There may be a secondary, CaMKIIα activity-independent pathway, in addition to the CaMKIIα activity-dependent pathway, in the acquisition of amygdala-dependent memory.

15.
Commun Biol ; 12018.
Artigo em Inglês | MEDLINE | ID: mdl-30175250

RESUMO

Mutations in the SCN2A gene encoding a voltage-gated sodium channel Nav1.2 are associated with epilepsies, intellectual disability, and autism. SCN2A gain-of-function mutations cause early-onset severe epilepsies, while loss-of-function mutations cause autism with milder and/or later-onset epilepsies. Here we show that both heterozygous Scn2a-knockout and knock-in mice harboring a patient-derived nonsense mutation exhibit ethosuximide-sensitive absence-like seizures associated with spike-and-wave discharges at adult stages. Unexpectedly, identical seizures are reproduced and even more prominent in mice with heterozygous Scn2a deletion specifically in dorsal-telencephalic (e.g., neocortical and hippocampal) excitatory neurons, but are undetected in mice with selective Scn2a deletion in inhibitory neurons. In adult cerebral cortex of wild-type mice, most Nav1.2 is expressed in excitatory neurons with a steady increase and redistribution from proximal (i.e., axon initial segments) to distal axons. These results indicate a pivotal role of Nav1.2 haplodeficiency in excitatory neurons in epilepsies of patients with SCN2A loss-of-function mutations.

16.
Cell Rep ; 24(1): 79-94, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29972793

RESUMO

The mammalian brain undergoes sexual differentiation by gonadal hormones during the perinatal critical period. However, the machinery at earlier stages has not been well studied. We found that Ptf1a is expressed in certain neuroepithelial cells and immature neurons around the third ventricle that give rise to various neurons in several hypothalamic nuclei. We show that conditional Ptf1a-deficient mice (Ptf1a cKO) exhibit abnormalities in sex-biased behaviors and reproductive organs in both sexes. Gonadal hormone administration to gonadectomized animals revealed that the abnormal behavior is caused by disorganized sexual development of the knockout brain. Accordingly, expression of sex-biased genes was severely altered in the cKO hypothalamus. In particular, Kiss1, important for sexual differentiation of the brain, was drastically reduced in the cKO hypothalamus, which may contribute to the observed phenotypes in the Ptf1a cKO. These findings suggest that forebrain Ptf1a is one of the earliest regulators for sexual differentiation of the brain.

17.
J Neurophysiol ; 120(4): 1525-1533, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29975163

RESUMO

We previously reported that cholinergic current responses mediated via nicotinic acetylcholine (ACh) receptors (nAChRs) in the prepositus hypoglossi nucleus (PHN), which participates in gaze control, can be classified into distinct types based on different kinetics and are mainly composed of α7- and/or non-α7-subtypes: fast (F)-, slow (S)-, and fast and slow (FS)-type currents. In this study, to clarify how each current type is related to neuronal activities, we investigated the relationship between the current types and the membrane properties and the firing responses that were induced by each current type. The proportion of the current types differed in neurons that exhibited different afterhyperpolarization (AHP) profiles and firing patterns, suggesting that PHN neurons show a preference for specific current types dependent on the membrane properties. In response to ACh, F-type neurons showed either one action potential (AP) or multiple APs with a short firing duration, and S-type neurons showed multiple APs with a long firing duration. The firing frequency of F-type neurons was significantly higher than that of S-type and FS-type neurons. An α7-subtype-specific antagonist abolished the firing responses of F-type neurons and reduced the responses of FS-type neurons but had little effect on the responses of S-type neurons, which were reduced by a non-α7-subtype-specific antagonist. These results suggest that the different properties of the current types and the distinct expression of the nAChR subtypes in PHN neurons with different membrane properties produce unique firing responses via the activation of nAChRs. NEW & NOTEWORTHY Prepositus hypoglossi nucleus (PHN) neurons show distinct nicotinic acetylcholine receptor (nAChR)-mediated current responses. The proportion of the current types differed in the neurons that exhibited different afterhyperpolarization profiles and firing patterns. The nAChR-mediated currents with different kinetics induced firing responses of the neurons that were distinct in the firing frequency and duration. These results suggest that the different properties of the current types in PHN neurons with different membrane properties produce unique firing responses via the activation of nAChRs.

18.
J Neurosci ; 38(28): 6366-6378, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29915137

RESUMO

The hypothalamus plays an important role in the regulation of sleep/wakefulness states. While the ventrolateral preoptic nucleus (VLPO) plays a critical role in the initiation and maintenance of sleep, the lateral posterior part of the hypothalamus contains neuronal populations implicated in maintenance of arousal, including orexin-producing neurons (orexin neurons) in the lateral hypothalamic area (LHA) and histaminergic neurons in the tuberomammillary nucleus (TMN). During a search for neurons that make direct synaptic contact with histidine decarboxylase-positive (HDC+), histaminergic neurons (HDC neurons) in the TMN and orexin neurons in the LHA of male mice, we found that these arousal-related neurons are heavily innervated by GABAergic neurons in the preoptic area including the VLPO. We further characterized GABAergic neurons electrophysiologically in the VLPO (GABAVLPO neurons) that make direct synaptic contact with these hypothalamic arousal-related neurons. These neurons (GABAVLPO→HDC or GABAVLPO→orexin neurons) were both potently inhibited by noradrenaline and serotonin, showing typical electrophysiological characteristics of sleep-promoting neurons in the VLPO. This work provides direct evidence of monosynaptic connectivity between GABAVLPO neurons and hypothalamic arousal neurons and identifies the effects of monoamines on these neuronal pathways.SIGNIFICANCE STATEMENT Rabies-virus-mediated tracing of input neurons of two hypothalamic arousal-related neuron populations, histaminergic and orexinergic neurons, showed that they receive similar distributions of input neurons in a variety of brain areas, with rich innervation by GABAergic neurons in the preoptic area, including the ventrolateral preoptic area (VLPO), a region known to play an important role in the initiation and maintenance of sleep. Electrophysiological experiments found that GABAergic neurons in the VLPO (GABAVLPO neurons) that make direct input to orexin or histaminergic neurons are potently inhibited by noradrenaline and serotonin, suggesting that these monoamines disinhibit histamine and orexin neurons. This work demonstrated functional and structural interactions between GABAVLPO neurons and hypothalamic arousal-related neurons.

19.
J Neurosci ; 38(27): 6130-6144, 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29858484

RESUMO

Perineuronal nets (PNNs), composed mainly of chondroitin sulfate proteoglycans, are the extracellular matrix that surrounds cell bodies, proximal dendrites, and axon initial segments of adult CNS neurons. PNNs are known to regulate neuronal plasticity, although their physiological roles in cerebellar functions have yet to be elucidated. Here, we investigated the contribution of PNNs to GABAergic transmission from cerebellar Purkinje cells (PCs) to large glutamatergic neurons in the deep cerebellar nuclei (DCN) in male mice by recording IPSCs from cerebellar slices, in which PNNs were depleted with chondroitinase ABC (ChABC). We found that PNN depletion increased the amplitude of evoked IPSCs and enhanced the paired-pulse depression. ChABC treatment also facilitated spontaneous IPSCs and increased the miniature IPSC frequency without changing not only the amplitude but also the density of PC terminals, suggesting that PNN depletion enhances presynaptic GABA release. We also demonstrated that the enhanced GABAergic transmission facilitated rebound firing in large glutamatergic DCN neurons, which is expected to result in the efficient induction of synaptic plasticity at synapses onto DCN neurons. Furthermore, we tested whether PNN depletion affects cerebellar motor learning. Mice having received the enzyme into the interpositus nuclei, which are responsible for delay eyeblink conditioning, exhibited the conditioned response at a significantly higher rate than control mice. Therefore, our results suggest that PNNs of the DCN suppress GABAergic transmission between PCs and large glutamatergic DCN neurons and restrict synaptic plasticity associated with motor learning in the adult cerebellum.SIGNIFICANCE STATEMENT Perineuronal nets (PNNs) are one of the extracellular matrices of adult CNS neurons and implicated in regulating various brain functions. Here we found that enzymatic PNN depletion in the mouse deep cerebellar nuclei (DCN) reduced the paired-pulse ratio of IPSCs and increased the miniature IPSC frequency without changing the amplitude, suggesting that PNN depletion enhances GABA release from the presynaptic Purkinje cell (PC) terminals. Mice having received the enzyme in the interpositus nuclei exhibited a higher conditioned response rate in delay eyeblink conditioning than control mice. These results suggest that PNNs regulate presynaptic functions of PC terminals in the DCN and functional plasticity of synapses on DCN neurons, which influences the flexibility of adult cerebellar functions.

20.
Cell Rep ; 23(9): 2678-2689, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29847798

RESUMO

Peripheral nerve lesions provoke apoptosis in the dorsal horn of the spinal cord. The cause of cell death, the involvement of neurons, and the relevance for the processing of somatosensory information are controversial. Here, we demonstrate in a mouse model of sciatic nerve injury that glutamate-induced neurodegeneration and loss of γ-aminobutyric acid (GABA)ergic interneurons in the superficial dorsal horn promote the transition from acute to chronic neuropathic pain. Conditional deletion of Grin1, the essential subunit of N-methyl-d-aspartate-type glutamate receptors (NMDARs), protects dorsal horn neurons from excitotoxicity and preserves GABAergic inhibition. Mice deficient in functional NMDARs exhibit normal nociceptive responses and acute pain after nerve injury, but this initial increase in pain sensitivity is reversible. Eliminating NMDARs fully prevents persistent pain-like behavior. Reduced pain in mice lacking proapoptotic Bax confirmed the significance of neurodegeneration. We conclude that NMDAR-mediated neuron death contributes to the development of chronic neuropathic pain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA